A Short Proof of the Transcendence of Thue-Morse Continued Fractions

Boris Adamczewski and Yann Bugeaud

The Thue-Morse sequence $\mathbf{t} = (t_n)_{n\geq 0}$ on the alphabet $\{a,b\}$ is defined as follows: $t_n = a$ (respectively, $t_n = b$) if the sum of binary digits of n is even (respectively, odd). This famous binary sequence was first introduced by A. Thue [12] in 1912. It was considered nine years later by M. Morse [7] in a totally different context. These pioneering papers have led to a number of investigations and a broad literature devoted to \mathbf{t} . There are many other ways to define the Thue-Morse sequence. Each of them gives rise to specific interests, problems, and most of the time solutions. Such ubiquity is well described in the survey [1], where the occurrence of \mathbf{t} in combinatorics, number theory, differential geometry, theoretical computer science, physics, and even chess is documented. For a and b distinct integers K. Mahler [6] (see also [2]) established that the sum of the series $\sum_{n\geq 0} t_n 2^{-n}$ is transcendental. The present note adresses another Diophantine result related to the Thue-Morse sequence.

It is widely believed that the continued fraction expansion of every irrational algebraic number α either is eventually periodic (and we know from Lagange's theorem that this is the case if and only if α is a quadratic irrational) or contains arbitrarily large partial quotients. Apparently, this challenging question was first considered by A. Ya. Khintchin in [4] (see also [5], [11], or [13] for surveys or books including discussions of this subject). A preliminary step towards its resolution consists in providing explicit examples of transcendental continued fractions with bounded partial quotients. In this direction, M. Queffélec [8] showed in 1998 that the Thue-Morse continued fractions are transcendental.

Theorem 1 (Queffélec). If a and b are distinct positive integers and $\mathbf{t} = (t_n)_{n \geq 0}$ is the Thue-Morse sequence on the alphabet $\{a, b\}$, then the number

$$\xi = [t_0, t_1, t_2, \ldots] = t_0 + \frac{1}{t_1 + \frac{1}{t_2 + \frac{1}{t_3 + \cdots}}}$$

is transcendental.

Choosing a=1 and b=-1, we infer from the definition of \mathbf{t} that $t_0=1$, $t_1=-1$, $t_{2n}=t_n$, and $t_{2n+1}=-t_n$ for each positive integer n. The generating function $F(z)=\sum_{n\geq 0}t_nz^n$ of \mathbf{t} thus satisfies the equation $F(z)=(1-z)F(z^2)$. Iterating this identity we arrive at

$$F(z) = \left(\prod_{i=0}^{k-1} (1 - z^{2^i})\right) F(z^{2^k})$$

for each positive integer k. We deduce that F is not a rational function, for otherwise it would have either infinitely many roots or infinitely many poles in the complex plane. Consequently, the sequence \mathbf{t} is not eventually periodic. Thanks to Lagrange's theorem, we can assert that the associated number ξ is not a quadratic irrational. To prove that ξ cannot be algebraic of larger degree requires much more work and the use of a deep result from Diophantine approximation. The purpose of our note is to give a new, simpler proof of Theorem 1 that illustrates the fruitful interplay between combinatorics on words and Diophantine approximation.

We first briefly sketch Queffélec's proof of Theorem 1. To this end we recall another useful description of **t**. An easy induction shows that the infinite word

$$\mathbf{t} = t_0 t_1 t_2 \dots = abbabaabbaababbaababba \dots$$

is the fixed point beginning with a of the morphism μ defined by

$$\mu(a) = ab, \qquad \mu(b) = ba,$$

that is,

$$\mathbf{t} = \lim_{n \to +\infty} \mu^n(a). \tag{1}$$

Set U = abb and V = ab. Observe that **t** begins with abbab = UV. Equation (1) shows that for each positive integer k the word **t** begins with $\mu^k(U)\mu^k(V)$. Moreover, it is easily checked that $\mu^k(U)$ begins with $\mu^k(V)$ and that the length of $\mu^k(V)$ is two-thirds that of $\mu^k(U)$. Consequently, ξ is very close to the quadratic irrational ξ_k whose sequence of partial quotients is given by the periodic sequence $\mu^k(U)\mu^k(U)\mu^k(U)\dots$

Queffélec quantified precisely the meaning of "very close" and concluded that ξ admits infinitely many very good quadratic approximants. The fact that ξ must be transcendental is then derived from a deep theorem of W. M. Schmidt [10] (see Theorem 2). Here, we denote by $H(\alpha)$ the height of an algebraic number α (i.e., $H(\alpha)$ is the maximum of the moduli of the coefficients of its minimal polynomial).

Theorem 2 (Schmidt). Let ζ be a real number that is neither rational nor quadratic irrational. If there exist a real number w larger than 3 and infinitely many quadratic irrationals α such that

$$|\zeta - \alpha| < H(\alpha)^{-w},$$

then ζ is transcendental.

In order to apply Theorem 2, Queffélec's proof requires rather precise estimates of the heights of the quadratic approximants ξ_k described earlier. In particular, it is necessary to estimate the growth of the denominators of the convergents to ξ . This strongly depends on the values of the positive integers a and b. As Queffélec remarked [9], there is a way to overcome this difficulty and to obtain quickly the estimates that are needed. However, there is a price to pay for this, namely, the use of deep tools from ergodic theory via consideration of the Thue-Morse symbolic dynamical system. Thus, one difficulty is in some sense just replaced with another.

Now we show how the proof of Theorem 1 can be simplified considerably by taking a different point of view. The only nonelementary argument we use is an equivalent formulation of Theorem 2 recalled in Theorem 3, which is also found in [10]. In particular, there is absolutely no need here to estimate the growth of the denominators of the convergents to ξ . The main novelty is that, instead of using the quasi-periodicity of the Thue-Morse sequence, we focus on a symmetry property of \mathbf{t} : it begins with arbitrarily large palindromes. In this respect, the proof we give strongly differs from the original one.

Theorem 3 (Schmidt). Let ζ be a real number that is neither rational nor quadratic irrational. If there exist a real number w larger than 3/2 and infinitely many triples (p, q, r) of nonzero integers such that

$$\max\left\{\left|\zeta - \frac{p}{q}\right|, \left|\zeta^2 - \frac{r}{q}\right|\right\} < \frac{1}{|q|^w},$$

then ζ is transcendental.

We demonstrate how Theorem 3 implies Theorem 1. Let $\zeta = [a_0, a_1, \ldots]$ be a positive real irrational number, and let n be a nonnegative integer. Denote by p_n/q_n the nth convergent to ζ , that is, $p_n/q_n = [a_0, a_1, \ldots, a_n]$. By the theory of continued fractions (see, for instance, [3]), we have

$$M_n := \begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \dots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \quad (n \ge 1).$$

Assume that the word $a_0a_1...a_n$ is a palindrome (i.e., $a_j=a_{n-j}$ for any integer j with $0 \le j \le n$). Then the transpose tM_n of the matrix M_n satisfies

$${}^{t}M_{n} = {}^{t} \begin{pmatrix} \begin{pmatrix} a_{0} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{1} & 1 \\ 1 & 0 \end{pmatrix} \dots \begin{pmatrix} a_{n} & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$$
$$= {}^{t} \begin{pmatrix} a_{n} & 1 \\ 1 & 0 \end{pmatrix} {}^{t} \begin{pmatrix} a_{n-1} & 1 \\ 1 & 0 \end{pmatrix} \dots {}^{t} \begin{pmatrix} a_{0} & 1 \\ 1 & 0 \end{pmatrix} = M_{n}.$$

Since M_n is symmetric, $q_n = p_{n-1}$. Recalling that

$$\left| \zeta - \frac{p_{n-1}}{q_{n-1}} \right| < \frac{1}{q_{n-1}^2},$$

we infer from the fact that $a_0 < \zeta < a_0 + 1, a_0 = a_n$, and $|p_n q_{n-1} - p_{n-1} q_n| = 1$ that

$$\left| \zeta^{2} - \frac{p_{n}}{q_{n-1}} \right| = \left| \zeta^{2} - \frac{p_{n-1}}{q_{n-1}} \cdot \frac{p_{n}}{q_{n}} \right| \le \left| \zeta + \frac{p_{n}}{q_{n}} \right| \cdot \left| \zeta - \frac{p_{n-1}}{q_{n-1}} \right| + \frac{a_{0} + 1}{q_{n}q_{n-1}}$$

$$\le 2(a_{0} + 1) \left| \zeta - \frac{p_{n-1}}{q_{n-1}} \right| + \frac{a_{0} + 1}{q_{n}q_{n-1}} < \frac{3(a_{0} + 1)}{q_{n-1}^{2}}.$$

In other words, if the sequence of partial quotients of ζ begins with arbitrarily large palindromes, then ζ and ζ^2 are simultaneously very well approximable by rational numbers

having the same denominator. In particular, Theorem 3 implies that ζ is either quadratic irrational or transcendental.

We next show how this observation applies to the real number ξ . First, we remark that the Thue-Morse word **t** begins with the palindrome abba. Second, notice that $\mu^2(a) = abba$ and $\mu^2(b) = baab$ are palindromes. Consequently, for each positive integer k the prefix of length 4^k of **t** is a palindrome. Denoting by p_n/q_n the nth convergent to ξ , we have $p_n/q_n = [t_0, t_1, \ldots, t_n]$ and, in view of the forgoing discussion, we learn that

$$\max\left\{ \left| \xi - \frac{p_{4^k - 2}}{q_{4^k - 2}} \right|, \left| \xi^2 - \frac{p_{4^k - 1}}{q_{4^k - 2}} \right| \right\} < \frac{3(a+1)}{q_{4^k - 2}^2}$$
 (2)

holds for each positive integer k. Recall that we have already established that ξ is not quadratic irrational. Thus, it follows from Theorem 3 and (2) that ξ is transcendental. This ends the proof of Theorem 1.

ACKNOWLEDGMENTS. We would like to sincerely thank the referee for a number of valuable suggestions concerning the presentation of this paper.

References

- [1] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in Sequences and Their Applications (Singapore, 1998), Springer Ser. Discrete Math. Theor. Comput. Sci., Springer-Verlag, London, 1999, pp. 1–16.
- [2] F. M. Dekking, Transcendance du nombre de Thue-Morse, C. R. Acad. Sci. Paris **285** (1977) 157–160.
- [3] J. S. Frame, Continued fractions and matrices, this Monthly 56 (1949) 98–103.
- [4] A. Ya. Khintchin, *Continued Fractions*, 2nd ed., Gosudarstv. Izdat. Tehn.-Theor. Lit. Moscow-Leningrad, 1949 (Russian); English translation, University of Chicago Press, Chicago-London, 1964.
- [5] S. Lang, Introduction to Diophantine Approximations, 2nd ed., Springer-Verlag, New-York, 1995.
- [6] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, *Math. Ann.* **101** (1929) 342–366; corrigendum **103** (1930) 532.
- [7] M. Morse, Recurrent geodesics on a surface of negative curvature, *Trans. Amer. Math. Soc.* **22** (1921) 84–100.
- [8] M. Queffélec, Transcendance des fractions continues de Thue-Morse, J. Number Theory 73 (1998) 201–211.
- [9] —, Irrational numbers with automaton-generated continued fraction expansion, in *Dynamical systems (Luminy-Marseille, 1998)*, World Scientific, River Edge, NJ, 2000, pp. 190–198.

- [10] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, *Acta Math.* **119** (1967) 27–50.
- [11] J. O. Shallit, Real numbers with bounded partial quotients, *Enseign. Math.* **38** (1992) 151–187.
- [12] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67; reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, 1977, pp. 413–478.
- [13] M. Waldschmidt, Un demi-siècle de transcendance, in *Development of Mathematics* 1950–2000, Birkhäuser, Basel, 2000, pp. 1121–1186.

Boris Adamczewski, CNRS, Institut Camille Jordan, Université Claude Bernard Lyon 1, Bât. Braconnier, 21 avenue Claude Bernard, 69622 Villeurbanne Cedex, France. Boris.Adamczewski@math.univ-lyon1.fr

Yann Bugeaud, Université Louis Pasteur, U. F. R. de mathématiques, 7, rue René Descartes, 67084 Strasbourg Cedex, France bugeaud@math.u-strasbg.fr