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The Thue-Morse sequence t = (tn)n≥0 on the alphabet {a, b} is defined as follows: tn = a
(respectively, tn = b) if the sum of binary digits of n is even (respectively, odd). This
famous binary sequence was first introduced by A. Thue [12] in 1912. It was considered
nine years later by M. Morse [7] in a totally different context. These pioneering papers
have led to a number of investigations and a broad literature devoted to t. There are
many other ways to define the Thue-Morse sequence. Each of them gives rise to specific
interests, problems, and most of the time solutions. Such ubiquity is well described in the
survey [1], where the occurrence of t in combinatorics, number theory, differential geometry,
theoretical computer science, physics, and even chess is documented. For a and b distinct
integers K. Mahler [6] (see also [2]) established that the sum of the series

∑

n≥0
tn2−n

is transcendental. The present note adresses another Diophantine result related to the
Thue-Morse sequence.

It is widely believed that the continued fraction expansion of every irrational algebraic
number α either is eventually periodic (and we know from Lagange’s theorem that this
is the case if and only if α is a quadratic irrational) or contains arbitrarily large partial
quotients. Apparently, this challenging question was first considered by A. Ya. Khintchin
in [4] (see also [5], [11], or [13] for surveys or books including discussions of this subject). A
preliminary step towards its resolution consists in providing explicit examples of transcen-
dental continued fractions with bounded partial quotients. In this direction, M. Queffélec
[8] showed in 1998 that the Thue-Morse continued fractions are transcendental.

Theorem 1 (Queffélec). If a and b are distinct positive integers and t = (tn)n≥0 is the

Thue-Morse sequence on the alphabet {a, b}, then the number

ξ = [t0, t1, t2, . . .] = t0 +
1

t1 +
1

t2 +
1

t3 + · · ·

is transcendental.

Choosing a = 1 and b = −1, we infer from the definition of t that t0 = 1, t1 = −1,
t2n = tn, and t2n+1 = −tn for each positive integer n. The generating function F (z) =
∑

n≥0
tnzn of t thus satisfies the equation F (z) = (1− z)F (z2). Iterating this identity we

arrive at

F (z) =

( k−1
∏

i=0

(

1 − z2
i)

)

F
(

z2
k)
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for each positive integer k. We deduce that F is not a rational function, for otherwise
it would have either infinitely many roots or infinitely many poles in the complex plane.
Consequently, the sequence t is not eventually periodic. Thanks to Lagrange’s theorem,
we can assert that the associated number ξ is not a quadratic irrational. To prove that ξ
cannot be algebraic of larger degree requires much more work and the use of a deep result
from Diophantine approximation. The purpose of our note is to give a new, simpler proof
of Theorem 1 that illustrates the fruitful interplay between combinatorics on words and
Diophantine approximation.

We first briefly sketch Queffélec’s proof of Theorem 1. To this end we recall another
useful description of t. An easy induction shows that the infinite word

t = t0t1t2 . . . = abbabaabbaababbabaababba . . .

is the fixed point beginning with a of the morphism µ defined by

µ(a) = ab, µ(b) = ba,

that is,
t = lim

n→+∞
µn(a). (1)

Set U = abb and V = ab. Observe that t begins with abbab = UV . Equation (1)
shows that for each positive integer k the word t begins with µk(U)µk(V ). Moreover, it
is easily checked that µk(U) begins with µk(V ) and that the length of µk(V ) is two-thirds
that of µk(U). Consequently, ξ is very close to the quadratic irrational ξk whose sequence
of partial quotients is given by the periodic sequence µk(U)µk(U)µk(U) . . . .

Queffélec quantified precisely the meaning of “very close” and concluded that ξ admits
infinitely many very good quadratic approximants. The fact that ξ must be transcendental
is then derived from a deep theorem of W. M. Schmidt [10] (see Theorem 2). Here, we
denote by H(α) the height of an algebraic number α (i.e., H(α) is the maximum of the
moduli of the coefficients of its minimal polynomial).

Theorem 2 (Schmidt). Let ζ be a real number that is neither rational nor quadratic

irrational. If there exist a real number w larger than 3 and infinitely many quadratic

irrationals α such that

|ζ − α| < H(α)−w,

then ζ is transcendental.

In order to apply Theorem 2, Queffélec’s proof requires rather precise estimates of the
heights of the quadratic approximants ξk described earlier. In particular, it is necessary to
estimate the growth of the denominators of the convergents to ξ. This strongly depends
on the values of the positive integers a and b. As Queffélec remarked [9], there is a way
to overcome this difficulty and to obtain quickly the estimates that are needed. However,
there is a price to pay for this, namely, the use of deep tools from ergodic theory via
consideration of the Thue-Morse symbolic dynamical system. Thus, one difficulty is in
some sense just replaced with another.
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Now we show how the proof of Theorem 1 can be simplified considerably by taking a
different point of view. The only nonelementary argument we use is an equivalent formula-
tion of Theorem 2 recalled in Theorem 3, which is also found in [10]. In particular, there is
absolutely no need here to estimate the growth of the denominators of the convergents to
ξ. The main novelty is that, instead of using the quasi-periodicity of the Thue-Morse se-
quence, we focus on a symmetry property of t: it begins with arbitrarily large palindromes.
In this respect, the proof we give strongly differs from the original one.

Theorem 3 (Schmidt). Let ζ be a real number that is neither rational nor quadratic

irrational. If there exist a real number w larger than 3/2 and infinitely many triples (p, q, r)
of nonzero integers such that

max

{
∣

∣

∣

∣

ζ −
p

q

∣

∣

∣

∣

,

∣

∣

∣

∣

ζ2 −
r

q

∣

∣

∣

∣

}

<
1

|q|w
,

then ζ is transcendental.

We demonstrate how Theorem 3 implies Theorem 1. Let ζ = [a0, a1, . . .] be a positive
real irrational number, and let n be a nonnegative integer. Denote by pn/qn the nth
convergent to ζ, that is, pn/qn = [a0, a1, . . . , an]. By the theory of continued fractions
(see, for instance, [3]), we have

Mn :=

(

pn pn−1

qn qn−1

)

=

(

a0 1
1 0

) (

a1 1
1 0

)

. . .

(

an 1
1 0

)

(n ≥ 1).

Assume that the word a0a1 . . . an is a palindrome (i.e., aj = an−j for any integer j with
0 ≤ j ≤ n). Then the transpose tMn of the matrix Mn satisfies

tMn =
t
((

a0 1
1 0

) (

a1 1
1 0

)

. . .

(

an 1
1 0

))

=
t
(

an 1
1 0

)

t
(

an−1 1
1 0

)

. . .
t
(

a0 1
1 0

)

= Mn.

Since Mn is symmetric, qn = pn−1. Recalling that

∣

∣

∣

∣

ζ −
pn−1

qn−1

∣

∣

∣

∣

<
1

q2
n−1

,

we infer from the fact that a0 < ζ < a0 + 1, a0 = an, and |pnqn−1 − pn−1qn| = 1 that

∣

∣

∣

∣

ζ2 −
pn

qn−1

∣

∣

∣

∣

=

∣

∣

∣

∣

ζ2 −
pn−1

qn−1

·
pn

qn

∣

∣

∣

∣

≤

∣

∣

∣

∣

ζ +
pn

qn

∣

∣

∣

∣

·

∣

∣

∣

∣

ζ −
pn−1

qn−1

∣

∣

∣

∣

+
a0 + 1

qnqn−1

≤ 2(a0 + 1)

∣

∣

∣

∣

ζ −
pn−1

qn−1

∣

∣

∣

∣

+
a0 + 1

qnqn−1

<
3(a0 + 1)

q2
n−1

·

In other words, if the sequence of partial quotients of ζ begins with arbitrarily large
palindromes, then ζ and ζ2 are simultaneously very well approximable by rational numbers

3



having the same denominator. In particular, Theorem 3 implies that ζ is either quadratic
irrational or transcendental.

We next show how this observation applies to the real number ξ. First, we remark that
the Thue-Morse word t begins with the palindrome abba. Second, notice that µ2(a) = abba
and µ2(b) = baab are palindromes. Consequently, for each positive integer k the prefix of
length 4k of t is a palindrome. Denoting by pn/qn the nth convergent to ξ, we have
pn/qn = [t0, t1, . . . , tn] and, in view of the forgoing discussion, we learn that

max

{
∣

∣

∣

∣

ξ −
p4k−2

q4k−2

∣

∣

∣

∣

,

∣

∣

∣

∣

ξ2 −
p4k−1

q4k−2

∣

∣

∣

∣

}

<
3(a + 1)

q2
4k−2

(2)

holds for each positive integer k. Recall that we have already established that ξ is not
quadratic irrational. Thus, it follows from Theorem 3 and (2) that ξ is transcendental.
This ends the proof of Theorem 1.
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