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On the Maillet-Baker continued fractions
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Abstract. We use the Schmidt Subspace Theorem to establish the transcendence of a
class of quasi-periodic continued fractions. This improves earlier works of Maillet and of
A. Baker. We also improve an old result of Davenport and Roth on the rate of increase
of the denominators of the convergents to any real algebraic number.

1. Introduction

A central question in Diophantine approximation is concerned with how algebraic
numbers can be approximated by rationals. This problem is intimately connected with the
behaviour of their continued fraction expansion. In particular, it is widely believed that the
continued fraction expansion of any irrational algebraic number x either is eventually peri-
odic (and we know that this is the case if, and only if, x is a quadratic irrational), or it con-
tains arbitrarily large partial quotients. Apparently, this problem was first considered by
Khintchine in [11] (we also refer the reader to [3], [21], [22] for surveys including a discus-
sion on this subject). Some speculations about the randomness of the continued fraction
expansion of algebraic numbers of degree at least three have later been made by Lang
[12]. However, one shall admit that our knowledge on this topic is up to now very limited.

A first step consists in providing explicit examples of transcendental continued frac-
tions. The first result of this type goes back to the pioneering work of Liouville [14], who
constructed transcendental real numbers with a very fast growing sequence of partial quo-
tients. Subsequently, various authors used deeper transcendence criteria from Diophantine
approximation to construct other classes of transcendental continued fractions. Of particu-
lar interest is the work of Maillet [15] (see also Perron [17], Section 34), who was the first
to give explicit examples of transcendental continued fractions with bounded partial quo-
tients. His work has later been carried on by A. Baker [4], [5].

More precisely, Maillet proved that if a ¼ ðanÞnf0 is a non-eventually periodic se-
quence of positive integers, and if there are infinitely many positive integers n such that

an ¼ anþ1 ¼ � � � ¼ anþlðnÞ�1;

then the real number x ¼ ½a0; a1; a2; . . . � is transcendental, as soon as lðnÞ is larger than a
certain function of the denominator of the n-th convergent to x. Actually, the result of
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Maillet is more general and also includes the case of repetitions of blocks of consecutive
partial quotients (see Section 2). His proof is based on a general form of the Liouville in-
equality which limits the approximation of algebraic numbers by quadratic irrationals. In-
deed, under the previous assumption, the quadratic irrational real numbers xn, defined as
having the eventually periodic continued fraction expansion ½a0; a1; . . . ; an�1; an; an; an; . . . �,
provide infinitely many ‘too good’ approximations to x.

Not surprisingly, the breakthrough made by Roth in his 1955 seminal paper [18] leads
to an improvement of this result. Indeed, Baker [4] used in 1962 the Roth theorem for num-
ber fields obtained by LeVeque [13] to strongly improve upon the results of Maillet and
make them more explicit. His main idea was to remark that when infinitely many of the
quadratic approximations found by Maillet lie in a same quadratic number field, one can
favourably replace the use of the Liouville inequality by the one of LeVeque’s Theorem.

The purpose of the present paper is to improve the results obtained by Baker in [4],
that are recalled in Section 2. Our approach rests on the Schmidt Subspace Theorem, but
we follow a rather di¤erent way than the one previously considered by Maillet and by
Baker. Our results are stated in Section 3 and proved in Section 6. Section 4 is devoted
to the improvement of an old result of Davenport and Roth [9] on the rate of increase of
the denominators of the convergents to any real algebraic number. It is the key point for
the proof of Theorem 3.1 below, and is also of independent interest. Auxiliary results are
gathered in Section 5.

2. Earlier results

Throughout the present paper, we keep the following notation. Let a ¼ ðanÞnf0 be a
sequence of positive integers, that is not eventually periodic. Let ðnkÞkf0 be an increasing
sequence of positive integers. Let ðlkÞkf0 and ðrkÞkf0 be sequences of positive integers. As-
sume that for any non-negative integer k, we have nkþ1 f nk þ lkrk and

amþrk
¼ am for nk eme nk þ ðlk � 1Þrk � 1;ð1Þ

and consider the real number x defined by

x ¼ ½a0; a1; a2; . . . ; an; . . . �:

Then, x has a quasi-periodic continued fraction expansion in the following sense: for any
positive integer k, a block of rk consecutive partial quotients is repeated lk times, such a
repetition occurring just after the ðnk � 1Þ-th partial quotient.

In [4], Baker established three theorems, which strongly improved the pioneering
work of Maillet. The first one is very general.

Theorem 2.1 (A. Baker). With the previous notation, let us assume that

lim sup
k!y

rk

nk

< þyð2Þ
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and

lim sup
k!y

ðlog lkÞðlog nkÞ1=2

nk

¼ þy:ð3Þ

Then, the real number x is transcendental.

Actually, it is not di‰cult to modify Baker’s proof of Theorem 2.1 in order to get rid
of the assumption (2). Notice also a related result by Mignotte [16]. Under the assumption
that the sequence a is bounded, condition (3) can be considerably relaxed.

Theorem 2.2 (A. Baker). Let Af 2 be an integer. Let a be a sequence of integers at

most equal to A that satisfy (1) for a bounded sequence ðrkÞkf0. Assume that

lim sup
k!y

lk

nk

> B ¼ BðAÞ;

where B is defined by

B ¼ 2
log
�
ðA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4

p
Þ=2
�

log
�
ð1 þ

ffiffiffi
5

p
Þ=2
�

 !
� 1:

Then, the real number x is transcendental.

First, we remark that BðAÞ increases with A and that lim
A!y

BðAÞ ¼ þy. The smallest

value, obtained for A ¼ 2, is Bð2ÞF 2:66 . . . : Let us also note that, when one only knows
that the sequence a is bounded, but without having any explicit bound, the stronger as-
sumption

lim sup
k!y

lk

nk

¼ þyð4Þ

is required to apply Theorem 2.2.

One of the di‰culties in the proof of Theorem 2.2 is that one needs a precise estimate
for the growth of the sequence of the denominators of the convergents to x. This in partic-
ular explains why, in this result, the value of B depends on A. However, for a more re-
stricted class of quasi-periodic continued fractions, that we present now, Baker [4] partly
succeeded in overcoming this di‰culty.

Theorem 2.3 (A. Baker). Let us consider the quasi-periodic continued fraction

x ¼ ½a0; a1; . . . ; an0�1; an0
; . . . ; an0þr0�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

l0

; an1
; . . . ; an1þr1�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

l1

; . . . �;

where the notation implies that nkþ1 ¼ nk þ lkrk and the l’s indicate the number of times a

block of partial quotients is repeated. Let us assume that the sequences ðanÞnf0 and ðrkÞkf0

are both bounded, that ðanÞnf0 is not ultimately periodic, and that
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lim inf
k!y

lkþ1

lk

> 2:ð5Þ

Then, the real number x is transcendental.

As a typical example of such continued fractions, Baker considered at the end of [4]
the following family of real numbers:

xa;b ¼ ½0; a; a; . . . ; a|fflfflfflfflfflffl{zfflfflfflfflfflffl}
l0

; b; b; . . . ; b|fflfflfflfflfflffl{zfflfflfflfflfflffl}
l1

; a; a; . . . ; a|fflfflfflfflfflffl{zfflfflfflfflfflffl}
l2

; b; b; . . . �;ð6Þ

where a and b denote distinct positive integers. In the very particular case where a ¼ 1 and
b ¼ 2, Baker improved Theorem 2.3 by showing that x is a transcendental number as soon
as lim inf

k!y
ðlkþ1=lkÞ > 1:72. Unfortunately, Baker’s approach does not enable us to replace

2 by a constant smaller than
ffiffiffi
2

p
F 1:41 in inequality (5), even for the specific examples con-

sidered in (6).

3. Main results

We present here our main results which improve the three theorems due to Baker
mentioned in the previous section.

The first of Baker’s results, namely Theorem 2.1, heavily rests on an upper bound due
to Davenport and Roth [8] (see (13) below) for the rate of increase of the denominators of
the convergents to any real algebraic number. Our improvement of (13) stated in Theorem
4.1 below allows us to get the following strengthening of Theorem 2.1.

Theorem 3.1. Let a ¼ ðanÞnf0 be a sequence of positive integers, which satisfies (1)
and is not ultimately periodic. Assume that

lim sup
k!y

log lk

n
2=3
k ðlog nkÞ2=3 log log nk

¼ þyð7Þ

holds. Then, the real number x ¼ ½a0; a1; a2; . . . ; an; . . . � is transcendental.

In order to improve the two other results quoted in Section 2, it is tempting to try to
apply the powerful Schmidt Subspace Theorem (see Section 5) instead of the result of Le-
Veque mentioned in the Introduction. For instance, the authors of [2] recently improved
Theorem 2.3 via the Subspace Theorem, but only in the particular case given in (6), for
which they reached the bound

ffiffiffi
2

p
(instead of 2), independently of the values of the distinct

positive integers a and b. See also related results by Davison [8].

Quite surprisingly, a di¤erent application of the Subspace Theorem based on the mir-
ror formula (see Lemma 5.4 for a definition) allows us to considerably relax the assump-
tions of two of the transcendence criteria obtained by Baker. Our main result can be stated
as follows.
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Theorem 3.2. Let a ¼ ðanÞnf0 be a sequence of positive integers, which satisfies (1)

and is not ultimately periodic. Let ðpn=qnÞnf1 denote the sequence of convergents to the real

number

x ¼ ½a0; a1; a2; . . . ; an; . . . �:

Assume that the sequence ðq1=n
n Þnf1 is bounded (which is in particular the case when the

sequence a is bounded), and that

lim sup
k!y

lk

nk

> 0:ð8Þ

Then, the real number x is transcendental.

Unlike in Theorem 2.2, the transcendence condition obtained in Theorem 3.2 does
not require neither that the partial quotients of the real number x are bounded, nor that
the lengths of the blocks which are repeated are bounded. Furthermore, we point out that
the assumption ‘the sequence ðq1=n

n Þnf1 is bounded’ is satisfied by almost all real numbers.
If one follows Baker’s proof of Theorem 2.1 under this additional assumption, it is easily
seen that one gets a much weaker version of Theorem 3.2, namely with the condition (8)
being replaced by (4).

The proof of Theorem 3.2 splits into two parts. In the first part, we develop a new
application of the Schmidt Subspace Theorem, based on Lemma 5.4 below. This is the
main novelty of the present paper and it allows us to deal e.g. with real numbers x satisfy-
ing the assumption of Baker’s Theorem 2.2. The second part is far much easier.

As a direct corollary of Theorem 3.2, we obtain the following improvement of
Theorem 2.3.

Corollary 3.3. Let us consider the quasi-periodic continued fraction

x ¼ ½a0; a1; . . . ; an0�1; an0
; . . . ; an0þr0�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

l0

; an1
; . . . ; an1þr1�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

l1

; . . . �;

where the notation implies that nkþ1 ¼ nk þ lkrk and the l’s indicate the number of times a

block of partial quotients is repeated. Denote by ðpn=qnÞnf0 the sequence of the convergents

to x. Assume that the sequences ðq1=n
n Þnf0 and ðrkÞkf0 are bounded, that ðanÞnf0 is not ulti-

mately periodic, and that

lim inf
k!y

lkþ1

lk

> 1:ð9Þ

Then, the real number x is transcendental.

Finally, we mention that applying the Schmidt Subspace Theorem in a similar way as
in our previous work [1] allows us to get rid of the assumptions on the sequences ðanÞnf0

and ðrkÞkf0 in Theorem 2.3.
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Theorem 3.4. Let us consider the quasi-periodic continued fraction

x ¼ ½a0; a1; . . . ; an0�1; an0
; . . . ; an0þr0�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

l0

; an1
; . . . ; an1þr1�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

l1

; . . . �:

Assume that the sequence ðanÞnf0 is not ultimately periodic, and that

lim inf
k!y

lkþ1

lk

> 2:ð10Þ

Then, the real number x is transcendental.

4. An improvement of a result of Davenport and Roth

Throughout the present section (which can be read independently of the rest of the
paper), x denotes an arbitrary irrational, real algebraic number and ðpn=qnÞnf1 always de-
notes the sequence of its convergents. The rate of growth of ðqnÞnf1 is at least exponential,
as immediately follows from the theory of continued fraction, see Lemma 5.3 below. Our
purpose is to estimate it from above. It is well known that, if x is quadratic, then there ex-
ists a real number CðxÞ, depending only on x, such that q1=n

n eCðxÞ for any nf 1. It is
widely believed that ðq1=n

n Þnf1 also remains bounded if the degree of x is greater than two.
However, we seem to be very far away from a proof (or a disproof).

The first general upper estimate for the rate of increase of ðqnÞnf1 follows from the
Liouville inequality, saying that any algebraic number of degree d cannot be approximated
by rationals at an order greater than d. Using this result, we easily get that

log log qn f n:ð11Þ

Throughout the present section, all the constants implied byfdepend only on x.

Let d be a positive real number. In 1955, Roth [18] proved that the set of solutions to
the inequality

x� p

q

����
���� < 1

q2þd
;

in integers p, q with gcdðp; qÞ ¼ 1 and q > 0, is finite. In his joint work with Davenport [9],
some steps from [18] were made more explicit in order to get an upper estimate for the
cardinality Nðx; dÞ of this set. In particular, Davenport and Roth [9] established that, for
de 1=3, there exist positive constants c1 and c2, depending only on x, such that

Nðx; dÞe c1 expfc2d
�2g:ð12Þ

They further derived from (12) an improvement of (11), namely the upper estimate

log log qn f
nffiffiffiffiffiffiffiffiffiffi
log n

p :ð13Þ

110 Adamczewski and Bugeaud, Maillet-Baker continued fractions

Brought to you by | Réseau National des Bibliothèques de Mathématiques - RNBM - GDS 2755 - INSMI-CNRS
Authenticated

Download Date | 9/3/17 5:35 PM



Bombieri and van der Poorten [6] were the first who established an upper bound for
Nðx; dÞ which is polynomial in d�1. A slight sharpening has subsequently been obtained by
Evertse, who proved at the end of Section 6 of [10] that, for d < 1, there exists a positive
constant c3, depending only on x, such that

Nðx; dÞe c3d
�3ð1 þ log d�1Þ2:ð14Þ

Any qualitative improvement of (12) yields an improvement of (13). In particular, if we in-
sert (14) instead of (12) in Davenport and Roth’s proof of (13), we get the upper estimate

log log qn f n3=4
ffiffiffiffiffiffiffiffiffiffi
log n

p
:ð15Þ

It turns out that a suitable modification of the argument used by Davenport and Roth
allows us to derive from (14) a much better result than (15).

Theorem 4.1. Let x be an arbitrary irrational, real algebraic number and let

ðpn=qnÞnf1 denote the sequence of its convergents. Then, there exists a constant c4, depending

only on x, such that

log log qn e c4n2=3 ðlog nÞ2=3 log log n:

As an immediate corollary, we get a transcendence criterion for real numbers whose
convergents have very large denominators.

Corollary 4.2. Let y be an irrational, real number and let ðrn=snÞnf1 denote the se-

quence of its convergents. If we have

lim sup
n!þy

log log sn

n2=3 ðlog nÞ2=3 log log n
¼ þy;

then y is transcendental.

Corollary 4.2 is the key point for the proof of Theorem 3.1.

Proof of Theorem 4.1. The basic idea is to introduce more parameters in the proof
of Theorem 3 of [9]. Recall that we have

x� pn

qn

����
���� < 1

qnqnþ1
;ð16Þ

for any nf 1. Let k f 1 be an integer and d1; . . . ; dk be real numbers with
0 < d1 < d2 < � � � < dk < 1, that will be selected later on.

It is convenient to introduce a positive real number n > 1 such that Nðx; dÞf d�n

holds for any d with 0 < d < 1. In view of (14), we can take for n any real number strictly
larger than 3.

Let N be a (su‰ciently large) integer and put S0 ¼ f1; 2; . . . ;Ng. For j ¼ 1; . . . ; k,
let Sj denote the set of positive integers n in S0 such that qnþ1 > q

1þdj
n . Observe that
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S0 IS1 I � � �ISk. It follows from (16) that, for any n in Sj, the convergent pn=qn gives
a solution to

x� p

q

����
���� < 1

q2þdj
:

Consequently, the cardinality of Sj is at most Nðx; djÞ, thus it isfd�n
j .

Write

S0 ¼ ðS0nS1ÞW ðS1nS2ÞW � � �W ðSk�1nSkÞWSk:

Let j be an integer with 1e j e k. The cardinality of S0nS1 is obviously bounded by N

and, if j f 2, the cardinality of Sj�1nSj is fd�n
j�1. Furthermore, for any n in Sj�1nSj, we

get

log qnþ1

log qn

e 1 þ dj:

Denoting by d the degree of x, we infer from (16) and the Liouville inequality that

log qnþ1

log qn

e d

holds for every su‰ciently large integer n in Sk. Combining these estimates with the fact
that Sk hasfd�n

k elements, we obtain that

log qN f
log qN

log qN�1
� log qN�1

log qN�2
� � � � � log q3

log q2
f ð1 þ d1ÞNQk

j¼2

ð1 þ djÞd
�n
j�1 d d�n

k :

Taking the logarithm, we get

log log qN fN logð1 þ d1Þ þ
Pk
j¼2

d�n
j�1 logð1 þ djÞ þ d�n

k :ð17Þ

We now select d1; . . . ; dk. For j ¼ 1; . . . ; k, set

dj ¼ N�ðnk�n j�1Þ=ðnkþ1�1Þ:

We check that 0 < d1 < � � � < dk < 1, and we easily infer from (17) that

log log qN f kNðnkþ1�nkÞ=ðnkþ1�1Þ ¼ kNðn�1Þ=ðn�n�kÞ:ð18Þ

Let e be a real number with 0 < ee 1=3. In view of (14), we can take n ¼ 3=ð1 � eÞ. Choos-
ing then for k the smallest integer greater than log e�1, we get from (18) that

log log qN f ðlog e�1ÞN 2=3þe:
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By (14), setting e ¼ ð2 log log NÞ=ð3 log NÞ, we infer from the previous inequality that

log log qN fN 2=3 ðlog NÞ2=3 log log N

holds, as claimed. r

5. Auxiliary results

Our Theorems 3.2 and 3.4 rest on the Schmidt Subspace Theorem [19] (see also [20]),
that we recall now.

Theorem 5.1 (W. M. Schmidt). Let mf 2 be an integer. Let L1; . . . ;Lm be linearly

independent linear forms in x ¼ ðx1; . . . ; xmÞ with algebraic coe‰cients. Let e be a positive

real number. Then, the set of solutions x ¼ ðx1; . . . ; xmÞ in Zm to the inequality

jL1ðxÞ . . .LmðxÞje ðmaxfjx1j; . . . ; jxmjgÞ�e

lies in finitely many proper subspaces of Qm.

For the reader’s convenience, we recall here some classical results from the theory of
continued fractions, whose proofs can be found for example in the book of Perron [17].

Lemma 5.2. Let x ¼ ½a0; a1; a2; . . . � and h ¼ ½b0; b1; b2; . . . � be real numbers. Let

nf 1 such that aj ¼ bj for any j ¼ 0; . . . ; n. We then have jx� hje q�2
n , where qn denotes

the denominator of the n-th convergent to x.

Lemma 5.3. Let ðanÞnf0 be a sequence of positive integers. Let n be a positive integer.

Set pn=qn ¼ ½a0; a1; a2; . . . ; an� and M ¼ maxfa0; . . . ; ang. Then, we haveffiffiffi
2

p ðn�1Þ
e qn e ðM þ 1Þn:

The following innocent-looking formula appears to be the key point in the proof of
Theorem 3.2. In what follows, equality (19) will be referred to as the mirror formula.

Lemma 5.4. Let x ¼ ½a0; a1; a2; . . . � be a real number with convergents ðpn=qnÞnf0.

Then, for any nf 1, we have

qn

qn�1
¼ ½an; an�1; . . . ; a1�:ð19Þ

For positive integers a1; . . . ; am, denote by Kmða1; . . . ; amÞ the denominator of the ra-
tional number ½0; a1; . . . ; am�. It is commonly called a continuant.

Lemma 5.5. For any positive integers a1; . . . ; am and any integer k with

1e k em � 1, we have

Kmða1; . . . ; amÞ ¼ Kmðam; . . . ; a1Þ;
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Kkða1; . . . ; akÞ � Km�kðakþ1; . . . ; amÞeKmða1; . . . ; amÞ

e 2Kkða1; . . . ; akÞ � Km�kðakþ1; . . . ; amÞ

and

1

2
Kmðakþ1; . . . ; am; a1; . . . ; akÞeKmða1; . . . ; amÞ

e 2Kmðakþ1; . . . ; am; a1; . . . ; akÞ:

In the above lemma, the second chain of inequalities stems from [17], page 15, for-
mula (26), while the third chain of inequalities follows from the second one.

6. Proofs of our main results

Proof of Theorem 3.1. We follow the proof of [4], Theorem 1, except that we use
Theorem 4.1 instead of (13) and that we suitably apply Lemma 5.5 to get rid of the assump-
tion (2). For completeness, we give the details of the argument.

Assume that x is algebraic of degree d. For any positive integer k, set

xk :¼ ½a0; a1; . . . ; ank�1; ank
; . . . ; ankþrk�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

y

�:

Since the height of xk is at most 2q2
nkþrk�1, the Liouville inequality (see e.g. [7], Corollary

A.2) and Lemma 5.5 give us that

jx� xkjg q�2d
nkþrk�1 g q�2d

nk�1Krk
ðank

; . . . ; ankþrk�1Þ�2d :

Here and below, the constants implied by f depend only on x. However, we infer from
Lemmas 5.2 and 5.5 that

jx� xkje q�2
nkþlkrk�1 e q�2

nk�1Krk
ðank

; . . . ; ankþrk�1Þ�2lk :

A combination of the last two inequalities gives that

Krk
ðank

; . . . ; ankþrk�1Þ2ðlk�dÞ f q
2ðd�1Þ
nk�1 :

If lk f 2d, this leads to lk f log qnk
, which is trivial for lk < 2d. By the assumption (7), we

then get that

lim sup
k!y

log log qnk

n
2=3
k ðlog nkÞ2=3 log log nk

¼ þy;

a contradiction with Corollary 4.2. r

Proof of Theorem 3.2. For any k f 0, set

Kk :¼ Krk
ðank

; . . . ; ankþrk�1Þ:
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By assumption, there exist a positive real number c and an infinite set of integers K1,
ranged in increasing order, such that lk f cnk for any k in K1.

The proof splits into two parts. Assume first that the sequence ðKkÞk AK1
is bounded.

Since the Kk’s are non-negative integers, it follows that infinitely many of them take the
same value. Then, Lemma 5.3 implies that there exist a positive integer r, positive integers
b0; . . . ; br�1 and an infinite set K2 of positive integers such that

rk ¼ r; ankþj ¼ bj ð0e j e r � 1Þ;

for any k in K2.

Let a denote the real number having the purely periodic continued fraction expansion
with period B ¼ ðbr�1; . . . ; b0Þ, that is,

a ¼ ½br�1; br�2; . . . ; b0; br�1; . . . ; b0; br�1; . . . � ¼ ½B;B; . . . ;B; . . . �:

Then, a is a quadratic number. We need to introduce some more notation. Let us denote by
pn=qn (respectively, by rn=sn) the n-th convergent to x (respectively, to a). Then, for any k in
K2, set Pk ¼ pnkþlkr�1, Qk ¼ qnkþlkr�1, P 0

k ¼ pnkþlkr�2, Q 0
k ¼ qnkþlkr�2 and Sk ¼ srlk�1.

By assumption, we already know that x is irrational and not quadratic. Therefore, we
assume that x is algebraic and we aim at deriving a contradiction.

Let k be in K2. By the theory of continued fractions, we have

jQkx� Pkj <
1

Qk

and jQ 0
kx� P 0

kj <
1

Q 0
k

:ð20Þ

On the other hand, since by assumption

Pk

Qk

¼ ½a0; a1; . . . ; ank�1; B;B; . . . ;B|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
lk

�;

where B ¼ ðb0; b1; . . . ; bn�1Þ, we get from the mirror formula (see Lemma 5.4) that

Qk

Q 0
k

¼ ½B;B; . . . ;B|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
lk

; ank�1; . . . ; a1�:

Then, Lemma 5.2 implies

jQ 0
ka� Qkj <

Q 0
k

S2
k

ð21Þ

and we a fortiori obtain that

lim
K2 C k!y

Qk

Q 0
k

¼ a:ð22Þ
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Consider now the four linearly independent linear forms, whose coe‰cients are by
assumption algebraic:

L1ðX1;X2;X3;X4Þ ¼ xX1 � X3;

L2ðX1;X2;X3;X4Þ ¼ xX2 � X4;

L3ðX1;X2;X3;X4Þ ¼ aX2 � X1;

L4ðX1;X2;X3;X4Þ ¼ X1:

Evaluating them on the quadruple ðQk;Q
0
k;Pk;P 0

kÞ, it follows from (20) and (21) that

Q
1eje4

jLjðQk;Q
0
k;Pk;P

0
kÞj <

1

S2
k

:ð23Þ

Let M be an upper bound for the sequence ðq1=n
n Þnf1. We infer from Lemma 5.3 that

Qk e ðM þ 1Þnkþrlk and Sk f ð
ffiffiffi
2

p
Þrlk�2, for any positive integer k in K2. It thus follows

that

Sk f ðM þ 1Þ

�
log
ffiffi
2

p

logðMþ1Þ

�
ðrlk�2Þ

fQ

�
log
ffiffi
2

p

logðMþ1Þ

�
�
�

rlk�2

nkþrlk

�
k ;

for any positive integer k in K2. In particular, we get from (23) and (8) that

Q
1eje4

jLjðQk;Q
0
k;Pk;P

0
kÞjeQ�e

k

holds for some positive real number e and for k large enough in K2.

It then follows from Theorem 5.1 that the points ðQk;Q
0
k;Pk;P

0
kÞ for k in K2 lie in a

finite number of proper subspaces of Q4. Thus, there exist a nonzero integer quadruple
ðx1; x2; x3; x4Þ and an infinite set of distinct positive integers K3 HK2 such that

x1Qk þ x2Q 0
k þ x3Pk þ x4P 0

k ¼ 0;ð24Þ

for any k in K3. Dividing (24) by Q 0
k, we obtain

x1
Qk

Q 0
k

þ x2 þ x3
Pk

Qk

� Qk

Q 0
k

þ x4
P 0

k

Q 0
k

¼ 0:ð25Þ

By letting k tend to infinity along K3 in (25), we derive from (22) that

x1aþ x2 þ ðx3aþ x4Þx ¼ 0:

Since x is not quadratic, it a fortiori cannot lie in QðaÞ. This implies that x3aþ x4 ¼ 0 and,
since a is irrational, it follows that x3 ¼ x4 ¼ 0. Then, again by using that a is irrational, we
get that x1 ¼ x2 ¼ x3 ¼ x4 ¼ 0, which is a contradiction. This concludes the proof when
the sequence ðKkÞk AK1

is bounded.

Assume now that the sequence ðKkÞk AK1
is unbounded. Then, there exists an infinite

set K4 of integers, ranged in increasing order, such that the sequence ðKkÞk AK4
increases to

infinity.
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Recall that ðpn=qnÞnf0 denotes the sequence of convergents to x and that M denotes
an upper bound for the sequence ðq1=n

n Þnf0. Let d be a positive integer. Let k be in K4 and
large enough in order that lk f d þ 1 and

Kk fM 2d=c;ð26Þ

with the constant c defined at the beginning of the proof. Then, the real number x is very
close to the quadratic number

xk :¼ ½a0; a1; . . . ; ank�1; ank
; . . . ; ankþrk�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

y

�:

Define the polynomial

PkðX Þ :¼ ðqnk�2qnkþrk�1 � qnk�1qnkþrk�2ÞX 2

� ðqnk�2 pnkþrk�1 � qnk�1pnkþrk�2 þ pnk�2qnkþrk�1 � pnk�1qnkþrk�2ÞX

þ ðpnk�2pnkþrk�1 � pnk�1pnkþrk�2Þ;

and observe that PkðxkÞ ¼ 0. For any positive integer k, we infer from Rolle’s Theorem
and Lemma 5.2 that

jPkðxÞj ¼ jPkðxÞ � PkðxkÞjf qnk�1qnkþrk�1jx� xkj

f qnk�1qnkþrk�1q�2
nkþlkrk�1;

since the first nk þ lkrk � 1 partial quotients of x and xk are the same. Here and below, the
constants implied infdepend at most on x and on d, but they are independent of k. Now,
it follows from Lemma 5.5 that

qnkþlkrk�1 f qnk�1K lk

k ;

thus, by (26) and by Lemma 5.5 again, we get

jPkðxÞjfK 1�2lk

k fK�lk�d
k f ðM 2nk KkÞ�d f ðqnk�1qnkþrk�1Þ�d ;

since lk f d þ 1. Recalling that x is irrational and not quadratic, it then follows from
the Liouville inequality (see e.g. [7], Theorem A.1) that x cannot be algebraic of degree
smaller than d. Since d is arbitrary, this concludes the proof when the sequence ðKkÞk AK1

is bounded. r

Proof of Corollary 3.3. Let us consider the quasi-periodic continued fraction

x ¼ ½a0; a1; . . . ; an0�1; an0
; . . . ; an0þr0�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

l0

; an1
; . . . ; an1þr1�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

l1

; . . . �;

satisfying the assumption of the corollary, and suppose that we have
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lim inf
k!y

lkþ1

lk

> 1:ð27Þ

For k f 1, we get that

nk ¼ n0 þ
Pk�1

j¼0

rjlj:

Moreover, we infer from (27) that there exist positive real numbers d and M such that

lj <
Mlk

ð1 þ dÞk�j
;

for any j < k with k large enough. Since the sequence ðrkÞkf0 is bounded, there exists a
positive real number r such that

nk < rlk

P
jf1

M

ð1 þ dÞ j

and thus

lim sup
k!y

lk

nk

f
1

rM

� P
jf1

ð1 þ dÞ�j

	 > 0;

for k large enough. Applying Theorem 3.2, this concludes the proof. r

Proof of Theorem 3.4. For any k f 0, set

Kk :¼ Krk
ðank

; . . . ; ankþrk�1Þ:

In view of Corollary 3.3, there is no restriction in assuming that the sequence ðKkÞkf0 is
unbounded. Then, there exists an infinite set K5 of integers, ranged in increasing order,
such that the sequence ðKkÞk AK5

increases to infinity and such that, for any k in K5 and
any integer j with 0e j < k, we have Kj < Kk.

Let k be in K5. The real number x is very close to the quadratic number

xk :¼ ½a0; a1; . . . ; ank�1; ank
; . . . ; ankþrk�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

y

�:

Let jk be the largest integer < nk such that ajk 3 ajkþrk
. Choosing k su‰ciently large, jk is

well defined, since ðakÞkf0 is not ultimately periodic. Observe that

xk :¼ ½a0; a1; . . . ; ajk ; ajkþ1; . . . ; ajkþrk|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
y

�:

We proceed as in the proof of [1], Theorem 2.
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Define the polynomial

PkðXÞ :¼ ðqjk�1qjkþrk
� qjk qjkþrk�1ÞX 2

� ðqjk�1pjkþrk
� qjk pjkþrk�1 þ pjk�1qjkþrk

� pjk qjkþrk�1ÞX

þ ðpjk�1pjkþrk
� pjk pjkþrk�1Þ;

and observe that PkðxkÞ ¼ 0. For any positive integer k in K5, we infer from Rolle’s The-
orem and Lemma 5.2 that

jPkðxÞj ¼ jPkðxÞ � PkðxkÞjf qjk qjkþrk
jx� xkjf qjk qjkþrk

q�2
jkþlkrk

;

since the first jk þ lkrk partial quotients of x and xk are the same.

We have

jðqjk�1qjkþrk
� qjk qjkþrk�1Þx� ðqjk�1pjkþrk

� qjk pjkþrk�1Þje 2qjk q�1
jkþrk

and

jðqjk�1qjkþrk
� qjk qjkþrk�1Þx� ðpjk�1qjkþrk

� pjk qjkþrk�1Þje 2q�1
jk

qjkþrk
;

if k in K5 is large enough. Furthermore, we have as well the obvious upper bound

jqjk�1qjkþrk
� qjk qjkþrk�1je qjk qjkþrk

:

We assume that x is algebraic and consider now the four linearly independent linear
forms with algebraic coe‰cients:

L1ðX1;X2;X3;X4Þ ¼ x2X1 � xðX2 þ X3Þ þ X4;

L2ðX1;X2;X3;X4Þ ¼ xX1 � X2;

L3ðX1;X2;X3;X4Þ ¼ xX1 � X3;

L4ðX1;X2;X3;X4Þ ¼ X1:

Evaluating them on the quadruple

zk :¼ ðqjk�1qjkþrk
� qjk qjkþrk�1; qjk�1pjkþrk

� qjk pjkþrk�1;

pjk�1qjkþrk
� pjk qjkþrk�1; pjk�1pjkþrk

� pjk pjkþrk�1Þ;

we find that

P :¼
Q

1eje4

jLjðzkÞjf ðqjk qjkþrk
Þ2

q�2
jkþlkrk

:

Then, this estimate for P leads to

Pf ðqjk qjkþrk
Þ�2eð28Þ
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if qjkþlkrk
g ðqjk qjkþrk

Þ1þe for k A K5 large enough. Now, it follows from the last assertion of
Lemma 5.5 that

qjkþlkrk
f qjkðKk=2Þlk ;

and that

ðqjk qjkþrk
Þ1þe f q2þ2e

jk
K 1þe

k f 2kð1þ2eÞqjk K
ð1þ2eÞðl0þl1þ���þlk�1Þþ1þe
k :

Thus, (28) is true if there exists e > 0 such that

2kð1þ2eÞþlk fK
lk�ð1þ2eÞðl0þl1þ���þlk�1Þ�1�e
k ;ð29Þ

for k A K5 large enough. From (10), it can be easily shown that

lk � ð1 þ 2eÞðl0 þ l1 þ � � � þ lk�1Þ � 1 � ef c1ðeÞlk;

taking e > 0 appropriately. Since

kð1 þ 2eÞ þ lk e c2ðeÞlk;

inequality (29) is seen to be true for all large k, by Kk ! y. For such e > 0, we thus have

Pf ðqjk qjkþrk
Þ�2e:

It then follows from Theorem 5.1 that the points zk for k in K5 lie in a finite number of
proper subspaces of Q4. Thus, there exist a nonzero integer quadruple ðx1; x2; x3; x4Þ and
an infinite set of distinct positive integers K6 HK5 such that

x1ðqjk�1qjkþrk
� qjk qjkþrk�1Þ þ x2ðqjk�1pjkþrk

� qjk pjkþrk�1Þ

þ x3ðpjk�1qjkþrk
� pjk qjkþrk�1Þ þ x4ðpjk�1pjkþrk

� pjk pjkþrk�1Þ ¼ 0:

for any k in K6. We then argue exactly as in [1], proof of Theorem 2. This is made possible
by our choice of jk. We then reach a contradiction, which concludes the proof of our
theorem. r
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[22] M. Waldschmidt, Un demi-siècle de transcendance, in: Development of mathematics 1950–2000, Birkhäuser,
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