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(LOGARITHMIC) DENSITIES FOR AUTOMATIC SEQUENCES

ALONG PRIMES AND SQUARES

BORIS ADAMCZEWSKI, MICHAEL DRMOTA, AND CLEMENS MÜLLNER

Abstract. In this paper we develop a method to transfer density results for

primitive automatic sequences to logarithmic-density results for general auto-
matic sequences. As an application we show that the logarithmic densities of
any automatic sequence along squares (n2)n≥0 and primes (pn)n≥1 exist and
are computable. Furthermore, we give for these subsequences a criterion to
decide whether the densities exist, in which case they are also computable. In
particular in the prime case these densities are all rational. We also deduce
from a recent result of the third author and Lemańczyk that all subshifts gen-
erated by automatic sequences are orthogonal to any bounded multiplicative
aperiodic function.

1. Introduction

Automatic sequences are sequences a(n) on a finite alphabet that are the output
of a finite automaton (where the input is the sequence of digits of n in some base k ≥
2). Equivalently, they can also be defined as codings of fixed points of morphisms
of constant length. These kinds of sequences have received a lot of attention during
the last 15 or 20 years (see for example the book by Allouche and Shallit [1]). In
particular there are very close relations to number theory, dynamical systems, and
algebra. The most prominent examples of automatic sequences are the Thue-Morse
sequence t(n) and the Rudin-Shapiro sequence r(n).1

Automatic sequences are deterministic sequences in the sense that they generate
a topological dynamical system (subshift) with zero entropy. Stated differently,
their subword complexity, that is, the number of different subwords of length l,
is subexponential. Actually the subword complexity of automatic sequences is at
most linear in l, which is the lowest possible growth order if we exclude just even-
tually periodic sequences, which have bounded subword complexity. Deterministic
sequences have been intensively studied within the last few years in relation to the
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Sarnak conjecture [29], which says that deterministic sequences d(n) are asymptot-
ically orthogonal to the Möbius function μ(n):∑

n≤x

d(n)μ(n) = o(x) (x → ∞).

This conjecture, which is related to the Chowla conjecture (see for example [32]
or [17]), is in general open. There is, however, big progress on the logarithmic
version of the Chowla conjecture by Tao [31] and Tao and Teräväinen [33], and also
for the logarithmic version of the Sarnak conjecture by Frantzikinakis and Host [15].
For a relatively recent survey on the Sarnak conjecture see [14]. Recently the last
author verified the Sarnak conjecture for all automatic sequences d(n) = a(n) [26],
and even more recently he extended together with Lemanczyk [21] the orthogonality
relation to multiplicative functions f(n) with |f(n)| ≤ 1 (and some mild but natural
conditions on a(n)): ∑

n≤x

a(n)f(n) = o(x) (x → ∞).

The Sarnak conjecture (and the above variant for multiplicative functions) is
closely related to the asymptotic properties of∑

n≤x

d(n)Λ(n),

where Λ(n) denotes the von Mangoldt Λ-function2 and one usually conjectures that
these sums are asymptotically of the form cx(1 + o(1)) for some constant c. This
property is very close to prime number theorems of the kind

{p ≤ x : p ∈ P, d(p) = α} = c
x

log x
(1 + o(1)).

For the Thue-Morse sequence t(n) such a prime number theorem

{p ≤ x : p ∈ P, t(p) = 0} ∼ {p ≤ x : p ∈ P, t(p) = 1} ∼ 1

2

x

log x

was already conjectured in 1968/69 by Gelfond [16] (in a slightly more general
form). This conjecture was finally proved in 2009 by Mauduit and Rivat [23] in
a breakthrough paper. Gelfond conjectured, too, that the Thue-Morse sequence
behaves nicely along polynomial subsequences:

{n ≤ x : t(P (n)) = 0} ∼ {n ≤ x : t(P (n)) = 1} ∼ x

2
,

where P (x) is a non-negative integer valued polynomial. This question turned out
to be even more challenging. It was finally solved (again) by Mauduit and Rivat
[22] for quadratic polynomials but for polynomials of degree at least 3 there is only
partial information available [11]; the question by Gelfond is still open.

We cannot expect such strong results for general automatic sequences. For ex-
ample, if a(n) denotes the leading digit in the k-ary expansion of n (with k ≥ 3)
then neither the densities

d(a(n), α) = lim
x→∞

{n ≤ x : a(n) = α}
x

= lim
x→∞

1

x

∑
n≤x

1[a(n)=α] ,

2Λ(n) = log p for prime powers n = pk and Λ(n) = 0 else.
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nor the densities along primes

d(a(pn), α) = lim
x→∞

{n ≤ x : a(pn) = α}
x

= lim
x→∞

1

x

∑
n≤x

1[a(pn)=α]

exist for 1 ≤ α < k. Nevertheless – and this a general property for automatic
sequences (see [8]) – the logarithmic densities

dlog(a(n), α) = lim
x→∞

1

log x

∑
n≤x

1

n
1[a(n)=α] =

log(1 + 1/α)

log k

exist. The question whether a density exists or only a logarithmic density exists
depends mainly on the behavior of the final strongly connected components of the
corresponding finite automata. Furthermore, if densities exist they can be explicitly
computed and are rational numbers [8]. In the case, when only logarithmic densities
exist, this is not that clear.

The above mentioned results are related to density results of special automatic
sequences along special subsequences: the subsequence of primes p and the subse-
quence of squares n2. The purpose of the present paper is to study quite general
subsequences of automatic sequences and to give answers to the question whether
a density or logarithmic density along subsequences exist. In particular we will
give a complete answer for the subsequence of primes and squares (Theorems 1.2
and 1.3). For these cases we will show that logarithmic densities always exist. In
other terms this means that, for every automatic sequence a(n), the following limits
always exist:

lim
x→∞

1

log x

∑
n≤x

1

n
a(n)Λ(n) and lim

x→∞

1

log x

∑
n≤x

1

n
a(n2),

and we can decide, when the non-logarithmic versions hold. We want to add that for
some special classes of automatic sequences, that is, invertible automatic sequences
or automatic sequences related to block-additive functions, this is already known
[13], [27].

In order to state our main results we have to introduce some notation. First
of all we will only consider strictly increasing subsequences (n�)�≥0 of the positive
integers that behave as

n� = �γL(�),(1.1)

where γ ≥ 1 and L(n) is slowly varying in the sense that

lim
�→∞

L(�δ�	)
L(�)

= 1(1.2)

for all 0 < δ < 1. Such sequences (n�)�≥0 are called regularly varying sequences, see
Section 2. The sequence of primes, polynomial sequences, and Piatetski-Shapiro
sequences (i.e., 
nc�, where c > 1) provide relevant examples of regularly varying
sequences.

As mentioned above every automatic sequence a(n) can be generated by a finite
automaton. Without loss of generality we can assume that this automaton is mini-
mal (see [1]). This automaton can be seen as a directed graph, possibly with loops
and multiple edges, where every vertex (or state) has out-degree k and for every
vertex the out-going edges are labeled by 0, 1, . . . , k − 1.3 The set {0, 1, . . . , k − 1}

3We will be more precise in Section 3.
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is the input alphabet. One vertex of this graph is distinguished as the initial state.
Clearly, this graph decomposes into strongly connected components.4 A strongly
connected component is called final if there is no edge from this component to an-
other one. We will say that an automatic sequence is primitive and prolongable if
the directed graph of the corresponding minimal automaton is strongly connected
and the initial state has a 0-labeled loop.

Our first result says that it is sufficient to consider such automatic sequences.

Theorem 1.1. Suppose that (n�)�≥0 is a regularly varying sequence and suppose
that for any primitive and prolongable automatic sequence ã(n) the densities along
the subsequence (n�)

d(ã(n�), α) := lim
x→∞

{� ≤ x : ã(n�) = α}
x

exist.
Then the two following properties hold.

(i) Then for every automatic sequence a(n) the logarithmic densities

dlog(a(n�), α) := lim
x→∞

1

log x

∑
�≤x

1

�
1[a(n�)=α]

exist and can be computed in terms of the densities along the subsequence n�

of the automatic sequences that are generated by the final strongly connected
components of the directed graph.

(ii) Furthermore, if the densities along the subsequence n� corresponding to
the automatic sequences that are generated by the final strongly connected
components of the directed graph are all equal then the densities

d(a(n�), α) := lim
x→∞

{� ≤ x : a(n�) = α}
x

exist and are equal to the corresponding densities of the final strongly con-
nected components.

This theorem will be now applied to primes and squares. We start with primes
and note that it was already shown in [26] that primitive and prolongable automatic
sequences along the primes have densities that are all computable rational numbers.
Together with Theorem 1.1 this solves the problem for primes completely.

Theorem 1.2. For every automatic sequence a(n) the logarithmic densities
dlog(a(pn), α) of the subsequence along prime numbers exist and are computable.
Furthermore, if the densities along primes on those automatic sequences that corre-
spond to the final strongly connected components coincide then the densities
d(a(pn), α) exist and are computable rational numbers.

The same result holds for subsequences along squares. However, in this case we
have to check the assumption on primitive and prolongable automatic sequences,
see Section 8. In both cases of primes and squares we are able to compute the
densities for primitive and prolongable automatic sequence. As an example, we
compute the densities of the paper-folding sequence along primes and squares in
Section 9. The densities of 0 and 1 in the paper-folding sequence along primes are
both 1/2, whereas the density of 1 in the paper-folding sequence along squares is 1.

4A strongly connected component is a maximal subset of vertices, such that for any two vertices
u, v in this set, there exists a directed path from u to v and vice-versa.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUTOMATIC SEQUENCES ALONG PRIMES AND SQUARES 459

Theorem 1.3. For every automatic sequence a(n) the logarithmic densities
dlog(a(n

2), α) of the subsequence along squares exist and are computable. Further-
more, if the densities along squares on those automatic sequences that correspond
to the final strongly connected components coincide then the densities d(a(n2), α)
exist and are also computable. If the input base k is prime, then these densities are
rational numbers.

As a simple application, we can compute the logarithmic densities of the leading
digit of primes and polynomials P (n) with integer coefficients,

dlog(a(pn), α) = dlog(a(P (n)), α) =
log(1 + 1/α)

log k
.

Theorems 1.2 and 1.3 suggest that the subsequences of primes and squares are
similar, at least for the question of the existence of (logarithmic) densities of auto-
matic sequences along these subsequences. As we will see in Section 7 and Section 8,
they share several distribution properties. However, it seems that there are still fun-
damental differences. For example in the prime case there is the following quite
unexpected property.

Theorem 1.4. For any automatic sequence a(n) there exists a computable positive
integer m such that, for all α, dlog(a(pn), α) is equal to dlog(a(n�), α), where n�

runs through all positive integers n with (n,m) = 1.

Remark 1.5. This theorem also works for densities in the sense that if the density
exists for one of them, then it also exists for the other one and they coincide.

Remark 1.6. This theorem applies for example to the residue of any block-additive
function f mod m satisfying (k − 1,m) = 1 and (gcd(f(n)n∈N),m) = 1, as this
sequence distributes uniformly along any arithmetic progression, which follows
from [27, Proposition 3.15]. However, this result was already put as a remark
in [26], without a proof.

We could not find a corresponding property for squares. We expect that the
deeper reason for this difference is that primes have a quasi-random behavior that is
not present for squares. We leave it as an open problem to clarify this phenomenon.

We would like to thank the anonymous referee for the suggestion to consider the
upper and lower densities of subsequences of automatic sequences similarly to [4].
Indeed, very similar methods can be used to treat slowly varying subsequences
of automatic sequences. We sketch a proof of the corresponding results, that is,
Theorem B.1 and Corollary B.2, in Appendix B.

To end this introduction, let us mention two possible directions for further re-
search. First, we recall an analogous problem for Piatetski-Shapiro sequences 
nc�,
with 1 < c < 7/5, which has already been solved in [9]. Indeed, these authors
proved that, for every automatic sequence a(n) and for every c ∈ (1, 7/5), the log-
arithmic densities dlog(a(
nc�), α) exist and are equal to the logarithmic densities
of a(n). Furthermore, the densities d(a(
nc�), α) exist if and only if the densities
d(a(n), α) exist, in which case they are equal. We conjecture that such a result
should also hold for all 1 < c < 2.

Conjecture 1.7. For every automatic sequence a(n) and for every c ∈ (1, 2), the
logarithmic densities dlog(a(
nc�), α) exist and are equal to the logarithmic densi-
ties dlog(a(n), α). Furthermore, the densities d(a(
nc�), α) exist if and only if the
densities d(a(n), α) exist, in which case they are equal.
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A second possible direction of research is related to morphic sequences. As
we have already mentioned, automatic sequences are codings of fixed points of
morphisms of constant length. Thus, they are a special case of morphic sequences,
which can be obtained as codings of fixed points of general morphisms. It is already
known that the logarithmic densities of morphic sequences exist [3] and it seems
reasonable to assume that Theorem 1.1 could be extended to morphic sequences.
However, it seems much more challenging to prove the analogs of Theorems 1.2 and
1.3 in this wider framework.

1.1. Plan of the paper. We start with a short section on regularly varying func-
tions (Section 2) and proceed with a longer background section on properties of
automatic sequences (Section 3). In particular we discuss (partly new) structural
results that will be needed for the proof of Theorem 1.1 that will be given in Sec-
tion 5. In Section 6 we present a strategy on how one can check that densities for
primitive and prolongable automatic sequences exist so that Theorem 1.1 can be
applied. Section 7 is then devoted to the case of prime numbers (Theorem 1.2)
and Section 8 to the case of squares (Theorem 1.3). Finally, Section 9 is devoted
to the problem, how densities along primes and squares can be actually computed
(including some examples). In Appendix A, we gather some implications to dy-
namical systems. In particular, we deduce from a recent result of the third author
and Lemańczyk that all subshifts generated by automatic sequences are orthogonal
to any bounded multiplicative aperiodic function (Corollary A.7). Finally, Appen-
dix B is devoted to a sketch for how one can treat upper and lower densities of
automatic sequences along slowly varying subsequences.

1.2. Notation. In this paper we let N denote the set of positive integers and we
use the abbreviation e(x) = exp(2πix) for any real number x.

For two functions, f : R → R and g : R → R>0 such that f/g is bounded, we
write f = O(g) or f � g. If in fact |f(x)| ≤ g(x) for all x, we write f = O∗(g).
Furthermore, we write f = o(g) if limx→∞ f(x)/g(x) = 0. We also write f ∼ g if
limx→∞ f(x)/g(x) = 1.

We let 
x� denote the floor function and �x	 denote the ceiling function.
Moreover we let ϕ(n) denote the Euler totient function. Finally, we let P denote

the set of prime numbers and by π(x) the number of prime numbers smaller than
or equal to x.

2. Regularly varying functions

We discuss in this section some properties of subsequences (n�)�∈N satisfying
(1.1) and (1.2) for some γ ≥ 1 and L : N → R. We define a new function f : R≥1 →
R>0, f(x) = n�x	. It follows directly that f is measurable. Furthermore, we have
for any δ > 0 that

lim
x→∞

f(δx)

f(x)
= δγ ,

i.e. it is regularly varying of index γ (see [5] for background on regularly varying
functions). If γ = 1, f is called slowly varying.
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We consider the generalized inverse function of f , g(x) := inf{y ∈ [1,∞) :
f(y) > x}. In particular, we have g(N) = #{� ∈ N : n� ≤ N}. One has by
[5, Theorem 1.5.12] that g is regularly varying of index 1/γ, i.e. for every δ > 0

lim
N→∞

g(δN)

g(N)
= δβ ,

where we set β := 1/γ.

Lemma 2.1. With the notation from above, we have

log(g(N)) ∼ β logN.

Proof. As g is regularly varying of index β we can write it as

g(x) = xβ · c(x) · exp
(∫ x

1

ε(u)

u
du

)
,

where c(x) converges to some c ∈ (0,∞) and ε(x) converges to 0 for x → ∞ (see
[5, Theorem 1.3.1]). In particular we have that∫ x

1

ε(u)

u
du = o(log x),

which finishes the proof by basic properties of the logarithm. �

3. Automatic sequences

Let us now describe the precise setting of our study. First we give some definitions
related to automata which can also be found in [1].

A sequence (an)n≥0 with values in a finite set is k-automatic if it can be gener-
ated by a finite automaton. This means that there exists a finite-state machine (a
deterministic finite automaton with output) that takes as input the base-k expan-
sion of n and produces as output the symbol an. We use the following convention.
Inputs are read from left to right, that is, starting from the most significant digit.

3.1. Formal definition of k-automatic sequences. Throughout this paper, we
will use the following notation. An alphabet A is a finite set of symbols, also called
letters. A finite word over A is a finite sequence of letters in A or, equivalently,
an element of A∗, the free monoid generated by A. The length of a finite word
w, that is, the number of symbols in w, is denoted by |w|. We let ε denote the
empty word, the neutral element of A∗. Let k ≥ 2 be a natural number. We
let Σk denote the alphabet {0, 1, . . . , k − 1}. Given a positive integer n, we set
(n)k := wrwr−1 · · ·w0 for the canonical base-k expansion of n (written from most
to least significant digit), which means that n =

∑r
i=0 wik

i with wi ∈ Σk and
wr = 0. Note that by convention (0)k := ε. Conversely, if w := w0 · · ·wr is a finite
word over the alphabet Σk, we set [w]k :=

∑r
i=0 wr−ik

i. Furthermore, we let (n)tk
denote the unique word w of length t such that [w]k ≡ n mod kt.

Example 3.1. We find (37)2 = 100101, (37)42 = 0101 and [010110]2 = 22.

Definition 3.2. A k-deterministic finite automaton, or k-DFA for short, is a
quadruple A = (Q,Σk, δ, q0), where Q is a finite set of states, Σk := {0, 1, . . . , k−1}
is the finite input alphabet, δ : Q × Σ → Q is the transition function and q0 ∈ Q
is the initial state. A k-DFAO A = (Q,Σ, δ, q0,Δ, τ ) is a k-DFA endowed with an
additional output function τ : Q → Δ, where Δ is the alphabet of output symbols.
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We extend δ to a function δ : Q× Σ∗ → Q as follows. Given a state q in Q and
a finite word w := w1w2 · · ·wn over the alphabet Σk, we define δ(q,w) recursively
by δ(q, ε) = q and δ(q,w) = δ(δ(q, w1w2 · · ·wn−1), wn). Hence computing δ(q,w)
involves |w| “steps” for every w ∈ Σ∗.

Definition 3.3. We say that a sequence (a(n))n≥0 is a k-automatic sequence if
there exists a k-DFAO A = (Q,Σk, δ, q0,Δ, τ ) such that an = τ (δ(q0, (n)k)). If
Δ = Q and τ = id, then we call (a(n))n≥0, pure. A sequence is automatic if it is
k-automatic for some k.

There is nothing special about reading the input from left to right. Indeed, given
a k-automatic sequence a(n) there exists a k-DFAO with reverse reading producing
the sequence a(n), i.e. this k-DFAO reads the input (n)k from right to left (this
can be found for example in [1, Theorem 4.3.3]).

Let us recall how one can change the input alphabet Σk to Σk� = {0, . . . , k�−1}.
Lemma 3.4. Let A = (Q,Σk, δ, q0,Δ, τ ) be a k-DFAO such that δ(q0, 0) = q0.
Then, for every integer � ≥ 1, the k�-DFAO A′ = (Q,Σk� , δ, q0,Δ, τ ) produces the
same automatic sequence.

Proof. This follows directly from the extension of δ to Q × Σ∗ → Q, the way
the representation in base k and in base k� correspond to each other and that
δ(q0, 0) = q0 allows us to ignore leading zeros both for A and A′. �
3.2. Densities for automatic sequences. We recall in this section some results
about densities and logarithmic densities for automatic sequences.

Lemma 3.5 (Theorem 7 in [8]). Let a(n) be an automatic sequence. Then the
logarithmic density exists for every α, i.e.

lim
N→∞

1

logN

∑
n≤N

1

n
1[a(n)=α],

exists and is denoted by dlog(a(n), α).

Lemma 3.6. Let a(n) be an automatic sequence, such that the logarithmic density
of α is 0, then the density of α exists and equals 0.

Proof. It follows directly by partial summation that for any sequence a, we have

lim inf
N→∞

1

N

∑
n≤N

1[a(n)=α] ≤ lim inf
N→∞

1

logN

∑
n≤N

1

n
1[a(n)=α] .

By assumption we know that the logarithmic density is 0 and, therefore, the lower
density of α is 0. By [8, Theorem 11] we know that this can only be the case if the
density is 0. �
Lemma 3.7. Let a(n) be an automatic sequence, such that the density of α is 0,
then the upper Banach density5 is also 0.

Proof. The set of integers for which a(n) = α is contained in a set with a missing
digit by [8, Theorem 9]. This immediately implies the statement. �

Lemma 3.6 and Lemma 3.7 tell us that some (in general quite different) notions
of sparseness actually coincide for automatic sequences.

5The upper Banach density of a is defined as d∗(a) := lim supN−M→∞
#{M≤n≤N :a(n) �=0}

N−M+1
.
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3.3. Some subclasses of automata and automatic sequences. In this section,
we recall various definitions about automata and automatic sequences.

Definition 3.8. A k-DFAO A = (Q,Σk, δ, q0,Δ, τ ) and the corresponding auto-
matic sequence is called minimal if

• For every q ∈ Q there exists w ∈ Σ∗
k such that δ(q0,w) = q.

• For every two different states q1, q2 ∈ Q there exists w ∈ Σ∗
k such that

τ (δ(q1,w)) = τ (δ(q2,w)).

Fact 3.9 ([1, Corollary 4.1.9]). Any k-automatic sequence can be produced by a
minimal k-DFAO.

Definition 3.10. A k-DFA A = (Q, q0,Σk, δ) is strongly connected if for any
q1, q2 ∈ Q there exists w ∈ Σ∗ such that δ(q1,w) = q2. It is primitive if there exists
some � ∈ N such that for any q1, q2 ∈ Q there exists w ∈ Σ� such that δ(q1,w) = q2.
Finally, A is prolongable if δ(q0, 0) = q0.

Definition 3.11. A k-automatic sequence is said to be prolongable (resp. primitive)
if it can be produced by a k-DFAO whose corresponding k-DFA is prolongable
(resp. primitive). It is called pure if it can be produced by a k-DFAO whose output
function is the identity.

Lemma 3.12. Let A = (Q, q0,Σk, δ) be a strongly connected k-DFA such that there
exist some q ∈ Q and i ∈ Σ with δ(q, i) = q. Then A is primitive.

Proof. Let q1, q2 ∈ Q. As A is strongly connected, there exist w1,w2 ∈ Σ∗ such
that δ(q1,w1) = q, δ(q,w2) = q2. Thus, we find that δ(q1,w1i

nw2) = q2 for any
n ∈ N. This shows that for any sufficiently large � there exists some w ∈ Σ� such
that δ(q1,w) = q2. As this works for all (finitely many) pairs q1, q2 ∈ Q we find
some � that works for all pairs simultaneously. �
Definition 3.13. Let A = (Q, q0,Σk, δ) be a k-DFA. A final component of A is
a minimal (with respect to inclusion) non-empty set F ⊆ Q that is closed under
δ(., .). The column number of A is defined by

c(A) := min
w∈Σ∗

|δ(Q,w)| .

We define X (A) as the set of subsets of Qc that are realized as δ(Q,w) for some
w ∈ Σ∗. Furthermore, we call a word w minimizing if |δ(Q,w)| = c(A). If c(A) = 1,
we call it synchronizing.

4. A structural result for automatic sequences

This section is dedicated to the following structural result concerning automatic
sequences.

Proposition 4.1. Let (a(n))n≥0 be a k-automatic sequence. Then there exists a
finite set B = {b1, b2, . . . , bs} of k-automatic sequences that are produced by some
prolongable and primitive k�-DFAO, where � ≥ 1 is an integer, and with the follow-
ing property. For every bi = (bi(n))n∈N ∈ B, we set

Mi := {m ∈ N : a(mkλ + r) = bi(mkλ + r) , ∀λ ∈ N, 0 ≤ r < kλ} .
The sets Mi, 1 ≤ i ≤ s, are pairwise disjoint and the logarithmic densities of Mi,
1 ≤ i ≤ s, exist and are positive. Furthermore, the (upper Banach) density of
M0 := N \ ∪iMi exists and equals 0.
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This proposition will allow us to approximate an automatic sequence (a(n))n∈N

by the primitive automatic sequences (bi(n))n∈N.
6 We start by proving an auxiliary

result, which shows that the Mi are k-automatic sets, i.e. the indicator function is
k-automatic.

Lemma 4.2. Let k ≥ 2 and (a(n))n≥0, (b(n))n≥0 be k-automatic sequences. Then
so is (c(n))n≥0, where

c(n) =

{
1, if a(nkλ + s) = b(nkλ + s) for all λ ≥ 0, 0 ≤ s < kλ,
0, otherwise.

Before proving Lemma 4.2, we recall the following definition.

Definition 4.3. Let A(1) = (Q(1),Σk, δ
(1), q

(1)
0 ),A(2) = (Q(2),Σk, δ

(2), q
(2)
0 ) be two

k-DFA. Then A = (Q(1) × Q(2),Σk, δ, q0) is a k-DFA that we call the product

of A(1) and A(2), where δ = δ(1) × δ(2), q0 = (q
(1)
0 , q

(2)
0 ), i.e. δ((q(1), q(2)),w) =

(δ(1)(q(1),w), δ(2)(q(2),w)).

Proof of Lemma 4.2. Let A(1) = (Q(1),Σk, δ
(1), q

(1)
0 ,Δ(1), τ (1)) denote a minimal

k-DFAO with reverse reading that produces the sequence a(n), and let A(2) =

(Q(2),Σk, δ
(2), q

(2)
0 ,Δ(2), τ (2)) denote a minimal k-DFAO with reverse reading that

produces the sequence b(n). For every q ∈ Q(1), we let aq(n) (resp. bq(n)) denote

the sequence produced by A(1) (resp. A(2)) when replacing the initial state by q.
For every pair (q1, q2) ∈ Q(1) ×Q(2), we define the sequence cq1,q2(n) by

cq1,q2(n) =

{
1, if aq1(n) = bq2(n),
0, otherwise.

Then cq1,q2(n) is k-automatic for it can be produced using the product of the k-DFA

Aq1 := (Q(1),Σk, δ
(1), q1) and Aq2 := (Q(2),Σk, δ

(2), q2) endowed with the output

function τ defined by τ (q, p) = 1 if τ (1)(q) = τ (2)(p), and τ (q, p) = 0 otherwise.
Now, setting

S := {(q1, q2) ∈ Q(1) ×Q(2) : ∃w ∈ Σ∗
k

such that δ(1)(q
(1)
0 ,w) = q1 and δ(2)(q

(2)
0 ,w) = q2} ,

we get that

c(n) =
∏

(q1,q2)∈S
cq1,q2(n) .

Hence c(n) is k-automatic as a finite product of integer-valued k-automatic se-
quences. �

Remark 4.4. The stated Proposition is in a form that is oriented towards ap-
plicability. However, for the proof we will use a different description of B, i.e.,
B = {bi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ ci}, where r denotes the number of different final
components and ci the column number of the i-th final component.

6A quite similar result can be found in [6]. It shows that the minimal components of a subshift
corresponding to a k-automatic sequence are given by primitive and prolongable k�-automatic
sequences. This allows us to cover the sequence (a(n))n≥0 by arbitrary shifts of these finitely many

k�-automatic sequences. Since we are ultimately interested in (possibly) sparse subsequences, we
need to avoid these shifts. This is exactly achieved by Proposition 4.1, while also giving some
information about how each sequence bi covers a.
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Proof of Proposition 4.1. We start by noting that by Lemma 4.2, the indicator
functions of the Mi are automatic and, thus, the logarithmic densities of the Mi

exist. Assume now that m ∈ Mi and k�−1 ≤ m < k�, then we have that mkr + n ∈
Mi for all r ∈ N, n < kr. Hence a simple computation shows that the logarithmic

density of Mi is at least
log(m+1)−log(m)

log(kr) . Thus it only remains to show that we can

choose the bi in such a way that the Mi, 1 ≤ i ≤ s are disjoint and M0 has upper
Banach density 0.

We can assume without loss of generality that (a(n))n≥0 is minimal and for any
q ∈ Q,

(∃n ∈ N : δ(q, 0n) = q) ⇒ (δ(q, 0) = q),(4.1)

as we can change Σk = {0, . . . , k − 1} to Σk� = {0, . . . , k� − 1}. We consider now
the final components which we call F1, F2, . . . , Fr. First we claim that for any final

component Fi there exists some set M
(i)
0 ∈ X (Fi)

7 such that every element of M
(i)
0

is fixed under δ(., 0). Fix any i, 1 ≤ i ≤ r, and take some set M ∈ X (Fi). We
consider now Mj := δ(M, 0j), and one sees easily that Mj ∈ X (Fi). As X (Fi) is

finite, there exists some M
(i)
0 for which there exists some � with δ(M

(i)
0 , 0�) = M

(i)
0 .

Thus we see that δ(., 0�) is a bijection from M
(i)
0 to itself. Therefore, we know that

a properly chosen power is the identity, i.e. δ(q, 0�
′
) = q for all q ∈ M

(i)
0 and the

claim follows by (4.1).
This shows in particular that all the Fi are primitive by Lemma 3.12. Now we

are able to define the sequences bi,j(n). For every final component Fi we define
ci := c(Fi) many different automatic sequences corresponding to the automata

(Fi, q
(i,j)
0 ,Σk�′ , δ �Fi

, τ �Fi
) for every q

(i,j)
0 ∈ M

(i)
0 . We call the corresponding

automatic sequences bi,j(n) and the corresponding automata Bi,j . We note that

δ(q0, (m)k) = δ(q
(i,j)
0 , (m)k) if and only if m ∈ Mi,j , by the minimality of (a(n))n≥0.

Thus we see directly that all the Mi,j have to be disjoint. Indeed, let us assume that

m ∈ Mi1,j1 ∩Mi2,j2 , which can only happen if δ(q
(i1,j1)
0 , (m)k) = δ(q

(i2,j2)
0 , (m)k).

This can clearly be only the case if i1 = i2 =: i, as the final components are

disjoint. However, this would also imply that
∣∣∣δ(M (i)

0 , (m)k)
∣∣∣ < c(Fi) which gives

a contradiction.
It only remains to show that the (upper Banach) density of M0 equals 0. We

find by [7, Lemma 3.1] that there exists a word w1 ∈ Σ∗
k such that if v ∈ Σ∗

k

contains w1 as a factor then δ(q0,v) belongs to a strongly connected component
of A, i.e. one of the Fi. Next we find a word w2 that is minimizing for all the Fi.
Therefore, we can take for example the concatenation of words that are minimizing
for a single Fi. Next we aim to show that if v ∈ Σ∗

k contains w := w1w2 as a

subword, then there exists i, j such that δ(q0,v) = δ(q
(i,j)
0 ,v), i.e. [v]k /∈ M0.

We note that we can split v = v1v2 such that w1 is a subword of v1 and w2 is
a subword of v2. The defining property of w1 ensures that there exists some i
such that δ(q0,v1) ∈ Fi. As w2 (and therefore also v2) is minimizing for Fi, we
have M (i) := δ(Fi,v2) ∈ X (Fi) such that δ(q0,v) ∈ M (i). Moreover, we find by

the properties of X (Fi) that δ(M
(i)
0 ,v) ∈ X (Fi) and, therefore, δ(M

(i)
0 ,v) = M (i).

Thus, there exists q
(i,j)
0 ∈ M

(i)
0 such that δ(q0,v) = δ(q

(i,j)
0 ,v).

7The set X was introduced in Definition 3.13.
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Thus M0 is contained in a set with a missing digit (i.e. the set of numbers whose
base k|v| expansions do not contain any occurrences of v) and, thus, its upper
Banach density is 0. �

Remark 4.5. We discuss here shortly how to determine the bi,j and the Mi,j that
appear in the proof of Proposition 4.1 (also recall Remark 4.4). Given a pure k-
automatic sequence a(n) with corresponding automaton A = (Q,Σk, δ, q0). We
first ensure that (4.1) holds by possibly changing Σk to Σk� for some � ≥ 1. Then
we determine the final components Fi, 1 ≤ i ≤ s of A. The proof of Proposition 4.1

ensures that for every Fi there exists some M
(i)
0 ∈ X (Fi) such that every element of

M
(i)
0 is fixed by δ(., 0). This allows us to define the bi,j as the automatic sequence

corresponding to the automaton (Q,Σ, δ, q
(i,j)
0 ) where q

(i,j)
0 ∈ M

(i)
0 .

We have seen in the proof of Proposition 4.1 that

m ∈ Mi,j if and only if δ(q0, (m)k) = δ(q
(i,j)
0 , (m)k).

Thus, we can actually just consider the k-automatic sequence ((a(n), bi,j(n)))n≥0

(see Definition 4.3) and see that the indicator function of Mi,j is just the projection
of the previous sequence where τ ((x, y)) = 1[x=y].

5. Transfer of densities

In this section we prove Theorem 1.1 which allows to compute the logarithmic
density of a general automatic sequence along a subsequence (n�)�∈N when know-
ing the density of primitive automatic sequences along the same subsequence. The
main ingredient is the structural result we discussed in the previous section, Propo-
sition 4.1. Furthermore, it is in this context very useful to use summation by parts.

Lemma 5.1. Let (an), (bn) be two sequences of complex numbers. Then

N∑
n=0

anbn = bN

N∑
n=0

an +
N−1∑
n=0

(bn − bn+1)
n∑

�=0

a�.

We also need the estimate∣∣∣∣∣
b∑

�=a+1

1

�
− log

(
b

a

)∣∣∣∣∣ ≤ 1

a
,(5.1)

which follows from comparing the sum with
∫ b

a
1
xdx. To prove Theorem 1.1, we are

interested in computing

lim
L→∞

1

log(L)

∑
�<L

1

�
1[a(n�)=α] = lim

N→∞

1

log(g(N))

∑
�:n�≤N

1

�
1[a(n�)=α] .

Proposition 4.1 allows us to estimate parts of the sum. Fix some m < kν−λ,m ∈
Mi, we find ∑

�<L
mkλ≤n�<(m+1)kλ

1

�
1[a(n�)=α] =

∑
�<L

mkλ≤n�<(m+1)kλ

1

�
1[bi(n�)=α] .
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Lemma 5.2. Let (b(n�))�≥0 be such that the density of α exists, i.e.

lim
L→∞

1

L

∑
�≤L

1[b(n�)=α] = db(α).

Then, ∑
x≤�≤y

1

�
1[b(n�)=α] = log(y/x)db(α) + ox→∞(1 + log(y/x)).

Proof. Fix ε > 0 and let x0 be large enough, such that for any x ≥ x0 we have∣∣∣∣∣∣ 1x
∑
�≤x

1[b(n�)=α] −db(α)

∣∣∣∣∣∣ ≤ ε.

By partial summation, i.e. Lemma 5.1, we find∑
x≤�≤y

c�
1

�
=

∑
x≤�≤y

c�
1

y
+

∑
x≤n<y

∑
x≤�≤n

c�

(
1

n
− 1

n+ 1

)

=
1

y

∑
x≤�≤y

c� +
∑

x≤n<y

1

n(n+ 1)

∑
x≤�≤n

c�.

This gives∣∣∣∣∣∣
∑

x≤�≤y

1

�
(1[b(n�)=α] −db(α))

∣∣∣∣∣∣ ≤ 1

y

∣∣∣∣∣∣
∑

x≤�≤y

1[b(n�)=α] −db(α)

∣∣∣∣∣∣
+

∑
x≤n<y

1

n(n+ 1)

∣∣∣∣∣∣
∑

x≤�≤n

1[b(n�)=α] −db(α)

∣∣∣∣∣∣
≤ ε

x− 1 + y

y
+ ε

∑
x≤n<y

x− 1 + n

n(n+ 1)

≤ 2ε+ 2ε
∑

x<�≤y

1

�
·

The result follows by applying (5.1) twice. �

Proof of (i) of Theorem 1.1. Naturally, we are interested in estimating

dlog(a(n�), α) = lim
L→∞

1

log(L)

∑
1≤�≤L

1

�
1[a(n�)=α] .(5.2)

Actually, we aim to show, with the notation from Proposition 4.1, that

dlog(a(n�), α) =
∑

1≤i≤s

dlog(Mi) · d(bi(n�), α).(5.3)

We note that the limit in (5.2) is invariant under multiplying L by a bounded
constant. This means, it is sufficient to consider only a subsequence (Lν)ν∈N, where
Lν+1/Lν is bounded. In particular, we can choose Lν = g(kλν), as g(kλ(ν+1))/g(kλν)
→ kλβ for any λ ∈ N≥1. Moreover, Lemma 2.1 shows that we can replace
log(g(kλν)) by log(kβλν) in (5.2).
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On the other hand, we find

1

log(kβλν)

∑
�∈N:n�<kλν

1

�
1[a(n�)=α]

=
1

log(kβλν)

∑
1≤m<kλ

∑
j<ν

∑
�∈N

mkλj≤n�<(m+1)kλj

1

�
1[a(n�)=α]

=
1

log(kβλν)

∑
0≤i≤s

∑
1≤m<kλ

m∈Mi

∑
j<ν

∑
g(mkλj)≤�<g((m+1)kλj)

1

�
1[a(n�)=α] .

Thus we are interested in computing

∑
�∈N

mkλj≤n�<(m+1)kλj

1

�
1[bi(n�)=α] =

∑
g(mkλj)<�≤g((m+1)kλj)

1

�
1[bi(n�)=α]

for m ∈ Mi. By applying Lemma 5.2 and Lemma 2.1 we find,

g((m+1)kλj)∑
�=g(mkλj)+1

1

�
1[bi(n�)=α]

= β log

(
1 +

1

m

)
· d(bi(n�), α) + og(mkλj)→∞

(
1 + β log

(
1 +

1

m

))
.

As m ≥ 1, we have that log
(
1 + 1

m

)
is bounded. Furthermore, mkλj ≥ kj , which

allows us to replace g(mkjλ) → ∞ by j → ∞. This gives in total,

g((m+1)kλj)∑
�=g(mkλj)+1

1

�
1[bi(n�)=α] = β log

(
1 +

1

m

)
· d(bi(n�), α) + oj→∞(1).

A simple computation yields,

∣∣∣∣log
(
1 +

1

m

)
− 1

m

∣∣∣∣ ≤ 1

m2
,

which gives for every 1 ≤ m ≤ kλ,

g((m+1)kλj)∑
�=g(mkλj)+1

1

�
1[bi(n�)=α] = β

1

m
· d(bi(n�), α) +O∗

(
1

m2

)
+ oj→∞(1).
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This gives∑
1≤m<kλ

m∈Mi

∑
j<ν

∑
�∈N

mkλj≤n�<(m+1)kλj

1

�
1[bi(n�)=α]

=
∑

1≤m<kλ

m∈Mi

∑
j<ν

(
d(bi(n�), α)

β

m
+O∗

(
1

m2

)
+ oj→∞(1)

)

= ν · d(bi(n�), α) ·

⎛
⎜⎜⎝ ∑

1≤m<kλ

m∈Mi

β

m
+ O∗

(
1

m2

)⎞⎟⎟⎠+ oν→∞(νkλ).

We note that ∑
1≤m≤kλ

m∈Mi

1

m
= λ log(k)dlog(Mi) + oλ→∞(λ),

and as
∑

1/m2 is bounded we have in total∑
1≤m<kλ

m∈Mi

∑
j<ν

∑
�∈N

mkλj≤n�<(m+1)kλj

1

�
1[bi(n�)=α]

= νλ log(k) · β · dlog(Mi)d(bi(n�), α) + oλ→∞(νλ) + oν→∞(νkλ).

We note that for any λ ∈ N we have oν→∞(νkλ) = oν→∞(νλ). Thus, letting first
ν → ∞ and then λ → ∞ gives (5.3), as wanted. �

Proof of (ii) of Theorem 1.1. Consider some large λ and define for N ≥ kλ an
integer ν such that kν+λ−1 ≤ N < kν+λ and m0 ∈ [kλ−1, kλ] such that m0k

ν ≤
N < (m0 + 1)kν .

We are interested in computing

lim
N→∞

1

g(N)

∑
�≤g(N)

1[a(n�)=α] .(5.4)

Changing N to m0k
ν changes the limit in two ways. The first contribution is due

to the shortening of the sum and the second contribution is due to the changing of
the normalizing factor. Both contributions change the value by at most

g(N)− g(m0k
ν)

g(N)
≤ 1− g(m0k

ν)

g((m0 + 1)kν)
→ν→∞ 1−

(
1− 1

m0 + 1

)β

≤ 1

m0 + 1
≤ 1

kλ−1
.

Therefore, we are interested in computing

1

g(m0kν)

∑
m<m0

∑
g(mkν)≤�<g((m+1)kν

1[a(n�)=α] .
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We note that for any λ, each sum between g(mkν) and g((m+1)kν) is of substantial
length for large enough ν:

lim
ν→∞

g((m+ 1)kν)− g(mkν)

g(m0kν)
=

(
m+ 1

m0

)β

−
(

m

m0

)β

≥ 1−
(
m0 − 1

m0

)β

≥ 1−
(
kλ − 1

kλ

)β

> 0.

Hence, for m ∈ Mi for some 1 ≤ i ≤ s we find

lim
ν→∞

1

g(m0kν)

∑
g(mkν)≤�<g((m+1)kν)

1[bi(n�)=α] =
(m+ 1)β −mβ

mβ
0

d(bi(n�), α).(5.5)

This already shows, that the limit in (5.4) can only exist if d(bi(n�), α) coincides
for all 1 ≤ i ≤ s. For the other direction we need to show that the contribution of
m ∈ M0 is negligible. We find that

lim
ν→∞

1

g(m0kν)

∑
m∈M0
m<m0

g((m+ 1)kν)− g(mkν) =
∑

m∈M0
m<m0

(m+ 1)β −mβ

mβ
0

.

By the mean value theorem, there exists some ξ ∈ [0, 1] such that (m+1)β −mβ =
β(m+ ξ)β−1, which is monotonically decreasing in ξ (as 0 < β ≤ 1 and, therefore,
β − 1 < 0). Thus, we have (m+ 1)β −mβ ≤ βmβ−1 which gives

∑
m∈M0
m<m0

(m+ 1)β −mβ

mβ
0

≤
∑

m∈M0
m<m0

βmβ−1

mβ
0

≤
∑

m≤|M0∩[0,m0−1]|

βmβ−1

mβ
0

≤
(
|M0 ∩ [0,m0 − 1]|+ 1

m0

)β

,

where the last inequality is obtained by estimating the sum by an integral. This
shows that the contribution of m ∈ M0 is negligible for large λ. We note that for
N → ∞ we also have ν → ∞ which gives,

lim
N→∞

1

g(N)

∑
�≤g(N)

1[a(n�)=α]

= lim
N→∞

1

g(m0kν)

∑
�≤g(m0kν)

1[a(n�)=α] +O

(
1

kλ−1

)

= lim
N→∞

∑
0≤m<m0

1

g(m0kν)

∑
g(mkν)≤�<g((m+1)kν)

1[a(n�)=α] +O

(
1

kλ−1

)
.

Let us assume that d(bi(n�), α) = d(α) for all 1 ≤ i ≤ s. Thus, we have for m /∈ M0,

lim
ν→∞

1

g(m0kν)

∑
g(mkν)≤�<g((m+1)kν)

1[a(n�)=α] =
g((m+ 1)kν)− g(mkν)

g(m0kν)
d(α).
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This gives

lim
N→∞

1

g(N)

∑
�≤g(N)

1[a(n�)=α]

= d(bi(n�), α) +O

((
|M0 ∩ [0,m0 − 1]|

m0

)β
)

+O

(
1

kλ−1

)
.

The error terms vanish for λ → ∞ as m0 ≥ kλ−1. Thus one needs to let first
λ → ∞ and then N → ∞ to achieve the desired result.

�

6. Subsequences of primitive automatic sequences

We start this section by discussing a result by the last author [26], which allows
to represent a k-automatic sequence a(n) which is primitive and prolongable as a
combination of an almost periodic sequence and a sequence that looks random in
some ways. This representation has the form

a(n) = f(s(n), T (n)),(6.1)

where s(n) is a pure synchronizing k-automatic sequence taking values in Q(c) for
some c ≥ 1 and T (n) takes values in a finite group G with the following property.
For every j < k and q ∈ Q(c) there exists gj,q ∈ G such that T (n·k+j) = T (n)·gj,s(n)
holds for all n ∈ N. We see that T takes a particularly simple form when s is
constant – this corresponds to a so called invertible (sometimes also called bijective)
automatic sequence.

Example 6.1. We consider the following automaton, with input alphabet {0, 1}.

q0start

q1 q2

q3 q4

0

1

0

1

0

1

0

1 0,1

The sequence s(n) corresponds to the following automaton.
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(q0, q1, q2)start

(q0, q3, q4)

0

10,1

The group G = S3 and the group elements gj,q are given by

g0,(q0,q1,q2) = (12), g1,(q0,q1,q2) = (23),

g0,(q0,q3,q4) = (12), g1,(q0,q3,q4) = id,

and the function f is given by f((qi1 , qi2 , qi3), g) = qig−1(1)
. For a more detailed

treatment of this example see [26].

We start by discussing some properties of synchronizing automatic sequences.
For a more detailed treatment of subsequences of synchronizing automatic sequences
see [10]. We recall that a word w ∈ Σ∗ is synchronizing for an automaton A =
(Q, q0,Σ, δ,Δ, τ ) if δ(q,w) = δ(q0,w) for all q ∈ Q. This implies directly that the
concatenation of a synchronizing word with any word is again synchronizing. We
define the set of synchronizing integers as follows.

S := {n ∈ N : (n)k is synchronizing}.

We will also make use of a truncated version, Sλ := S∩[0, . . . , kλ−1]. We recall that
by the defining property of a synchronizing word, s(n) = s(m) if n ≡ m mod kλ

for m ∈ Sλ. Moreover, we have limλ→∞
|Sλ|
kλ = 1 by [10, Lemma 2.2]. This already

shows that s(n) is almost periodic, i.e. it can be (uniformly) approximated by
periodic functions.

T (n), which is sometimes called the invertible part, looks much more random
in many ways, but still has some periodic properties. In particular, there exists a
normal subgroup G0 such that G/G0

∼= Z/dZ for some d ∈ N which is coprime to k
and depends on the sequence a(n). Furthermore, there exist cosetsG0, G1, . . . , Gd−1

such that T (n) ∈ G(n mod d) for all n ∈ N.
One of the key tools to study the distribution of sequences that take values

in G are (unitary and irreducible) representations (see for example [30] for more
information on linear representations of finite groups). An m-dimensional unitary
representation D : G → Um is a homomorphism from G to the set of unitary m×m
matrices. It is said to be irreducible if there exists no non-trivial subspace V ⊂
Cm×1 such that D(g) ·V ⊆ V holds for all g ∈ G. The periodic behaviour described
above manifests itself in the existence of special representations D0, D1, . . . , Dd−1

from G to U1 which can be defined via

Dj(T (n)) = e

(
n · j
d

)
.

We say that two representationsD,D′ are equivalent if there exists a matrixA ∈ Um

such that D′(g) = AD(g)A−1 for all g ∈ G. It is a well-known fact that for
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a finite group G there are only finitely many equivalence classes of irreducible
and unitary representations. Furthermore, non-equivalent irreducible and unitary
representations D,D′ are orthogonal, i.e.

0 = 〈D,D′〉 = 1

|G|
∑
g∈G

D(g)D′(g).

Very importantly, one can use representations to determine the asymptotic dis-
tribution of a sequence (see for example [20] for a proof).

Lemma 6.2. Let G be a finite group and ν be a probability measure on G. Then
a sequence (xn)n≥0 is ν-uniformly distributed in G, i.e., 1

N

∑
n<N δxn

→ ν, if and
only if

lim
N→∞

1

N

∑
n<N

D(xn) =

∫
G

Ddν(6.2)

holds for all irreducible unitary representations D of G.

Remark 6.3. The above lemma actually works in a much more general setting.
That is, the same statement holds when G is a compact group and ν is a regular
normed Borel measure in G.

6.1. A general strategy. Now we describe a method on how to work with subse-
quences of primitive automatic sequences using (6.1). We need another definition
before tackling this task.

Definition 6.4. A sequence (n�)�∈N of nonnegative integers distributes regularly
within residue classes if for any h ∈ N, 0 ≤ m < h there exists some cn�

(m;h) such
that

lim
L→∞

|{� ≤ L : n� ≡ m mod h}|
L

= cn�
(m;h)

and it is multiplicative in the second argument, i.e. cn�
(m;h1 · h2) = cn�

(m;h1) ·
cn�

(m;h2) for any m ∈ N and co-prime h1, h2. We write c(m;h) = cn�
(m;h) if n�

is clear from the context.

Now we are able to state the main theorem of this subsection.

Theorem 6.5. Let (n�)�∈N be a strictly increasing sequence that distributes regu-
larly within residue classes such that

lim
λ→∞

∑
m<kλ

m/∈Sλ

c(m; kλ) = 0.(6.3)

Furthermore, we assume that for any irreducible and unitary representation D dif-
ferent from Dj and any λ ∈ N,m < kλ,

lim
L→∞

1

L

∑
�≤L

n�≡m mod kλ

D(T (n�)) = 0.(6.4)
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Then the densities of s, T and a along n� exist and are given by

d(s(n�), q) = lim
λ→∞

∑
m∈Sλ

1[s(m)=q] c(m; kλ) = lim
λ→∞

∑
m<kλ

1[s(m)=q] c(m; kλ),

d(T (n�), g) =
d

|G| · c(j; d) for g ∈ Gj ,

d(a(n�), α) =
∑

q∈Q,g∈G

d(s(n�), q) · d(T (n�), g) · 1[f(q,g)=α] .

Proof. We first show that the limit

lim
λ→∞

∑
r∈Sλ

1[s(r)=q] c(r; k
λ)

indeed exists. We find directly that∑
r∈Sλ

1[s(r)=q] c(r; k
λ) ≤

∑
0≤r<kλ

c(r; kλ) = 1.

Let us now assume that r ∈ Sλ with s(r) = q. Then we have that r′kλ+r ∈ Sλ and
s(r′kλ+r) = q for all 0 ≤ r′ < k. Also, we have

∑
0≤r′<k c(r

′kλ+r; kλ+1) = c(r; kλ).
This shows ∑

r∈Sλ

1[s(r)=q] c(r; k
λ) ≤

∑
r∈Sλ+1

1[s(r)=q] c(r; k
λ+1).

Thus, we have a bounded and monotone sequence and, therefore, the limit exists.
We work from now on only with (a(n�))�∈N and prove the other results along the

way. We start by approximating s by a periodic function,

1

L

∑
�≤L

1[a(n�)=α] =
1

L

∑
m<kλ

∑
�≤L

n�≡m mod kλ

1[f(s(n�),T (n�))=α]

=
∑

m∈Sλ

1

L

∑
�≤L

n�≡m mod kλ

1[f(s(m),T (n�))=α] +O

(∣∣{� ≤ L : (n� mod kλ) /∈ Sλ}
∣∣

L

)
.

We find, since n� distributes regularly within residue classes and by (6.3),

lim
λ→∞

lim
L→∞

∣∣{� ≤ L : (n� mod kλ) /∈ Sλ}
∣∣

L
= lim

λ→∞

∑
r/∈Sλ

c(r; kλ) = 0.

Thus, we are interested in computing

∑
m∈Sλ

1

L

∑
�≤L

n�≡m mod kλ

1[f(s(m),T (n�))=α] =
∑
q∈Q

∑
m∈Sλ

s(m)=q

1

L

∑
�≤L

n�≡m mod kλ

1[f(q,T (n�))=α] .

(6.5)

Hence, we are interested in finding an asymptotic distribution of T (n�) for n� ≡
m mod kλ, which will be done via Lemma 6.2.
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We find by the Chinese Remainder Theorem and as d and k are coprime,

lim
L→∞

1

L

∑
�≤L

Dj(T (n�)) = lim
L→∞

1

L

∑
0≤m<kλ

∑
�≤L

n�≡m mod kλ

Dj(T (n�))

=
∑

0≤m<kλ

∑
0≤i<d

lim
L→∞

1

L

∑
�≤L

n�≡m mod kλ

n�≡i mod d

e

(
j · i
d

)
(6.6)

=
∑

0≤m<kλ

∑
0≤i<d

c(m; kλ)c(i; d) e

(
j · i
d

)

=
∑

0≤i<d

c(i; d) · e
(
j · i
d

)
.

This finishes the computation of the left-hand side of (6.2) together with (6.4).
Thus, it remains to construct a suitable measure ν. We define ν as

ν(g) :=
1

|G|
∑

0≤j<d

Dj(g)
∑

0≤i<d

c(i; d) · e
(
i · j
d

)
.

If g ∈ Gs, we find

ν(g) =
1

|G|
∑

0≤i<d

c(i; d)
∑

0≤j<d

e

(
i · j
d

)
e

(
−s · j
d

)

=
1

|G|c(s; d) · d.

Thus, it follows directly that ν is probability measure on G. Moreover, we compute∫
G

Ddν =
∑
g∈G

D(g)ν(g)

=
∑

0≤j<d

∑
0≤i<d

c(i; d) e

(
i · j
d

)
1

|G|
∑
g∈G

D(g) ·Dj(g).

As the irreducible and unitary representations are either equivalent or orthogonal,
we find that

∫
G
Ddν = 0 unless D = Dj for some 0 ≤ j < d. Since

1

|G|
∑
g∈G

Dj(g) ·Dj(g) = 1 ,

we find ∫
G

Dj dν =
∑

0≤i<d

c(i; d) e

(
i · j
d

)
.
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By (6.6), this shows that the sequence T (n�) is ν-uniformly distributed in G. Fi-
nally, we are able to simplify the expression for ν. We find for g ∈ Gi0 ,

ν(g) =
1

|G|
∑

0≤j<d

e

(
−i0 · j

d

) ∑
0≤i<d

c(i; d) e

(
i · j
d

)

=
1

|G|
∑

0≤i<d

c(i; d)
∑

0≤j<d

e

(
j(i− i0)

d

)

=
1

|G|
∑

0≤i<d

c(i; d) · d · 1[i=i0]

=
d

|G| · c(i0; d).

Thus, we can apply Lemma 6.2 and find for g ∈ Gj

lim
L→∞

c(m; kλ)

L

∑
�≤L

n�≡m mod kλ

1[T (n�)=g] =
d

|G| · c(j; d) = d(T (n�), g).

Coming back to (6.5), this shows in total

lim
L→∞

1

L

∑
�≤L

1[a(n�)=α]

=
∑

m∈Sλ

c(m; kλ)
∑
g∈G

d(T (n�), g)1[f(s(m),g)=α] +O

⎛
⎝ ∑

m/∈Sλ

c(m, kλ)

⎞
⎠

=
∑
g∈G

d(T (n�), g)
∑
q∈Q

∑
m∈Sλ

s(m)=q

c(m; kλ)1[f(q,g)=α] +O

⎛
⎝ ∑

m/∈Sλ

c(m, kλ)

⎞
⎠ .

The result follows now for λ → ∞. �

It turns out that (6.4) is usually the most challenging part about applying The-
orem 6.5.

7. The subsequence along primes

We apply in this section Theorem 6.5 to the subsequence along primes which
reproves results from [26] using this new framework. For this purpose we are re-
peating the key arguments from [26].

We find directly by the Prime Number Theorem in arithmetic progressions that

lim
N→∞

1

π(N)

∑
p≤N

1[p≡r mod m] =
1[(r,m)=1]

ϕ(m)
= c(r;m).

One finds directly that primes distribute regularly within residue classes. Moreover,
(r, kλ) = 1 ⇔ (r, k) = 1 holds with positive probability. Thus, c(r; kλ) resembles a
uniform distribution on a subset of [0, . . . , kλ−1] with positive density (independent

of λ). This shows (6.3) as limλ→∞
|Sλ|
kλ = 0.
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Thus, it remains to show for any m,h ∈ N,

lim
N→∞

1

π(N)

∥∥∥∥∥∥∥∥
∑
p≤N

p≡m mod h

D(T (p))

∥∥∥∥∥∥∥∥ = 0.(7.1)

The key ingredient was to generalize and use a method developed by Mauduit
and Rivat [24]. We will focus here mainly on the generalized version, as it proved
to be better applicable in this situation. We fix some k ∈ N and let fλ(n) denote
f(n mod kλ) and let .H denote the Hermitian transpose. We also need the following
two definitions.

Definition 7.1. A function f : N → Ud has the Carry property if there exists
η > 0 such that uniformly for (λ, α, ρ) ∈ N3 with ρ < λ, the number of integers
0 ≤ � < kλ such that there exists (n1, n2) ∈ {0, . . . , kα − 1}2 with

f(�kα + n1 + n2)
Hf(�kα + n1) = fα+ρ(�k

α + n1 + n2)
Hfα+ρ(�k

α + n1)(7.2)

is at most O(kλ−ηρ) where the implied constant may depend only on k and f .

Definition 7.2. Given a non-decreasing function γ : R → R satisfying limλ→∞ γ(λ)
= +∞ and c > 0 we let Fγ,c denote the set of functions f : N → Ud such that for
(α, λ) ∈ N2 with α ≤ cλ and t ∈ R:∥∥∥∥∥∥k−λ

∑
u<kλ

f(ukα) e(−ut)

∥∥∥∥∥∥
F

≤ k−γ(λ).(7.3)

We say in this case that f has the Fourier property.

The main difference between the given definitions and the ones used by Mauduit
and Rivat is that they only considered complex-valued functions f and a stronger
Carry Property corresponding to η = 1. The proof of the following result (to be
found in [26]) is in very large parts identical to the corresponding proof in [24].

Theorem 7.3 (Theorem 4.3 in [26]). Let γ : R → R be a non-decreasing function
satisfying limλ→∞ γ(λ) = +∞, and f : N → Ud be a function satisfying Defini-
tion 7.1 for some η ∈ (0, 1] and f ∈ Fγ,c for some c ≥ 10 in Definition 7.2. Then
for any θ ∈ R we have∥∥∥∥∥∥

∑
n≤x

Λ(n)f(n) e(θn)

∥∥∥∥∥∥ � c1(k)(log x)
c2(k)xk−ηγ(2(log x)/(80 log k)�)/20,(7.4)

with the same constants as in [24].8

The factor e(θn) is in particular useful to detect n ≡ a mod m via the following
identity,

1

m

∑
0≤h<m

e

(
h(n− a)

m

)
= 1[n≡a mod m] .

8This estimate is non-trivial whenever log(x) = o(γ(x)).
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Furthermore, it is classical to replace estimates for the sum along primes by
correlations with Λ. This gives (for example by [18])∥∥∥∥∥∥ 1

π(N)

∑
p<N

f(p) e(pθ)

∥∥∥∥∥∥
F

� 1

logN

1

π(N)
max
t≤N

∥∥∥∥∥∥
∑
n≤t

Λ(n)f(n) e(nθ)

∥∥∥∥∥∥
F

+O(
√
N).

The Prime Number Theorem ensures that log(N) · π(N) ∼ N . In total we find∥∥∥∥∥∥∥∥
1

π(N)

∑
p<N

p≡a mod m

f(p)

∥∥∥∥∥∥∥∥ ≤ max
θ

∥∥∥∥∥∥ 1

π(N)

∑
p<N

f(p) e(pθ)

∥∥∥∥∥∥
� 1

N
max
t≤N

max
θ

∥∥∥∥∥∥
∑
n≤t

Λ(n)f(n) e(nθ)

∥∥∥∥∥∥
F

+O(
√
N).

Thus we have shown the following corollary.

Corollary 7.4. Let γ : R → R be a non-decreasing function satisfying

lim
λ→∞

γ(λ)/ log(λ) = +∞,

and f : N → Ud be a function satisfying Definition 7.1 for some η ∈ (0, 1] and
f ∈ Fγ,c for some c ≥ 10 in Definition 7.2. Then for any a,m ∈ N we have

lim
N→∞

∥∥∥∥∥∥∥∥
1

π(N)

∑
p<N

p≡a mod m

f(p)

∥∥∥∥∥∥∥∥ = 0.

Naturally, we are now interested in the case f(n) := D(T (n)). The Carry-
Property for D(T (n)) follows from the way that the digital representation of n
influences T (n).

Proposition 7.5 ([26]). Let D be any unitary and irreducible representation of G.
Then D(T (.)) satisfies Definition 7.1 for some η > 0.

The much more challenging part was to show the Fourier Property.

Proposition 7.6 ([26]). Let D be a unitary, irreducible representation of G differ-
ent from Dj . Then D(T (.)) ∈ Fγ,c for some linear γ and all c ≥ 0.

We note that Proposition 7.6 does not hold for D = Dj , in fact for t = j/d we
have

1

N

∑
n<N

Dj(n) e(−n�/d) =
1

N

∑
n<N

e(0) = 1.

Thus we have shown (7.1) and are able to apply Theorem 6.5 which gives the
following result.

Proposition 7.7. Let a(n) be a prolongable and primitive automatic sequence.
Then the density of a(n) = α exist along the subsequence of primes.

Finally we prove Theorem 1.4 saying that there exists m with dlog(a(pn), α) =
dlog(a(n�), α), where n� runs through all positive integers with (n,m) = 1.
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Proof. We first use Theorem 1.1 to find B = {b1(n), . . . , bs(n)}. Each of the bi
can be written as bi(n) = fi(si(n), Ti(n)), with some di = d(bi). We choose now
m = k ·

∏
di and let n� denote the sequence of integers that are coprime to m.

We find immediately that n� distributes regularly within residue classes and that
cn�

(m;h) fulfills (6.3). Furthermore, (6.4) is an immediate consequence of Propo-
sition 7.6. Thus, we can apply for any bi Theorem 6.5 both for the subsequence
along P and along n�.

A simple computation shows that

cP(r; k
λ) = cn�

(r; kλ) = 1(r,k)=1
1

ϕ(k)kλ−1

and

cP(r; di) = cn�
(r; di) = 1(r,di)=1

1

ϕ(di)
.

This shows immediately that d(bi(pn), α) = d(bi(n�), α) for all 1 ≤ i ≤ s. The
result follows now directly from Equation (5.3). �

We remark that Theorem 1.4 can be also used to observe zero densities. Namely,
we have dlog(a(mn + r), α) = 0 if and only if dlog(a(pn), α) = 0 for all r with
(r,m) = 1.

8. The subsequence along squares

The goal of this section is to compute the density of primitive automatic se-
quences along squares. There are already some interesting results in this direction
that we want to mention here. The first and ground-breaking result is due to
Mauduit and Rivat [22], where they showed that the Thue-Morse sequence takes
values 0 and 1 with density 1

2 along squares. This result relies on L1 estimates of
the Fourier-Transform and is thus not possible to extend to general automatic se-
quences. However, it was generalized to invertible automatic sequences by Drmota
and Morgenbesser [13]. Moreover, there are results about the density of blocks
along squares (i.e. normality) for the Thue-Morse sequence by Drmota, Mauduit
and Rivat [12] and, more generally, strongly block-additive functions mod m by the
last author [27].

Finally, and most important for this section, there is a new result by Mauduit and
Rivat [25] which gives density results along squares, for all functions satisfying the
Carry-Property and the Fourier-Property (again in the stricter sense). In particular,
they only consider complex-valued sequences f , and a stronger Carry-Property, i.e.
η = 1.

The main result of this section is the following theorem.

Theorem 8.1. Let a(n) be a prolongable and primitive automatic sequence. With
the notation from (6.1), we write a(n) = f(s(n), T (n)). Then there exist the den-
sities dq = d(s(n2), q) and dg = d(T (n2), g). Furthermore, we have

d(a(n2), α) =
∑

q∈Q,g∈G

dq · dg · 1[f(q,g)=α] .

Naturally, the idea is to apply Theorem 6.5 for the subsequence n� = �2. Thus,
the proof splits into two parts. We first aim to show (6.3) and then (6.4).
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8.1. Synchronizing automatic sequence along squares. The main result of
this subsection is the following proposition.

Proposition 8.2. The subsequence along squares distributes regularly within residue
classes and fulfill (6.3).

We first observe that

c(m;h) :=
{0 ≤ x < h : x2 ≡ m mod h}

h
.

This already shows that the subsequence along squares distributes regularly within
residue classes by the Chinese Remainder Theorem. It thus remains to prove (6.3).

As c(m;h) is multiplicative in the second coordinate, we are interested in c(m; pα),
where p is a prime. We will use the following results which follow directly from
Hensel’s Lemma.

Lemma 8.3. Let p be an odd prime and α ≥ 1. Then we have for m ≡ 0 mod pα

and any � ≥ 0,

c(m; pα+�) =
c(m; pα)

p�
.

Furthermore, if α ≥ 3,m ≡ 0 mod pα−2, then for any � ≥ 0,

c(m; 2α+�) =
c(m; 2α)

2�
.

Corollary 8.4. Let k = pα1
1 · . . . · pαs

s , where pi ∈ P. Let λ ∈ N and a such that for
all i,

m ≡ 0 mod pλαi−2
i .

Then, c(m; kλ+�) = c(m;kλ)
k� for all � ≥ 0.

We are now ready to prove Proposition 8.2.

Proof of Proposition 8.2. This will allow us to show the following result.

lim
λ→∞

∑
m<kλ

∀i:m �≡0 mod p
λαi−2

i

c(m; kλ) = 1.(8.1)

By the Chinese Remainder Theorem it is sufficient to show

lim
λ→∞

∑
m<p

αiλ

i

m �≡0 mod p
λαi−2

i

c(m; pαiλ
i ) = 1

or equivalently

lim
λ→∞

∑
m<p2

i

c(mpαiλ−2
i ; pαiλ

i ) = 0.

We conclude the proof of (8.1) by noting∣∣∣{x < pαiλ
i : x2 ≡ mpαiλ−2

i mod pαiλ
i }

∣∣∣
≤

∣∣∣{x < pαiλ
i : x ≡ 0 mod p

αiλ/2−1�
i }

∣∣∣ = p
�αiλ/2	+1
i = oλ→∞(pαiλ

i ).
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We find by Corollary 8.4∑
m∈Sλ1+λ2

c(m; kλ1+λ2)

≥
∑

m1<kλ1

∀i:m1 �≡0 mod p
λ1αi−2

i

∑
m2<kλ2

m2k
λ1+m1∈Sλ1+λ2

c(m2k
λ1 +m1; k

λ1+λ2)

=
∑

m1<kλ1

∀i:m1 �≡0 mod p
λ1αi−2

i

c(m1; k
λ1+λ2) · 1

kλ2

∑
m2<kλ2

m2k
λ1+m1∈Sλ1+λ2

1.

We recall that any concatenation of a synchronizing word with any other word is
again synchronizing. Thus, m2 ∈ Sλ2

implies m2k
λ1 +m1 ∈ Sλ1+λ2

giving in total

∑
m∈Sλ1+λ2

c(m; kλ1+λ2) ≥

⎛
⎜⎜⎜⎝ ∑

m1<kλ1

∀i:m1 �≡0 mod p
λ1αi−2

i

c(m1; k
λ1)

⎞
⎟⎟⎟⎠ ·

⎛
⎝ 1

kλ2

∑
m2∈Sλ2

1

⎞
⎠ ,

which finishes the proof as both factors tend to 1 for λ1, λ2 → ∞. �

8.2. Generalizing the result of Mauduit and Rivat for squares. The main
result of this section is the following theorem.

Theorem 8.5. Let γ : R → R be a nondecreasing function satisfying limλ→∞ γ(λ)
= ∞, and let f : N → Ud be a function satisfying Definition 7.1 for some η > 0
and f ∈ Fγ,c for some c ≥ 18 in Definition 7.2. Then for any θ ∈ R, we have∥∥∥∥∥∥

∑
0<n≤x

f(n2) e(nθ)

∥∥∥∥∥∥
2

�d,f,k (log x)ω(q)+2
(
xk−

ηγ(2�(3 log x)/(100 log k)�)
56

)
,

where the absolute implied constant only depends on d, f and k.

The proof works exactly the same as in [25], one only needs to account for the
newly introduced constant η > 0 and needs to be more careful as matrices do not
commute. This part should be read alongside with [25] and we only comment on
the necessary changes briefly.

Lemma 1 of [25] can be easily adapted to matrix valued sequences:

Lemma 8.6. For all z1, . . . , zN being complex d×d matrices and all integers k ≥ 1
and R ≥ 1, we have∥∥∥∥∥∥

∑
1≤n≤N

zn

∥∥∥∥∥∥
2

F

≤ N + kR− k

R

⎛
⎝ ∑

1≤n≤N

‖zn‖2F + 2
∑

1≤r<R

(
1− r

R

) ∑
1≤n≤N−kr

tr(zn+krz
H
n )

⎞
⎠

=
N + kR− k

R

⎛
⎝ ∑

1≤n≤N

‖zn‖2F + 2
∑

1≤r<R

(
1− r

R

) ∑
1≤n≤N−kr

tr(znz
H
n+kr)

⎞
⎠ .
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The next few lemmata can stay completely unchanged. The next one that needs
to be changed is Lemma 7:

Lemma 8.7. Let f : N → Ud satisfying Definition 7.1, and let (ν, κ, ρ) ∈ N3 with
3ρ < ν < κ < ν + 2ρ. The set E of n ∈ {kν−1, . . . , kν − 1} such that there exists
� ∈ {0, . . . , kκ − 1} with f(n2 + k)Hf(n2) = fκ+ρ(n

2 + k)Hfκ+ρ(n
2) satisfies

card E � cardf,k k
ν− ηρ

2 .

The proof stays essentially unchanged, but it will be important later that one
takes the hermitian of f(n2 + �) instead of f(n2).

For Lemma 8 we only need to change the final conclusion to

card E �f,k kν−η(ν1−ν0) + k
ν2
2 +ν2−ν0 log(kν2)k−η(ν1−ν0).

We are now ready to tackle the estimate of

S0 :=
∑

N/2<n≤N

f(n2) e(θn).

We apply Lemma 8.6 to cut off high digits, just as in [25]. We only need to replace,

S1(r) =
∑

n∈I1(N,r)

f((n+ r)2)Hf(n2) e(θr).

Next we apply Lemma 8.6 again to cut off low digits. The resulting sum is

S′
2(r, s) =

∑
n∈I2(N,r,s)

fν2
((n+ r + skν1)2)Hfν2

((n+ skν1)2)fν2
(n2)Hfν2

((n+ r)2).

However, as we are only interested in the trace of S′
2(r, s), we are able to replace it

with ∑
n∈I2(N,r,s)

fν2
((n+ skν1)2)fν2

(n2)Hfν2
((n+ r)2)fν2

((n+ r + skν1)2)H .

After having this explicit order for the terms, we can use the definition of the double
truncated version, to rewrite it as∑
n∈I2(N,r,s)

fν1,ν2
((n+ skν1)2)fν1,ν2

(n2)Hfν1,ν2
((n+ r)2)fν1,ν2

((n+ r + skν1)2)H .

Thereafter, most things stay unchanged, one only needs to be careful to not change
the order of the terms, e.g. the estimate for S′

4(r, s) becomes

S′
4(r, s) ≤ k2(ν2−ν0)

∑
|h1|≤H

∣∣ah1
(kν0−ν2 , H)

∣∣2
∑

0≤h2<kν2−ν0

∑
0≤h3<kν2−ν0

|ĝ(−h2)ĝ(−h2 − h1)ĝ(h3 − h1)ĝ(h3)|

∣∣∣∣∣∣
∑

n∈I2(N,r,s)

e

(
2h1r + 2(h2 + h3)sk

ν1

kν2
· n

)∣∣∣∣∣∣ .
However, we have now set up the order of the terms, such that everything works
out just as in [25].
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The next more substantial change has to be made to Lemma 9, where the final
estimate needs to be replaced by∑

0≤h<kν2−ν0

∑
0≤�<kν2−ν0−λ

‖ĝ(h+ �)ĝ(h)‖22 �d,f,k kη
ν1−ν0−γ(λ)

2 (log(kν2−ν1))2,

i.e. we needed to take η into account, which was equal to 1 in [25]. This leads to
the estimate

1

R

∑
1≤r<R

S8(r) � kν+η
ν1−ν0−γ(ν2−ν0−2ρ)

2 (log kν2−ν1)2 + ρkν−ρ log k.

The rest of the proof stays unchanged and one only needs to choose the values for
ρ′ differently, i.e.

ρ′ =

⌊
η
γ(2ρ)

7

⌋
.

This finishes the proof of Theorem 8.5.

8.3. Finishing the proof of Theorem 8.1 and Theorem 1.3. We have already
seen that n2 distributes regularly within residue classes and that cn2(m;h) satis-
fies (6.3). It remains to apply Theorem 8.5 to the function f(n) = D(T (n)) for
unitary and irreducible representations D different from Dj . Again the factor e(nθ)
can be used to detect the residue of n2 modulo kλ. Thus, we can apply Theorem 6.5
to the subsequence along squares, which gives immediately Theorem 8.1.

The main part of Theorem 1.3 is now an immediate consequence of Theorem 1.1.
It will just remain to prove that when the input base k is prime, then the densities
are computable rational numbers.

9. Computability of densities along subsequences

We first start with the primitive and prolongable case.

9.1. Densities of primitive automatic sequences. We use this section to recall
a classical results about densities of pure, primitive and prolongable k-automatic
sequences. Therefore, we need the following definition.

Definition 9.1. Let A=(Q, {0, . . . , k−1}, δ, q0) be a DFA, whereQ={q0, q1, . . . , qd}.
We define the incidence matrix M = M(A) as follows:

M = (mi,j)0≤i,j≤d,

where mi,j = |{0 ≤ w < k : δ(qj , w) = qi}|.

One sees directly that
∑

0≤i≤d mi,j = k for all 0 ≤ j ≤ d. Thus one has that

(1, 1, . . . , 1) is a left-eigenvector associated with the eigen-value k. It turns out that
the right-eigenvector associated to the eigenvalue k describes the densities.

Theorem 9.2 (Theorem 8.4.7 and 8.4.5 of [1]). Let (a(n))n≥0 be a pure and primi-
tive k-automatic sequence with incidence matrix M , as in Definition 9.1. Moreover,
let v = (v0, . . . , vd)

T be the positive normalized right-eigenvector of M associated
with the eigenvalue k. Then

d(a(n), qi) = vi ∈ Q>0,

for all 0 ≤ i ≤ d.
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Example 9.3. We discuss the paperfolding sequence with respect to Theorem 9.2.
The transition diagram of the paperfolding sequence is given below.

a/1start b/1

c/0 d/0

1

0

1

0
0

1

10

Thus, we find that the transition matrix is given by

M =

⎛
⎜⎜⎝
1 0 1 0
1 1 0 0
0 1 0 1
0 0 1 1

⎞
⎟⎟⎠ ,

with the unique normalized eigenvector (1/4, 1/4, 1/4, 1/4)T associated with the
eigenvalue 2 and consequently, both the value 0 and 1 have density 1/2.

9.2. Primitive automatic sequences along primes. We recall here how to
explicitly compute the densities of primitive automatic sequences along primes.
We only consider the case when a is pure as the general case follows immedi-
ately. Therefore, let (a(n))n≥0 be a primitive and prolongable k-automatic se-
quence. Next we consider the (explicitly computable) decomposition in (6.1), i.e.
a(n) = f(s(n), T (n)), where s(n) is a pure synchronizing automatic sequence and
T (n) takes values in a finite group G. Then we computed d = d(a).9

Thus, we know by Theorem 1.4 that

d(a(pn), α) =
1

ϕ(m)

∑
r<m,(r,m)=1

d(a(mn+ r), α),

where m = k · d. Moreover, the sequence ((a(nm), . . . , a(nm + m − 1)))n≥0 is
again a primitive and prolongable k-automatic sequence which is usually called
the m-compression. It can be for example constructed by starting with the state
(a(0), . . . , a(m − 1)). Then we define δ((qi0 , . . . , qim−1

), j) as the set of m states
that we obtain by first writing the word of length mk,

δ(qi0 , 0), δ(qi0 , 1), . . . , δ(qi0 , k − 1), δ(qi1 , 0), . . . , δ(qim−1
, k − 1),

and then picking the subword at positions jm, . . . jm + m − 1.10 It just remains
to add new states until the automata is closed under this new transition function.
Then (a(nm + r))n≥0 is the projection of this newly defined automatic sequence
onto the r-th coordinate.

We finally note that d(a(mn+ r), α) ∈ Q and, therefore, d(a(pn), α) ∈ Q.

9This is again explicit, as there are only finitely many possibilities to check.
10This construction is much more intuitive when working with substitutions instead of

automata.
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Example 9.4. We continue the discussion of the paper-folding sequence from Ex-
ample 9.3. We see directly, that the paper-folding sequence is synchronizing. Thus,
T (n) = id and G = {id} are trivial and m = k = 2 as d = 1.

Thus, we need to consider the 2-compression of a(n). The corresponding transi-
tion diagram is given below,

(a, b)start (c, b)

(a, d) (c, d)

1

0

1

0
0

1

1
0

We note that this is basically the same transition diagram as for the original
paper-folding sequence. Thus, the density of every state is again 1/4. However,
now we need to consider the projection to the first coordinate which shows that the
density of b and d are 1/2 and the density of a and c are 0. Thus we conclude that
the density of the symbols 0 and 1 in the subsequence of the paperfolding sequence
along the primes are 1/2.

9.3. Primitive automatic sequences along squares. For the sake of simplicity
we only consider the case, where the base k is prime. The general case is much
more technical, but the densities can be computed explicitly by Theorem 6.5 even
if it is not clear whether they will be rational.

Theorem 9.5. Let k be a power of a prime number and a(n) a primitive and
prolongable k-automatic sequence. Then the density along squares is rational.

Proof. As d(T (n2), g) = d
|G| · c(j; d) ∈ Q for g ∈ Gj , we see that we only need to

consider the synchronizing part, i.e. we need to show that

lim
λ→∞

∑
m<kλ

1[s(m)=q] c(m; kλ) ∈ Q.

Since s(n) is a synchronizing k-automatic sequence, for k = pα, we know by [7,
Proposition 3.3] that it is also p-automatic and synchronizing. Thus, we assume
without loss of generality that k is a prime from now on. We first consider the
case when k = 2. We already know that the limit above exists, so we pass to the
subsequence 2λ + 1 to determine it. First we note that we can ignore m = 0 as
c(0; k2λ+1) = k−λ−1 → 0. Then we rewrite m = m′k2μ+1+m′

0k
2μ for some m′

0 = 0
and 0 ≤ μ ≤ λ. Since k is assumed to be prime, we have by Lemma 8.3 that

c(m; k2λ+1) =
c(m′

0k
2μ; k2μ+1)

k2λ−2μ
.

We can also determine c(m′
0k

2μ; k2μ+1) quite easily, as x2 ≡ m′
0k

2μ mod k2μ+1

if and only if x = x′kμ+1 + x′
0k

μ where (x′
0)

2 ≡ m′
0 mod k. Thus we have that
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c(m′
0k

2μ; k2μ+1) = 2/kμ+1 if m′
0 is a quadratic residue modulo k and 0 otherwise.

So we are left with

d(s(n2), q) = lim
λ→∞

∑
m<k2λ+1

1[s(m)=q] c(m; k2λ+1)

= lim
λ→∞

∑
0≤μ≤λ

∑
m′

0=QR

∑
m′<k2λ−2μ

1[s(m′k2μ+1+m′
0k

2μ)=q]
2

k

1

kμ
1

k2λ−2μ
.

Now we aim to split the contribution of m′ and m′
0. We let δ denote the transition

function for s and have s(m′k2μ+1 + m′
0k

2μ) = δ(q0, (m
′k2μ+1 + m′

0k
2μ)k) = q if

and only if there exist q1, q2 such that δ(q0, (m
′)k) = q1, δ(q1, (m

′
0)

1
k) = q2 and

δ(q2, (0)
2μ
k ) = q. Moreover, we see that

1

k2λ−2μ

∑
m′<k2λ−2μ

1 [δ(q0, (m
′)k) = q] = d(s(n), q) + oλ−μ→∞(1).

Thus we have in total

d(s(n2), q)

= lim
λ→∞

∑
0≤μ≤λ

∑
m′

0=QR

∑
m′<k2λ−2μ

1[s(m′k2μ+1+m′
0k

2μ)=q]
2

k2λ−μ+1

= lim
λ→∞

∑
q1,q2∈Q

∑
0≤μ≤λ

∑
m′

0=QR

∑
m′<k2λ−2μ

× 1[δ(q0,(m′)k)=q1] 1[δ(q1,(m′
0)

1
k)=q2] 1[δ(q2,(0)

2μ
k )=q]

2

k2λ−μ+1

=
∑

q1,q2∈Q

⎛
⎝ ∑

m′
0=QR

1[δ(q1,(m′
0)

1
k)=q2]

2

k

⎞
⎠

· lim
λ→∞

∑
0≤μ≤λ

1

kμ
1[δ(q2,(0)

2μ
k )=q] ·

⎛
⎝ 1

k2λ−2μ

∑
m′<k2λ−2μ

1[δ(q0,(m′)k)=q1]

⎞
⎠

=
∑

q1,q2∈Q

⎛
⎝ ∑

m′
0=QR

1[δ(q1,(m′
0)

1
k)=q2]

2

k

⎞
⎠

· lim
λ→∞

∑
0≤μ≤λ

1

kμ
1[δ(q2,(0)

2μ
k )=q] · (d(s(n), q1) + oλ−μ→∞(1)) .

We note that the sum of the o(1) terms is negligible as
∑

μ≥0 k
−μ is absolutely

convergent. Thus, we have

d(s(n2), q) =
∑

q1,q2∈Q

d(s(n), q1) ·
∑

m′
0=QR

1[δ(q1,(m′
0)

1
k)=q2]

2

k
·
∑
μ≥0

1

kμ
1[δ(q2,(0)

2μ
k )=q] .

(9.1)

As d(s, q1) ∈ Q it only remains to show that∑
μ≥0

1

kμ
1[δ(q2,(0)

2μ
k )=q] ∈ Q.(9.2)
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However, δ(q2, (0)
2μ
k ) is an eventually periodic sequence (as we iteratively apply

δ(., (0)2k)). Thus (9.2) is a finite sum of geometric series with rational ratio and as
such rational.

The case k = 2 works mostly analogously. The only difference is that (due to
Lemma 8.3) we have to write m = m′k2μ+3+m′

0k
2μ, where m′

0 = 1. Hence, we have
c(m; 22λ+1) = c(22μ; 22μ+3)/22λ−2μ−2 = 1/22λ−μ−1. We find in total, analogously
to (9.1)

d(s(n2), q) =
∑

q1,q2∈Q

d(s(n), q1) · 1[δ(q1,(1)32)=q2]

1

2
·
∑
μ≥0

1

2μ
1[δ(q2,(0)

2μ
2 )=q],(9.3)

and the proof finishes using the same arguments. �

Example 9.6. We discuss again the paperfolding sequence with respect to Theo-
rem 9.5.

We first discuss the automatic sequence without the projection and call it s′.11

As the paperfolding sequence (and s′) is 2-automatic, we have to apply (9.3). We
also see that δ(q, 001) = b for all q ∈ Q. Thus, only q2 = b gives a positive
contribution and clearly

∑
q1∈Q d(s′(n), q1) = 1. This gives

d(s′(n2), q) =
1

2

∑
μ≥0

1

2μ
1 [δ(b, (0)2μ2 ) = q].

Moreover, we have δ(b, 00) = a, δ(a, 00) = a. So that only a, b have a positive
density along squares:

d(s′(n2), a) =
1

2

∑
μ≥1

1

2μ
=

1

2
,

d(s′(n2), b) =
1

2

∑
μ=0

1

2μ
=

1

2
.

As both a and b are projected to 1, we find that the density of 1 in the paperfolding
sequence along squares is 1.

9.4. Logarithmic densities of general automatic sequences. We focus in
this section on how to compute the logarithmic density of automatic sequences (in
particular of the Mi in Proposition 4.1). There is for example an explicit formula
in [1], namely Theorem 8.4.8 (and Corollary 8.4.9). However, this one is rather
hard to use in practical terms. There is also a (slightly vague) description in a
presentation by Bell [2]. We can find a very similar (if not identical) description as
in [2].

We note that for each of the Mi in Proposition 4.1 we have that if m ∈ Mi then
also mkλ + r ∈ Mi for all λ ≥ 0, 0 ≤ r < kλ. Thus, we let Si denote the set of
integers that “generate” Mi, i.e.

Si := {m ∈ Mi : ∃m0 ∈ Mi, λ ≥ 0, 0 ≤ r < kλ with m = m0k
λ + r}.

This allows us to decompose Mi into a disjoint union,

Mi =
⋃

m∈Si

{mkλ + r : λ ≥ 0, 0 ≤ r < kλ}.

11The output is then on the alphabet a, b, c, d.
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A simple computation shows

dlog({mkλ + r : λ ≥ 0, 0 ≤ r < kλ})

= lim
L→∞

1

log(mkL)

∑
0≤λ<L

∑
0≤r<kλ

1

mkλ + r

= lim
L→∞

1

log(mkL)

∑
0≤λ<L

log

(
(m+ 1)kλ

mkλ

)
+O

(
1

mkλ

)

= lim
L→∞

1

L log(k) + log(m)
(L log(1 + 1/m) +O(1))

=
log(1 + 1/m)

log(k)
.

This gives in total

dlog(Mi) =
1

log(k)

∑
m∈Si

log(1 + 1/m).(9.4)

There is a conjecture in [1] that says that the logarithmic density is always
the fraction of logarithms of rational numbers. This is trivially true whenever Si

is finite. However, there are also examples where this is not obvious at all (the
following example also appeared in [2]):

Example 9.7. We consider the following 3-automatic sequence that is 1 if the base
3 expansion starts with 100 . . . 001 and 0 otherwise. The corresponding automaton
is given below.

a/0start b/0

c/0

d/1

1

0

2

1

2

0

0,1,2

0,1,2

We have that b1(n) = 0 and b2(n) = 1 for all n ≥ 0. Moreover one finds that
S2 = {3λ + 1 : λ ≥ 1}.

Thus one has

dlog(M2) =
1

log(3)

∑
λ≥1

log

(
1 +

1

3λ + 1

)

=
1

log(3)
log

⎛
⎝∏

λ≥1

(
1 +

1

3λ + 1

)⎞⎠ .

We end this section with another example that was already discussed in [26] for
which the density along primes does not exist.
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Example 9.8. We consider the following automaton and the corresponding auto-
matic sequence (a(n))n∈N.

astart b c
1,2

0

1

0,2

1

0,2

It follows by the discussion in [26] that a(n) = b holds in exactly two cases:

• n is even and the first digit of n in base 3 is 2,
• n is odd and the first digit of n in base 3 is 1.

One finds easily that the a(n) is equally distributed on {b, c}, i.e. d(a(n), b) =
d(a(n), c) = 1/2. But as discussed in [26] the density of b and c do not exist along
primes.

Now how does this example work in light of Theorem 1.2 (and Proposition 4.1)?
We first find a decomposition as in Proposition 4.1. Therefore, let

b1(n) =

{
b, if n is odd,
c otherwise,

b2(n) =

{
c, if n is odd,
b otherwise,

and Mi (i = 1, 2) denotes the set of integers for which the first digit in base 3
is i. One finds directly by the discussion above that this choice satisfies Proposi-
tion 4.1. As all prime numbers (except 2) are odd we have directly d(b1(pn), b) =
d(b2(pn), c) = 1 and d(b1(pn), c) = d(b2(pn), b) = 0. Moreover, we see that
S1 = {1} and S2 = {2}. Thus we see by (9.4) that dlog(M1) = log(2)/ log(3)
and dlog(M2) = (log(3)− log(2))/ log(3). This shows with (5.3) that

dlog(a(pn), b) =
log(2)

log(3)
· 1 + log(3)− log(2)

log(3)
· 0 =

log(2)

log(3)
.

Appendix A. Implications for dynamical systems

The decomposition of an automatic sequence in primitive and prolongable auto-
matic sequences in Proposition 4.1 has an interesting counterpart in the world of
dynamics. We start off with a short introduction to dynamical systems associated
with sequences.

There is a long history for considering dynamical systems associated with se-
quences (see for example [28], which is especially concerned with automatic se-
quences).12

We first define the language of a sequence u = (u(n))n∈N (or Z instead of N)
taking values in a finite alphabet A as

L(u) := {u(m) · · ·u(n) : m ≤ n},

i.e. the language is the set of all non-empty factors of u. Then we can associate a
compact set with this sequence,

Xu := {x ∈ AZ : L(x) ⊆ L(u)} = {(u(n+ �))n∈N : � ∈ N}.

12In this context one works with substitutions of constant length instead of automata. However,
we will try to avoid introducing different concepts if not strictly necessary.
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That is the minimal compact set containing u, that is closed under the shift T ,
where

T ((x(n))n∈N := (x(n+ 1))n∈N.

Therefore, (Xu, T ) is a canonical candidate to consider, when one wants to use
methods or ideas coming from dynamical systems.

It proved to be useful to consider two-sided sequences (Z) instead of one-sided
sequences (N) for the case when u is an automatic sequence.

We can make (Xu, T ) a topological dynamical system by using the metric

d(x, y) =
∑
n≥0

1

2n+2
(dn(xn, yn) + d−n(x−n, y−n)),

where dn denotes the discrete metric on A.
We can also consider a measure-theoretic dynamical system, i.e. (Xu,B, μ, T )

where (X,B, μ) is a standard Borel probability space and T : Xu → Xu is an
a.e. bijection which is bimeasurable and measure-preserving. We call (Xu,B, μ, T )
ergodic if for every E ∈ B with T−1(E) = E follows either μ(E) = 0 or μ(E) = 1.

Each homeomorphism T of a compact metric spaceX determines many (measure-
theoretic) dynamical systems (X,B(X), μ, S) with μ ∈ M(X,S), where M(X,T )
stands for the set of Borel probability measures onX (B(X) stands for the σ-algebra
of Borel sets of X). Recall that by the Krylov-Bogolyubov theorem, M(X,T ) = ∅,
and moreover, M(X,T ) endowed with the weak-∗ topology becomes a compact
metrizable space. The set M(X,T ) has a natural structure of a convex set (in fact,
it is a Choquet simplex) and its extremal points are precisely the ergodic measures.
We say that the topological system (X,T ) is uniquely ergodic if it has only one
invariant measure (which must be ergodic). The system (X,T ) is called minimal
if it does not contain a proper subsystem (equivalently, the orbit of each point is
dense). Furthermore, a point x ∈ X is called an almost periodic point if for any
neighborhood U of x there exists N ∈ N such that

{Tn+i(x) : i = 0, . . . , N} ∩ U = ∅,

for all n ∈ N.
It is a classical result that if u is a primitive and prolongable automatic sequence,

then (Xu, T ) is strictly ergodic, that is minimal and uniquely ergodic. Moreover,
every point x ∈ Xu is almost periodic.

Lemma A.1. Assume that (X,T ) is a topological dynamical system and let x be
an almost periodic point and y ∈ X for which d(T jnx, T iny) → 0 when n → ∞.

Then {T kx : k ∈ Z} ⊂ {T ky : k ∈ Z}.

Proof. By passing to a subsequence T jnsx → x′ and T ins y → y′, where necessarily
x′ = y′. This shows that the intersection of the closures of the two orbits is non-
empty, so the claim follows from minimality of the orbit closure of x. �

Remark A.2. The condition d(T jnx, T iny) → 0 when n → ∞ is equivalent to the
fact that x and y have arbitrarily long common subwords.

Corollary A.3. With the notation of Proposition 4.1, we have that Xbi ⊂ Xa for
all i. Furthermore, we have for all i, j, either Xbi = Xbj or Xbi ∩Xbj = ∅.
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Proof. It follows from Proposition 4.1 that a and bi coincide on arbitrarily long
intervals. Thus the condition of Lemma A.1 is fulfilled and the desired result
follows. The second result follows easily as both Xbi , Xbj are minimal. �

Proposition A.4. Each automatic sequence a yields a subshift Xa which has only
finitely many minimal components. They are given by the Xbi .

Proof. This is in its essence only a reformulation of Proposition 2.2 in [6]. However,
we provide nevertheless a proof as it highlights important ideas for the proof of
Proposition A.5.

First we note that there exists some � ∈ N such that every consecutive � integer
contains an integer n0 /∈ M0, as otherwise the upper Banach density of M0 would
be 1. Let us now assume that z is an almost periodic point in Xa. Fix K =
kλ(�+ 2) ≥ 1 for some λ (we will later let λ → ∞) and we find

z(0)z(1) · · · z(K) = a(L)a(L+ 1) · · · a(L+K),

for some L ∈ N as L(z) ⊂ L(a).
We find by our definition of K that I = [L/kλ, (L+K)/kλ− 1] contains at least

� consecutive integers, so that there exists n0 ∈ I with n0 /∈ M0. Thus, we have
n0 ∈ Mi for some i ≥ 1 and by the properties of Mi also that n0k

λ + r ∈ Mi for all
0 ≤ r < kλ.

Thus we find that for every λ ∈ N there exists some i ≥ 1 such that z and bi have
a common subword of length kλ. As there are only finitely many b′is there has to
exist some i0 ≥ 1 such that z and bi0 have arbitrarily long common subwords and

we can apply Lemma A.1. This shows that {T k(z) : k ∈ Z} = {T k(bi0) : k ∈ Z}
as both z and bi0 are almost periodic. �

Proposition A.5. The only ergodic measures in Xa are given by the unique mea-
sures determined by Xbi (i ≥ 1). (In other words the ergodic decomposition is in a
sense a decomposition into minimal components.)

Proof. Indeed, if z is a generic point for an ergodic measure ν13 then similarly to
the proof of Proposition A.4 we let K = (� + 2) · kλ, where we let this time both
� → ∞ and λ → ∞. We find by the same reasoning as before that

z(0)z(1) . . . z(K) = a(L)a(L+ 1) . . . a(L+K),

for some L ∈ N and find that I = [L/kλ, (L + K)/kλ − 1] contains at least �
consecutive integers. As the upper Banach density of M0 is zero, we know that the
proportion of integers in I that do belong to M0 tend to 0 as � → ∞. Thus, we can
cover [L,K] by blocks of the bi of length kλ (up to a small proportion). It follows
that ν is supported by the union of supports of the unique measures given by the
bi’s. Since ν has to be positive on some Xbi . As there is only one ergodic measure
on Xbi it follows that ν has to coincide with it. �

Remark A.6. Proposition A.4 and Proposition A.5 show that the ergodic decom-
position of invariant measures of dynamical systems associated with automatic
sequences actually corresponds to the decomposition of the topological dynamical
system into minimal components.

13A point x is called generic for a measure ν if limn→∞ 1
n

∑n−1
i=0 f(T i(x)) =

∫
X fdν holds for

all f ∈ C(X), whose existence is guaranteed by the ergodic Theorem.
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Lastly, we give a short application of this decomposition.

Corollary A.7. The subshift (Xa, S) generated by any automatic sequence a is
orthogonal to any bounded multiplicative aperiodic function.

Proof. We take any point y ∈ Xa and suppose that it is quasi-generic for a measure
ν. Its ergodic decomposition consists of finitely many measures, each of which yields
a system (Xbi , T ) which satisfies the strong MOMO property by [21, Lemma 8.1].
So the result follows from a general theory (see for example [19, Theorem 4.1]). �

Appendix B. Upper density

This section is devoted to sketching a proof for the following theorem which is a
generalization of the corresponding result in [4] and follows in large parts the same
ideas.

Theorem B.1. Under the same conditions as in Theorem 1.1 together with the
additional assumption β = 1, the upper and lower densities,

d(a(n�), α) = lim sup
x→∞

1

x

∑
�≤x

1[a(n�)=α] and d(a(n�), α) = lim inf
x→∞

1

x

∑
�≤x

1[a(n�)=α] ,

can be explicitly computed. Moreover, if the densities for primitive and prolongable
automatic sequences ã(n) along the subsequence (n�) are rational, then so are the
upper and lower densities of a(n) along the subsequence (n�).

In particular, we can apply this theorem to the subsequence along primes.

Corollary B.2. Let (a(n))n∈N be an automatic sequence. Then, the upper and
lower densities along the primes are rational and can be explicitly computed.

We will need the following preliminary results.

Lemma B.3 (Lemma 3.1 in [4]). Let k ≥ 2 be a natural number, let γ be a positive
real number, let sn, s

′
n be sequences of non-negative numbers, let u′, v′, u be non-

negative real numbers, v a positive real number, and let b and c be positive integers.
If

(v′kb+c + u′kc + s′n)

(vkb+c + ukc + sn)
→ γ

as n → ∞ and

lim sup
n→∞

(v′kc + s′n)

(vkc + sn)
≤ γ,

then

lim sup
n→∞

(v′k2b+c + u′(kb+c + kc) + s′n)

(vk2b+c + u(kb+c + kc) + sn)
≥ γ.

We note that Lemma B.3 was stated in [4] for positive sequences sn, s
′
n and

positive numbers u′, v′, u, but the proof only requires them to be non-negative.
From now on, we let (a(n))n∈N denote a k-automatic sequence and we let Mi,

i ≤ 1 ≤ s, be the sets defined as in Proposition 4.1. We recall that in general the
density of the automatic sets Mi do not exist. However, the density exists if we
only consider certain intervals.
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Lemma B.4. There exists an automaton A = (Q,Σk, δ, q0) such that for 1 ≤ i ≤ s
and m ∈ N,

lim
ν→∞

|Mi ∩ [mkν , (m+ 1)kν − 1]|
kν

= di,δ(q0,(m)k)(B.1)

exists and is rational.

Proof. We recall that if n ∈ Mi then also n · k+ j ∈ Mi, for any j ∈ {0, . . . , k− 1}.
This shows that the sequence |Mi∩[mkν ,(m+1)kν ]|

kν is monotonously increasing and,
obviously, bounded by 1. Thus, the limit exists.

Moreover, we recall that Mi is a k-automatic set and, thus, there exists an
automaton

A(i) = (Q(i),Σk, δ
(i), q

(i)
0 , {0, 1}, τ (i))

such that 1[n∈Mi] = τ (i)(δ(i)(q
(i)
0 , (n)k)). We define A as the product of these s

automata, i.e.

A = (Q,Σk, δ, q0) = (Q(1) × · · · ×Q(s),Σk, δ
(1) × · · · × δ(s), (q

(1)
0 , . . . , q

(s)
0 )) .

Let τi := τ (i) ◦ πi, where πi is the projection to the j-th coordinate. It follows

directly that τ (i)(δ(i)(q
(i)
0 , (n)k)) = τi(δ(q0, (n)k)).

We assume without loss of generality that Q = {q0, q1, . . . , qd} and use the
incidence matrix A14 of A to compute the limit in Equation (B.1). We see directly,
that mkν + r ∈ Mi if and only if τi(δ(δ(q0, (m)k), (r)

ν
k)) = 1. When we consider

the sum over r < kν , we can use the incidence matrix as it encodes the sum of all
possible transitions by words of length 1. Indeed, we find

|Mi ∩ [mkν , (m+ 1)kν − 1]|
kν

= vτi · (A/k)ν · eδ(q0,(m)k),(B.2)

where vτi = (τi(q0), τi(q1), . . . , τi(qd))
T and eqj denotes the j-th unit vector (here

we use the convention that the indices start with 0).
It is easy to see that 1 is the largest eigenvalue of A/k, but it can happen that it

is not the unique eigenvalue of A/k with absolute value 1. The limit on the right-
hand side of Equation (B.2) can be dealt with as in the proof of [4, Proposition
2.1] which shows that (B.2) converges to a rational number along a subsequence,
since the output of A is always rational. This finishes the proof as we know that
the limit exists. �

Corollary B.5. We have for any q ∈ Q

d1,q + . . .+ ds,q = 1.

Proof. This follows directly from Lemma B.4 and the fact that the density of M0

exists and equals 0. �

Lemma B.4 allows us to compute the density of 1[a(n�)=α] in the same intervals,
as long as n� is slowly varying.

Proposition B.6. Let m ∈ N and assume that β = 1. Then

lim
ν→∞

1

g(kν)

∑
g(mkν)≤�<g((m+1)kν)

1[a(n�)=α] =
∑

1≤i≤s

di,δ(q0,(m)k) · d(bi(n�), α).

14See also Section 9 for the definition of the incidence matrix. We let A (instead of M) denote
here the incidence matrix in order to avoid any confusion with the sets Mi.
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Proof. Let ε > 0 and choose λ ∈ N such that∣∣∣∣∣
∣∣Mi ∩ [mkλ, (m+ 1)kλ − 1]

∣∣
kλ

− di,δ(q0,(m)k)

∣∣∣∣∣ ≤ ε,

for i = 1, . . . , s according to Lemma B.4. This allows us to write

lim
ν→∞

1

g(kν)

∑
g(mkν)≤�<g((m+1)kν)

1[a(n�)=α]

= lim
ν→∞

1

g(kν+λ)

∑
r<kλ

∑
g(mkν+λ+rkν)≤�<g(mkν+λ+(r+1)kν)

1[a(n�)=α]

= lim
ν→∞

g(kν)

g(kν+λ)

∑
0≤i≤s

∑
r<kλ

mkλ+r∈Mi

1

g(kν)

∑
g(mkν+λ+rkν)≤�<g(mkν+λ+(r+1)kν)

1[a(n�)=α] .

Obviously, g(kν)/g(kν+λ) converges to k−λ, as g is regularly varying. In the last
sum, we can replace for i = 0, a by bi. Moreover, these sums (together with the
factor 1/g(kν)) then converge to(

(mkλ + r + 1)β − (mkλ + r)β
)
d(bi(n�), α),

by (5.5). We recall that the number of r ∈ Mi∩[mkλ, (m+1)kλ−1] is approximately
kλ · di,δ(q0,(m)k).

This gives in total,

lim
ν→∞

1

g(kν)

∑
g(mkν)≤�<g((m+1)kν)

1[a(n�)=α]

=
∑

1≤i≤s

∑
r<kλ

mkλ+r∈Mi

d(bi(n�), α) +O(
∣∣M0 ∩ [mkλ, (m+ 1)kλ − 1]

∣∣)
=

∑
1≤i≤s

di,δ(q0,(m)k) · d(bi(n�), α) +O(ε),

which finishes the proof as ε was arbitrary. �

Remark B.7. Most of the proof of Proposition B.6 also works for β > 1. The main
difficulty seems to be the evaluation of

1

kλβ

∑
r<kλ

mkλ+r∈Mi

(mkλ + r + 1)β − (mkλ + r)β.

It is clear that the limit for λ → ∞ exists, as it is monotonously increasing and
bounded, but showing the rationality of the limit seems to be much harder than
for β = 1.

Now we are ready to tackle the proof of Theorem B.1, very similarly to the
corresponding proof in [4].

Proof of Theorem B.1. We note that the Theorem actually holds for any output
function of the original automatic sequence, as long as the values are rational num-
bers. For simplicity of notation, we will only consider the case of 1[a(n�)=α].
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We put for m ∈ N,

γ(m) := lim sup
ν∈N,r<kν

1

g(mkν + r)

∑
�∈N

n�≤mkν+r

1[a(n�)=α] .

In particular γ(0) = d̄(a(n�), α). We let S denote the set of integers m such that
γ(m) = d̄(a(n�), α). It is easy to show that S is infinite, as for m ∈ S at least one
of km+ r for r = 0, . . . , k − 1 belongs to S as well.

Let A be as in the conclusion of Lemma B.4. It follows from the pigeonhole
principle that, if m′ ∈ S is large enough, we can decompose it as m′ = m1k

λ2+λ3 +
m2k

λ3 +m3, where λi ∈ N>0, 0 ≤ mi < kλi for i = 1, 2, 3, m1 > 0 and

δ(q0, (m1)k) = δ(q0, (m1k
λ2 +m2)k) =: q1.(B.3)

It follows from the definition of S and γ that also m := m1k
λ2 +m2 ∈ S. Our goal

is to show that m(h) ∈ S for any h ∈ N, where

m(h) := m1k
hλ2 +m2

khλ2 − 1

kλ2 − 1
∈ S.(B.4)

That is, we want to show that we can repeat the loop corresponding to m2 (c.f.
(B.3)) while remaining in the set S. This intuitively makes sense, as m2 needs to
“maximize its contribution” corresponding to γ(m1k

λ2 + m2) = d̄(a(n�), α). The
technical problem (and reason for Lemma B.3) is the dependency of the normalizing
weight on m2.

To show that m(h) ∈ S for any h ≥ 1, we will first use Lemma B.3 to show that
m(2) ∈ S and then use an inductive argument. From this we will finish the proof
easily.

We can write

1

g(kν)

∑
�∈N

n�≤mkν+r

1[a(n�)=α]

=
1

g(kν)

∑
�<g(m1kν+λ2)

1[a(n�)=α] +
1

g(kν)

g(mkν)−1∑
�=g(m1kν+λ2)

1[a(n�)=α]

+
1

g(kν)

g(mkν+r)∑
�=g(mkν)

1[a(n�)=α] .

Using Proposition B.6 to rewrite the first sum for ν → ∞ gives

1

g(kν)

∑
�<g(m1kν+λ2)

1[a(n�)=α]=
∑

m′
1<m1

1

g(kν)

g((m′
1+1)kν+λ2)−1∑

�=g(m′
1k

ν+λ2 )

1[a(n�)=α]

→ν→∞ kλ2

∑
1≤i≤s

d(bi(n�), α)
∑

m′
1<m1

di,δ(q0,(m′
1)k)︸ ︷︷ ︸

:=κ1

+o(1).
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For the second sum we, furthermore, use Equation (B.3) to find

1

g(kν)

g(mkν)−1∑
�=g(m1kν+λ2 )

1[a(n�)=α]

→ν→∞
∑

1≤i≤s

d(bi(n�), α)
∑

m′
2<m2

di,δ(q0,(m1kλ2+m′
2)k)

+ o(1)

=
∑

1≤i≤s

d(bi(n�), α)
∑

m′
2<m2

d
i,δ(q1,(m′

2)
λ2
k )︸ ︷︷ ︸

:=κ2

+o(1).

This, finally, allows us to write

d̄(a(n�), α) = lim sup
ν∈N,r<kν

∑
�≤g(mkν+r) 1[a(n�)=α]

g(mkν + r)

= lim sup
ν∈N,r<kν

1
g(kν)

∑
�≤g(mkν+r) 1[a(n�)=α]

g(mkν + r)/g(kν)

= lim sup
ν∈N,r<kν

kλ2κ1 + κ2 +
1

g(kν)

∑g(mkν+r)
�=g(mkν) 1[a(n�)=α]

m1kλ2 +m2 +
r
kν

.

Here we used the fact that the limN→∞ g(δN)/g(N) converges uniformly to δβ in
any compact interval.

Thus, we can choose νj ∈ N, rj < kνj for j ∈ N, such that νj → ∞ for j → ∞
and

d̄(a(n�), α) = lim
j→∞

kλ2κ1 + κ2 +
1

g(kνj )

∑g(mkνj+rj)

�=g(mkνj )
1[a(n�)=α]

m1kλ2 +m2 +
rj
kνj

.

Next, we aim to use Lemma B.3. Therefore, we consider

lim sup
j→∞

1

g(m1kνj + rj)

∑
�≤g(m1k

νj+rj)

1[a(n�)=α](B.5)

which can be computed analogously to the computation above and equals

lim sup
j→∞

κ1 +
1

g(kνj )

∑g(m1k
νj+rj)

�=g(m1k
νj )

1[a(n�)=α]

m1 +
rj
kνj

.

We are already almost in a position to use Lemma B.3. The only problem is the
difference between

lim sup
j→∞

1

g(kνj )

g(mkνj+rj)∑
�=g(mkνj )

1[a(n�)=α](B.6)

and

lim sup
j→∞

1

g(kνj )

g(m1k
νj+rj)∑

�=g(m1k
νj )

1[a(n�)=α] .(B.7)
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However, both of these sums can be approximated as follows. Fix any λ ∈ N

and let rj = r
(1)
j kνj−λ + r

(2)
j for large enough j. Then we find by Proposition B.6

and Equation (B.3) that (B.7) equals

lim sup
j→∞

∑
m′<r

(1)
j

1

g(kνj )

g(m1k
νj+(m′+1)kνj−λ)−1∑

�=g(m1k
νj+m′kνj−λ)

1[a(n�)=α]

+
1

g(kνj )

g(m1k
νj+rj)−1∑

�=g(m1k
νj+r

(1)
j kνj−λ)

1[a(n�)=α]

=
1

kλ

∑
m′<r

(1)
j

∑
1≤i≤s

di,δ(q0,(m1kλ+m′)k)d(bi(n�), α) +O

(
1

kλ

)

=
1

kλ

∑
m′<r

(1)
j

∑
1≤i≤s

di,δ(q1,(m′)λk)
d(bi(n�), α) + O

(
1

kλ

)
.

An analogous computation shows that (B.6) equals the exact same expression, that
is, they differ by O(k−λ). As λ was arbitrary, this shows that (B.6) equals (B.7).
Moreover, it is clear that (B.5) is bounded from above by d̄(a(n�), α). Thus, we
can finally apply Lemma B.3 which shows, by analogous computations for m(2) =
m1k

2λ2+λ3 +m2(k
λ2 + 1)kλ3 +m1, that

lim sup
j→∞

1

g(m(2)kνj + rj)

∑
�≤g(m(2)kνj+rj)

1[a(n�)=α] ≥ d̄(a(n�), α).

However, it is clear that it cannot be strictly larger than d̄(a(n�), α). Thus, m
(2) ∈

S. A simple induction, just as in [4], can be used to show that m(h) ∈ S for any
h ∈ N. Moreover, we find directly by Proposition B.6 and Equation (B.3) that

lim sup
j→∞

1

g(kνj )

∑
h≤g(m(h)kνj+rj)

1[a(n�)=α]

= khλ2

∑
m′

1<m1

∑
1≤i≤s

di,δ(q0,(m′
1)k)

d(bi(n�), α)

︸ ︷︷ ︸
=:κ′

1∈Q

+
∑
h′<h

kh
′λ2

∑
m′

2<m2

∑
1≤i≤s

d
i,δ(q1,(m′

2)
λ2
k )

d(bi(n�), α)

︸ ︷︷ ︸
=:κ′

2∈Q

+O(1).

In particular

d̄(a(n�), α) =
κ′
1k

hλ2 + κ′
2
khλ2−1
kλ2−1

+O(1)

m1khλ2 +m2
khλ2−1
kλ2−1

+O(1)

=
κ′
1 +

κ′
2

kλ2−1
+O(k−hλ2)

m1 +
m2

kλ2−1
+O(k−hλ2)

.
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As h ∈ N was arbitrary, we find in total

d̄(a(n�), α) =
κ′
1 +

κ′
2

kλ2−1

m1 +
m2

kλ2−1

∈ Q,

which finishes the proof for the upper density. For the lower density we only have
to use the different output function given by τ ′(β) = 1 for β = α and τ ′(α) = 0.
Then the upper density of the corresponding sequence is given by 1 − d(a(n�), α),
which concludes the proof. �
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