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DIAGONALIZATION AND RATIONALIZATION OF
ALGEBRAIC LAURENT SERIES

 B ADAMCZEWSKI  J P. BELL

A. – We prove a quantitative version of a result of Furstenberg [20] and Deligne [14]
stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive
characteristic is algebraic. As a consequence, we obtain that for every prime p the reduction modulo p

of the diagonal of a multivariate algebraic power series f with integer coefficients is an algebraic power
series of degree at most pA and height at most ApA, where A is an effective constant that only depends
on the number of variables, the degree of f and the height of f . This answers a question raised by
Deligne [14].

R. – Nous démontrons une version quantitative d’un résultat de Furstenberg [20] et Deligne
[14] : la diagonale d’une série formelle algébrique de plusieurs variables à coefficients dans un corps de
caractéristique non nulle est une série formelle algébrique d’une variable. Comme conséquence, nous
obtenons que, pour tout nombre premier p, la réduction modulo p de la diagonale d’une série formelle
algébrique de plusieurs variables f à coefficients entiers est une série formelle algébrique de degré au
plus pA et de hauteur au plus ApA, où A est une constante effective ne dépendant que du nombre de
variables, du degré de f et de la hauteur de f . Cela répond à une question soulevée par Deligne [14].

1. Introduction

A very rich interplay between arithmetic, geometry, transcendence and combinatorics
arises in the study of homogeneous linear differential equations and especially of those that
“come from geometry” and the related study of Siegel G-functions (see for instance [4, 16,
22, 30, 31, 32] for discussions that emphasize these different aspects). As an illustration, let
us recall a few of the many classical results attached to the differential equation

t(t− 1)y′′(t) + (2t− 1)y′(t) +
1

4
y(t) = 0 .
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964 B. ADAMCZEWSKI AND J. P. BELL

• This differential equation has (up to multiplication by a scalar) a unique solution that
is holomorphic at the origin. This solution is a classical hypergeometric function

f1(t) := 2F1(1/2, 1/2; 1; t) =
∞∑
n=0

1

24n

Ç
2n

n

å2

tn ∈ Q[[t]] .

• It has also the following integral form:

f1(t) =
2

π

∫ π/2

0

dθ√
1− t sin2 θ

·

In particular,

πf1(t) =

∫ +∞

1

dx√
x(x− 1)(x− t)

is an elliptic integral and a period in the sense of Kontsevich and Zagier [22].

• For nonzero algebraic numbers t in the open unit disc, f1(t) and πf1(t) are both
known to be transcendental (see for instance the complete survey [33]). In particular,
the function f1 is a transcendental function over the field Q(t).

• This differential equation comes from geometry: it is the Picard–Fuchs equation of the
Legendre family of elliptic curves Et defined by the equation y2 = x(x− 1)(x− t).

• The Taylor expansion of f1 has almost integer coefficients. In particular,

f1(16t) =
∞∑
n=0

Ç
2n

n

å2

tn ∈ Z[[t]]

corresponds to a classical generating function in enumerative combinatorics (associ-
ated for instance with the square lattice walks that start and end at origin).

A remarkable result is that, by adding variables, we can see f1 as arising in a natural way
from a much more elementary function, namely a rational function. Indeed, let us consider
the rational function

R(x1, x2, x3, x4) :=
2

2− x1 − x2
· 2

2− x3 − x4
.

Then R can be expanded as

R =
∑

(i1,i2,i3,i4)∈N4

a(i1, i2, i3, i4) xi11 x
i2
2 x

i3
3 x

i4
4

=
∑

(i1,i2,i3,i4)∈N4

2−(i1+i2+i3+i4)

Ç
i1 + i2
i1

åÇ
i3 + i4
i3

å
xi11 x

i2
2 x

i3
3 x

i4
4 .

Collecting all the diagonals terms, we easily get that

∆(R) :=
∞∑
n=0

a(n, n, n, n)tn = f1(t) .
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DIAGONALIZATION AND RATIONALIZATION 965

More formally, given a field K and a multivariate power series

f(x1, . . . , xn) :=
∑

(i1,...,in)∈Nn

a(i1, . . . , in)xi11 · · ·xinn

with coefficients in K, we define the diagonal ∆(f) of f as the one variable power series

∆(f)(t) :=
∞∑
n=0

a(n, . . . , n)tn ∈ K[[t]] .

Another classical example which emphasizes the richness of diagonals is the following. The
power series

f2(t) :=
∞∑
n=0

n∑
k=0

Ç
n

k

å2Ç
n+ k

k

å2

tn ∈ Z[[t]]

is a well-known transcendental G-function that appears in Apéry’s proof of the irrationality
of ζ(3) (see [18]). It is also known to satisfy the Picard–Fuchs equation associated with a one-
parameter family ofK3 surfaces [6]. Furthermore, a simple computation shows that f2 is the
diagonal of the five-variable rational function

1

1− x1
· 1

(1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3
∈ Z[[x1, . . . , x5]] .

These two examples actually reflect a general phenomenon. In the case where K = C,
diagonalization may be nicely visualized thanks to Deligne’s formula [14] via contour inte-
gration over a vanishing cycle. Formalizing this in terms of the Gauss–Manin connection
and De Rham cohomology groups, and using a deep result of Grothendieck, one can prove
that the diagonal of any algebraic power series with algebraic coefficients is a Siegel G-func-
tion that comes from geometry, that is, one which satisfies the Picard–Fuchs type equation
associated with some one-parameter family of algebraic varieties [4, 10]. As claimed by the
Bombieri–Dwork conjecture, this is a picture expected for allG-functions. Diagonals of alge-
braic power series with coefficients in Q thus appear to be a distinguished class of G-func-
tions. Originally introduced in the study of Hadamard products [7], diagonals have since been
studied by many authors and for many different reasons [8, 9, 10, 14, 15, 20, 23, 24, 30, 31].

R 1.1. – The same power series may well arise as the diagonal of different rational
functions, but it is expected that the underlying families of algebraic varieties should be
connected in some way, such as via the existence of some isogenies (see the discussion in [10]).
For instance, f1(t) is also the diagonal of the three-variable rational function

4

4− (x1 + x2)(1 + x3)
,

while f2(t) is also the diagonal of the six-variable rational function

1

(1− x1x2)(1− x3 − x4 − x1x3x4)(1− x5 − x6 − x2x5x6)
·

When K is a field of positive characteristic, the situation is completely different as shown
in the following nice result.
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966 B. ADAMCZEWSKI AND J. P. BELL

D 1.1. – A power series f(x1, . . . , xn) ∈ K[[x1, . . . , xn]] is said to be algebraic
if it is algebraic over the field of rational functionsK(x1, . . . , xn), that is, if there exist polyno-
mials A0, . . . , Am ∈ K[x1, . . . , xn], not all zero, such that

∑m
i=0Ai(x1, . . . , xn)f(x1, . . . , xn)i = 0.

The degree of f is the minimum of the positive integers m for which such a relation holds.
The (naive) height of f is defined as the minimum of the heights of the nonzero polynomials
P (Y ) ∈ K[x1, . . . , xn][Y ] that vanish at f , or equivalently, as the height of the minimal
polynomial of f . The height of a polynomial P (Y ) ∈ K[x1, . . . , xn][Y ] is the maximum of
the total degrees of its coefficients.

T 1.1 (Furstenberg–Deligne). – Let K be a field of positive characteristic. Then
the diagonal of an algebraic power series in K[[x1, . . . , xn]] is algebraic.

Furstenberg [20] first proved the case where f is a rational power series and Deligne [14]
extended this result to algebraic power series by using tools from arithmetic geometry. Some
elementary proofs have then been worked out independently by Denef and Lipshitz [15],
Harase [21], Sharif and Woodcock [28] (see also Salon [26]). The present work is mainly
motivated by the following consequence of Theorem 1.1. Given a prime number p and a
power series f(x) :=

∑∞
n=0 a(n)xn ∈ Z[[x]], we denote by f|p the reduction of f modulo p,

that is

f|p(x) :=
∞∑
n=0

(a(n) mod p)xn ∈ Fp[[x]] .

Theorem 1.1 implies that if f(x1, . . . , xn) ∈ Z[[x1, . . . , xn]] is algebraic over Q(x1, . . . , xn),
then ∆(f)|p is algebraic over Fp(x) for every prime p. In particular, both the transcendental
functions f1 and f2 previously mentioned have the remarkable property of having algebraic
reductions modulo p for every prime p.

It now becomes very natural to ask how the complexity of the algebraic function ∆(f)|p
may increase when p runs along the primes. A common way to measure the complexity
of an algebraic power series is to estimate its degree and its height. Deligne [14] obtained
a first result in this direction by proving that if f(x, y) ∈ Z[[x, y]] is algebraic, then, for
all but finitely many primes p, ∆(f)|p is an algebraic power series of degree at most ApB ,
where A and B do not depend on p but only on geometric quantities associated with f . He
also suggested that a similar bound should hold for the diagonal of algebraic power series
in Z[[x1, . . . , xn]]. Our main aim is to provide the following answer to the question raised by
Deligne.

T 1.2. – Let f(x1, . . . , xn) ∈ Z[[x1, . . . , xn]] be an algebraic power series with
degree at most d and height at most h. Then there exists an effective constant A := A(n, d, h)

depending only on n, d and h, such that ∆(f)|p has degree at most pA and height at most ApA,
for every prime number p.

Theorem 1.2 is derived from the following quantitative version of the Furstenberg–
Deligne theorem.
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DIAGONALIZATION AND RATIONALIZATION 967

T 1.3. – Let K be a field of characteristic p > 0 and let f be an algebraic power
series inK[[x1, . . . , xn]] of degree at most d and height at most h. Then there exists an effective
constant A := A(n, d, h) depending only on n, d and h, such that ∆(f) has degree at most pA

and height at most ApA.

Note that, given a power series f ∈ Z[[x]], the degree and the height of f|p are always at
most equal to those of f . Furthermore, diagonalization and reduction modulo p commute,
that is ∆(f)|p = ∆(f|p). This shows that Theorem 1.3 implies Theorem 1.2.

R 1.2. – Note that if f(x) ∈ Z[[x]] satisfies a nontrivial polynomial relation of
the form P (f) ≡ 0 mod p, then we also have the following nontrivial polynomial relation
Pm(f) ≡ 0 mod Z/pmZ. Thus if a power series is algebraic modulo p with degree at most d
and height at most h, it is also algebraic modulo pm for every positive integer m with degree
at mostmd and height at mostmh. Under the assumption of Theorem 1.2, we thus have that
f|pm is an algebraic power series of degree at most mpA and height at most mApA for every
prime p and every positive integer m.

Theorem 1.3 actually implies a more general statement given in Theorem 1.4 below. We
recall that a ring R is a Jacobson ring if every prime P ∈ Spec(R) is the intersection of the
maximal ideals above it. The general form of the Nullstellensatz states that if S is a Jacobson
ring and R is a finitely generated S-algebra, then R is a Jacobson ring and each maximal
idealM in R has the property thatM′ := S ∩M is a maximal ideal of S and, moreover,
R/M is a finite extension of S/M′ (see [17, Theorem 4.19]). Let R be a finitely generated
Z-algebra and let f(x) :=

∑
n∈N a(n)xn ∈ R[[x]]. Since Z is a Jacobson ring, we have that

R is also a Jacobson ring and every maximal idealM of R has the property that R/M is a
finite field. In particular, ifM is a maximal ideal of R and f(x) =

∑∞
n=0 a(n)xn ∈ R[[x]],

the power series

f|M :=
∞∑
n=0

(a(n) modM)xn

has coefficients in the finite field R/M.

T 1.4. – Let K be a field of characteristic 0 and f(x1, . . . , xn) ∈ K[[x1, . . . , xn]]

be an algebraic power series with degree at most d and height at most h. Then there exists a
finitely generated Z-algebra R ⊆ K such that ∆(f) ∈ R[[x]]. Furthermore, there exists an
explicit constant A := A(n, d, h) depending only on n, d and h, such that, for every maximal
idealM ofR, ∆(f)|M is an algebraic power series of degree at most pA and height at mostApA,
where p denotes the characteristic of the finite field R/M.

R 1.3. – If R is a finitely generated Z-algebra, then for all but finitely many
primes p, the ideal pR is proper and hence there are maximal ideals M such that R/M is a
finite field of characteristic p. This follows from a result of Roquette [25] stating that the units
group of a finitely generated commutative Z-algebra that is a domain is a finitely generated
abelian group, while distinct primes p1, . . . , pk generate a free abelian subgroup of Q∗ of
rank k. It follows that if K is a field of characteristic 0 and f(x1, . . . , xn) ∈ K[[x1, . . . , xn]]

is algebraic then, for almost all primes p, it makes sense to reduce ∆(f) modulo p and
Theorem 1.4 applies.
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968 B. ADAMCZEWSKI AND J. P. BELL

Regarding Theorem 1.2, one may reasonably ask about the strength of an upper bound of
type pA. For instance, it is not too difficult to see that both f1 and f2 have degree at most p− 1

when reduced modulo p. Curiously enough, we do not find any trace in the literature of any
explicit power series f(x) ∈ Z[[x]] known to be the diagonal of an algebraic power series
and for which the ratio deg(f|p)/p is known to be unbounded. In general, it seems non-
trivial, given the diagonal of a rational function, to get a lower bound for the degree of its
reduction modulo p. As a companion to Theorem 1.2, we prove the following result that
provides explicit examples of diagonals of rational functions whose reduction modulo p have
rather high degree.

T 1.5. – Let s be a positive integer and let

Rs :=
6+s−1∑
r=6

1

1− (x1 + · · ·+ xr)
∈ Z[[x1, . . . , x6+s−1]] .

Then ∆(Rs)|p is an algebraic power series of degree at least ps/2 for all but finitely many prime
numbers p.

In particular, for any positive number N , there exists a diagonal of a rational function with
integer coefficients whose reduction modulo p has degree at least pN for all but finitely many
prime numbers p.

This shows that the upper bound obtained in Theorem 1.2 is “qualitatively best possible”.
Of course, we do not claim that the dependence in n, d and h of the huge constantA(n, d, h)

that can be extracted from the proof of Theorem 1.2 is optimal: this is not the case.

The outline of the paper is as follows. In Section 2, we describe the strategy of the proof
of Theorems 1.2, 1.3 and 1.4. In Section 3, we explain why we will have to work with fields
of multivariate Laurent series and not only with ring of multivariate power series. Such
fields are introduced in Section 4 where estimates about height and degree of algebraic
Laurent series are obtained. Sections 5, 6 and 7 are devoted to the proof of Theorem 1.3. We
prove Theorem 1.5 in Section 8. We discuss some connections of our results to enumerative
combinatorics, automata theory and decision problems in Section 9. Finally, we remark
in Section 10 that our proof of Theorem 1.5 incidentally provides a result about algebraic
independence of G-functions satisfying the so-called Lucas property. The latter result is of
independent interest and we plan to return to this question in the future.

2. Strategy of proof

In this section, we briefly describe the main steps of the proof of Theorem 1.3.

Throughout this section, we let p be a prime number, we letK be a field of characteristic p,
and we let

f(x1, . . . , xn) :=
∑

(i1,...,in)∈Nn

a(i1, . . . , in)xi11 · · ·xinn

be a multivariate formal power series with coefficients in K that is algebraic over the field
K(x1, . . . , xn). We assume that f has degree at most d and height at most h. Our goal is to

4 e SÉRIE – TOME 46 – 2013 – No 6



DIAGONALIZATION AND RATIONALIZATION 969

estimate the degree of the diagonal of f with respect to p. Note that without loss of generality,
we can assume thatK is a perfect field, which means that the map x 7→ xp is surjective onK.

Step 1 (Cartier operators). – The first idea is to consider a family of operators from
K[[x1, . . . , xn]] into itself usually referred to as Cartier operators and which are well-known
to be relevant in this framework (see for instance [12, 28, 21, 1]). Let

g(x1, . . . , xn) :=
∑

(i1,...,in)∈Nn

b(i1, . . . , in)xi11 · · ·xinn

be an element of K[[x1, . . . , xn]]. For all j := (j1, . . . , jn) ∈ Σnp := {0, 1, . . . , p − 1}n, we
define the Cartier operator Λj from K[[x1, . . . , xn]] into itself by

Λj(g) :=
∑

(i1,...,in)∈Nn

b(pi1 + j1, . . . , pin + jn)1/pxi11 · · ·xinn .

Let us denote by Ωn, or simply Ω if there is no risk of confusion, the monoid generated by
the Cartier operators under composition.

In Section 5, we show that the degree (resp. the height) of ∆(f) can be bounded by pN

(resp. NpN ) if one is able to find a K-vector space contained in K[[x1, . . . , xn]] of dimen-
sion N , containing f and invariant under the action of Cartier operators. This is the object
of Propositions 5.1 and 5.2. In order to prove Theorem 1.3, it will thus be enough to exhibit
a K-vector space V such that the following hold.

(i) The power series f belong to V .

(ii) The vector space V is invariant under the action of Ω.

(iii) The vector space V has finite dimension N that only depends on n, d and h.

R 2.1. – The more natural way to construct an Ω-invariant K-vector space con-
taining f is to use Ore’s lemma, that is, to start with the existence of a relation of the form

m∑
k=0

Akf
pk

= 0 ,

where theAk’s are polynomials. This classical approach is for instance used in [12, 28, 21, 1].
Furthermore, it can be made explicit in order to bound the dimension of the Ω-invariant
vector space one obtains (see for instance [21, 1]). Unfortunately the bound depends on p.
This attempt to answer Deligne’s question can be found in [21] where Harase proved that
there exists a number A, depending on n, d and h, such that ∆(f) has degree at most pp

A

.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



970 B. ADAMCZEWSKI AND J. P. BELL

Step 2 (The case of rational functions). – In the special case where f is a rational function,
we are actually almost done for it is easy to construct a K-vector space V satisfying (i),
(ii) and (iii). Indeed, if f is a rational power series there exist two polynomials A and B

in K[x1, . . . , xn], with B(0, . . . , 0) = 1, such that f = A/B. By assumption, we can assume
that the total degree of B and A are at most h. Then it is not difficult to show (see Section 7)
that the K-vector space

V := {P (x1, . . . , xn)/B(x1, . . . , xn) | deg(P ) ≤ h} ⊆ K(x1, . . . , xn)

is closed under application of the Cartier operators. Furthermore, V has dimension
(
n+h
n

)
.

We thus infer from Propositions 5.1 and 5.2 that ∆(f) is an algebraic power series of degree

at most p(
n+h

n ) and height at most
(
n+h
n

)
p(

n+h
n ).

Step 3 (Rationalization). – When f is an algebraic irrational power series, the situation is
more subtle. We would like to reduce to the easy case where f is rational. To achieve this,
the idea is to add more variables. Indeed, Denef and Lipshitz [15], following the pioneering
work of Furstenberg [20], showed that every algebraic power series f inK[[x1, . . . , xn]] arises
as the diagonal of a rational power series R in 2n variables. Formally, this means that there
exists

R(x1, . . . , xn, y1, . . . , yn) =
∑

(i1,...,i2n)∈N2n

r(i1, . . . , i2n)xi11 · · ·xinn y
in+1

1 · · · yi2n
n

in K(x1, . . . , xn, y1, . . . , yn), such that

∆1/2(R) :=
∑

(i1,...,in)∈Nn

r(i1, . . . , in, i1, . . . , in)xi11 · · ·xinn = f .

Since ∆(R) = ∆(f), we are almost done, as we could now replace f by R and use the trick
from step 2. The problem we now have is that this rationalization process is not effective.
In particular, it does not give a bound on the height and degree of the rational function R in
terms of the height and the degree of the algebraic power series f we started with. In order to
establish our main result, we need to give an effective version of this procedure. Though our
approach differs from that used by Denef and Lipshitz it nevertheless hinges on Furstenberg’s
original work. The main issue of Section 6 is to prove Theorem 6.1, which shows that one can
explicitly control the height of the rational function R in terms of n, d and h only.

R 2.2. – Actually, we do not exactly obtain an effective version of the theorem of
Dened and Lipshitz. What we really prove in Section 6 is that every algebraic power series
in n variables arises as the diagonal of a rational function in 2n variables which does not
necessarily belong to the ring of power series but to a larger field: the field of multivariate
Laurent series. Elements of such fields also have a kind of generalized power series expansion
(so that we can naturally define their diagonals). Note that these fields naturally appear when
resolving singularities (see [27]). We introduce them in Section 4 and we explain why it is
necessary to use them in the next section.

4 e SÉRIE – TOME 46 – 2013 – No 6
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3. Comments on Furstenberg’s formula

In this section, we explain why we have to work with fields of multivariate Laurent series
in order to describe our effective procedure for rationalization of algebraic power series.

3.1. The one-variable case

Furstenberg [20] gives a very nice way to express a one-variable algebraic power series as
the diagonal of a two-variable rational power series. Though the intuition for his formula
comes from residue calculus in the case where K = C, it remains true for arbitrary fields.

P 3.1 (Furstenberg). – Let K be a field and f(x) ∈ K[[x]] a formal power
series with no constant term. Let us assume that P (x, y) ∈ K[x, y] is a polynomial such that
P (x, f) = 0 and ∂P/∂y(0, 0) 6= 0. Then the rational function

R(x, y) := y2 ∂P

∂y
(xy, y)/P (xy, y)

belongs to K[[x, y]] and ∆(R) = f .

Let us now give an example where Furstenberg’s result does not apply directly. The
algebraic function f(x) = x

√
1− x has a Taylor series expansion given by

f(x) = x− x2/2− x3/8 + · · · ∈ Q[[x]] .

We thus have P (x, f) = 0 where P (x, y) = y2 − x2(1 − x). Notice that we cannot
invoke Proposition 3.1 as ∂P/∂y vanishes at (0, 0). However, there is a natural way to
overcome this problem which always works with one-variable power series. Let us write
f(x) = Q(x) + xig(x), where Q(x) is a polynomial and g(x) is a power series that vanishes
at x = 0. If i is chosen to be the order at x = 0 of the resultant ofP and ∂P/∂ywith respect to
the variable y, then g satisfies the conditions of Proposition 3.1. In our example, the resultant
is (up to a scalar) equal to x2(1− x) and so the order at x = 0 is 2. We thus write

f(x) = x− x2/2 + x2g(x)

and we see that g satisfies the polynomial equation

4xg(x)2 + 4(2− x)g(x) + x = 0 .

Set P1(x, y) := 4xy2 + (8− 4x)y + x. As claimed, one can check that the partial derivative
of P1 with respect to y does not vanish at (0, 0). Applying Furstenberg’s result, we obtain
that g is the diagonal of the rational function

T (x, y) = y2(8xy2 + 8− 4xy)/(4xy3 + 8y − 4xy2 + xy) .

Note that T (x, y) can be rewritten as

1

8
·
(
8xy3 + 8y − 4xy2

) (
1− xy/2− xy2/2 + x/8

)−1
,

which shows that it can be expanded as a power series. Finally, we get that f is the diagonal
of the rational power series

R(x, y) := xy − x2y2/2 + x2y2T (x, y) ∈ Q[[x, y]] .
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972 B. ADAMCZEWSKI AND J. P. BELL

3.2. A two-variable example

In the case where f is a multivariate algebraic power series, we still would like to use
Furstenberg’s formula, but new difficulties appear. Let us now consider a two-variable
example to see why the previous trick could fail in this case. Consider the algebraic power
series

f(x, y) = (y + 2x)
√

1− 3y .

It has the following power series expansion:

f(x, y) = y + 2x− 3

2
y2 − 3yx+ · · · ∈ Q[[x, y]] .

Clearly, f satisfies the polynomial equation P (x, y, z) = 0 where

P (x, y, z) = z2 − y2 + 3y3 − 4yx+ 12y2x− 4x2 + 12yx2 .

Unfortunately, we cannot invoke the natural extension of Furstenberg’s formula in this case
as the partial derivative of P with respect to z vanishes at the origin.

R 3.1. – Denef and Lipschitz [15] get around this problem by noting that, given a
field K, the ring of algebraic power series in K[[x1, . . . , xn]] is the Henselization of the local
ringR = K[x1, . . . , xn]M , whereM is the maximal ideal (x1, . . . , xn). The Henselization is a
direct limit of finite étale extensions and hence the ringR[f ], formed by adjoining f toR, lies
in a finite étale extensionB ofR. BecauseB is a locally standard étale extension, it is possible
to find a generator φ for the localization of B at a maximal ideal of B above M such that
φ satisfies the conditions needed in order to apply Furstenberg’s formula. Moreover, f lies
inB and hence it can be expressed as a R-linear combination of powers of φ. This is enough
to express f as the diagonal of a rational power series inK[[x1, . . . , xn, y1, . . . , yn]]. However,
as previously mentioned, this argument is not effective.

R 3.2. – All one really needs is to be able to make the ringK[x, y, z]/(P ) smooth
at the origin. While there are supposedly “effective” ways of resolving singularities (at least in
characteristic zero), they are rather sophisticated and it is not clear that these methods apply
in positive characteristic. In the case that one is dealing with a one-dimensional variety, it is
quite simple, as evidenced by the one-variable example above. The solution is to reduce to
a one-dimensional example, by localizing K[x, y, z]/(P ) at the set of nonzero polynomials
in x and embedding this in the one-dimensional ring K((x))[y, z]/(P ). This seems to be the
simplest way to make things effective.

Let us come back to our example and try to apply the approach outlined in the previous
remark. Let L := Q((x)) denote the field of Laurent series with rational coefficients and
consider P as a polynomial in L[y, z] and f as a power series in L[[y]]. Note that f is no
longer zero at (y, z) = (0, 0), as it now has constant term f0(x) = 2x ∈ L. Thus we must
write

f(x, y) = 2x+ g(x, y) ,

where g ∈ L[[y]] vanishes at y = 0 and satisfies the polynomial equation Q(x, y, g) = 0,
where

Q(x, y, z) = z2 + 4xz + y(12x2 − 4x+ 12xy − y + 3y2) .
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Note that in general f0 will be an algebraic power series in one-variable and by the algorithm
described in 3.1 it can be effectively written as the diagonal of a two-variable rational power
series. Hence we may restrict our attention to g.

The partial derivative ofQwith respect to z is 2z+4x. When we set y and z equal to zero,
we obtain 4x 6= 0. We can thus use Furstenberg’s formula if we work in L[[y, z]]. Set

R(x, y, z) := z2 ∂Q

∂z
(x, yz, z)/Q(x, yz, z) ∈ Q(x, y, z) .

We thus have

R(x, y, z) =
z(2z + 4x)

z + 4x+ y(12x2 − 4x+ 12xyz − yz + 3y2z2)
·

Note that R cannot be expanded as a power series and thus does not belong to Q[[x, y, z]].
However, it turns out that it has a generalized power series expansion as an element of the
bigger field Q〈〈x, y, z〉〉 (see Section 4 for a definition). Furthermore, g turns out to be the
diagonal of R in this bigger field. Finally, we can show that f(x, y) is the diagonal of the
4-variable rational function

2xt+
z(2z + 4xt)

z + 4xt+ y(12x2t2 − 4xt+ 12xyzt− yz + 3y2z2)
·

Again, this rational function belongs to Q〈〈x, y, z, t〉〉 but not to Q[[x, y, z, t]].

R 3.3. – In general, it may happen that the partial derivative of Q with respect
to z vanishes at (y, z) = (0, 0). In that case, we compute the resultant of Q and ∂Q/∂z with
respect to the variable z. It will be of the form yaS for some S that is a unit in L[[y]]. We can
then use the algorithm given above in the one-variable case, and rewrite

g(x, y) = yg0(x) + y2g1(x) + · · ·+ yaga(x) + yah(x, y),

where g0, . . . , ga are one-variable algebraic power series and h ∈ L[[y]] vanishes at y = 0.
Again, we can effectively write g0, . . . , ga as diagonals using the one-variable argument. So
we may restrict our attention to h. In this case, we find, by the same reasoning as in the
one-variable case, that h satisfies the conditions of Proposition 3.1 and so we can put all
the information together to finally express f as a diagonal of a generalized Laurent series
in Q〈〈x, y, z, t〉〉. In the general case where f is a multivariate algebraic power series with
coefficients in an arbitrary field, we argue by induction and use the same ideas combining
resultants and Furstenberg’s formula.

4. Fields of multivariate Laurent series

In this section, we introduce fields of Laurent series associated with a vector of indeter-
minates following the presentation of Sathaye [27].
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4.1. Fields of Laurent series

LetK be a field. We first recall that the field of Laurent series associated with the indeter-
minate x is as usual defined by

K((x)) :=

{ ∞∑
i=i0

a(i)xi | i0 ∈ Z and a(i) ∈ K

}
.

We then define recursively the field of multivariate Laurent series associated with the vector
of indeterminates x = (x1, . . . , xn) by

K〈〈x〉〉 := K〈〈(x1, x2, . . . , xn−1)〉〉((xn)) .

In order to simplify the notation, we will write in the sequel K〈〈x1, x2, . . . , xn〉〉 instead
of K〈〈(x1, x2, . . . , xn)〉〉.

Warning. We are aware that the notation K〈〈x1, x2, . . . , xn〉〉 is used in formal language the-
ory to denote the ring of noncommutative formal power series in the variables x1, x2, . . . , xn.
However, since this paper deals with commutative variables only, we hope that this will not
lead to any kind of confusion.

Let us give a more concrete description of this field. We first define a pure lexicographic
ordering≺ on the monomials of the form xi11 · · ·xinn with (i1, . . . , in) ∈ Zn by declaring that

x1 ≺ x2 ≺ · · · ≺ xn .

This induces a natural order on Zn, which, by abuse of notation, we denote by ≺ so that

(i1, . . . , in) ≺ (j1, . . . , jn)

if these n-tuples are distinct and if the largest index k such that ik 6= jk satisfies ik < jk. Then
it can be shown that the field K〈〈x〉〉 can be described as the collection of all formal series

f(x1, . . . , xn) =
∑

(i1,...,in)∈Zn

a(i1, . . . , in)xi11 · · ·xinn

whose support is well-ordered, which means that it contains no infinite decreasing subse-
quence. We recall that the support of f is defined by

Supp(f) := {(i1, . . . , in) ∈ Zn | a(i1, . . . , in) 6= 0} .

D 4.1. – Note that the valuation onK[x1, . . . , xn] induced by the prime ideal
(xn) extends to a valuation on K〈〈x1, . . . , xn〉〉. We let νn denote this valuation and we
letK〈〈x1, . . . , xn−1〉〉[[xn]] denote the subring ofK〈〈x1, . . . , xn〉〉 consisting of all elements r
with νn(r) ≥ 0.
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4.2. Algebraic Laurent series

Given an n-tuple of natural numbers (i1, . . . , in) and indeterminates x1, . . . , xn, the
degree of the monomial xi11 · · ·xinn is the nonnegative integer i1 + · · ·+ id. Given a polyno-
mial P in K[x1, . . . , xn], the degree of P , degP , is defined as the maximum of the degrees
of the monomials appearing in P with nonzero coefficient. A central notion in this paper is
that of algebraic multivariate Laurent series, that is elements of K〈〈x1, . . . , xn〉〉 which are
algebraic over the field of rational functions K(x1, . . . , xn).

D 4.2. – We say that f(x1, . . . , xn) ∈ K〈〈x1, . . . , xn〉〉 is algebraic if it is
algebraic over the field of rational functionsK(x1, . . . , xn), that is, if there exist polynomials
A0, . . . , Am ∈ K[x1, . . . , xn], not all zero, such that

m∑
i=0

Ai(x1, . . . , xn)f(x1, . . . , xn)i = 0 .

The degree of f is defined as the minimum of the positive integerm for which such a relation
holds.

Warning. We have introduced two different notions: the degree of a polynomial and the
degree of an algebraic function. Since polynomials are also algebraic functions we have to be
careful. For instance the polynomial x2y3 ∈ K[x, y] has degree 5 but viewed as an element
of K[[x, y]] it is an algebraic power series of degree 1. In the sequel, we have tried to avoid
this kind of confusion.

D 4.3. – Given an algebraic Laurent series f(x1, . . . , xn) ∈ K〈〈x1, . . . , xn〉〉,
the set

A(f) := {P (Y ) ∈ K[x1, . . . , xn][Y ] | P (f) = 0}
is a principal ideal ofK[x1, . . . , xn][Y ](*). The minimal polynomial of f is then defined (up to
multiplication by a nonzero element of K) as a generator of A(f).

D 4.4. – Given a polynomial P (Y ) ∈ K[x1, . . . , xn][Y ], we define the height
of P , denoted by H(P ), as the maximum of the total degrees of the coefficients of P . The
(naive) height of an algebraic power series

f(x1, . . . , xn) =
∑
i∈Zn

a(i1, . . . , in)xi11 · · ·xinn ∈ K〈〈x1, . . . , xn〉〉

is then defined as the height of its minimal polynomial, or equivalently, as the minimum of
the heights of the nonzero polynomials P (Y ) ∈ K[x1, . . . , xn][Y ] that vanish at f .

R 4.1. – At first sight, one may be disturbed by our last claim. Indeed, it is well-
known that the height of the minimal polynomial of an algebraic number α is not necessarily
equal to the minimum of the heights of the nonzero polynomials that vanish at α. For
instance, the cyclotomic polynomial Φ105 has height equal to 2 while it divides X105 − 1

(which has height only one). We thus provide a short proof of our claim. Let f(x1, . . . , xn) ∈
K〈〈x1, . . . , xn〉〉 be an algebraic power series. Let P (Y ) ∈ K[x1, . . . , xn][Y ] denote the

(*) This follows from the fact that the ring K[x1, . . . , xn] is a factorial ring (or equivalently, a unique factorization
domain).
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minimal polynomial of f and let Q(Y ) ∈ K[x1, . . . , xn][Y ] denote another polynomial
that vanishes at f . Then there exists a polynomial R(Y ) ∈ K[x1, . . . , xn][Y ] such that
Q(Y ) = P (Y )R(Y ). Now, looking at this equality in K[Y ][x1, . . . , xn], we get that H(Q) is
just the total degree (in x1, . . . , xn) of PR, which is just the sum of the total degrees (in
x1, . . . , xn) of P and R. In other words, with this notion of height, we have that H(PR) =

H(P ) + H(R) for any pair of nonzero polynomials (P,R). This gives H(Q) ≥ H(P ), as
desired.

R 4.2. – Since K〈〈x1, . . . , xn〉〉 is a field, we see that both A, the field of
rational functions K(x1, . . . , xn), and B, the field of fractions of algebraic power series
inK[[x1, . . . , xn]], embed inK〈〈x1, . . . , xn〉〉. Under these embeddings, we call the elements
of A the rational Laurent power series and we call those of B the algebraic Laurent power
series.

4.3. Estimates about height and degree of algebraic Laurent series

We now collect a few estimates about height and degree of algebraic Laurent series that
will be useful for proving our main result.

L 4.1. – Let m and n be natural numbers and let d1, . . . , dm and h1, . . . , hm be
integers. Suppose that f1, . . . , fm ∈ K〈〈x1, . . . , xn〉〉 are m algebraic Laurent power series
such that fi has degree at most di and height at most hi for each i. Suppose thatA1, . . . , Am are
rational functions inK(x1, . . . , xn) whose numerators and denominators have degrees bounded
above by some constant d. Then the following hold.

(i) The algebraic Laurent seriesA1f1 + · · ·+Amfm has degree at most d1 · · · dm and height
at most m(d1 · · · dm)(max(h1, . . . , hm) + d).

(ii) The algebraic Laurent series f1 · · · fm has degree at most d1 · · · dm and height at most
m(d1 · · · dm) max(h1, . . . , hm).

Proof. – Let V denote the K(x1, . . . , xn)-vector space spanned by all monomials

{f i11 · · · f imm | 0 ≤ i1 < d1, . . . , 0 ≤ im < dm}.

Then V is aK(x1, . . . , xn)-algebra that has dimension at most d1 · · · dm overK(x1, . . . , xm).
Note that A1f1 + · · ·+Amfm induces an endomorphism φ of V by left multiplication.

Let us suppose that fi has degree ei ≤ di over K(x1, . . . , xn) with minimal polynomial∑ei

k=0Qi,kY
i ∈ K[x1, . . . , xn][Y ]. Then the field extension Ki = K(x1, . . . , xn)(fi) is a

K(x1, . . . , xn)-vector space of dimension ei and {fki | 0 ≤ k < ei} forms a basis of this
vector space.

Let
R = K1 ⊗K2 ⊗ · · · ⊗Km ,

where the tensor products are taken over K(x1, . . . , xn). Then R is a K(x1, . . . , xn)-vector
space of dimension e1 · · · em and¶

f j11 ⊗ f
j2
2 ⊗ · · · ⊗ f jmm | 0 ≤ ji < ei for i = 1, . . . ,m

©
forms a basis of this vector space.
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We note thatR is aK(x1, . . . , xn)-algebra, since eachKi is aK(x1, . . . , xm)-algebra. We
regardR as a module over itself. We then have a surjectiveK(x1, . . . , xn)-algebra homomor-
phism g : R→ V given by a1 ⊗ a2 ⊗ · · · ⊗ am 7→ a1a2 · · · am.

Next, we let gi be the element 1 ⊗ · · · ⊗ fi ⊗ · · · ⊗ 1 in R, where we put 1s in every slot
except for the i-th slot, where we put fi. Now, we can lift φ to anK(x1, . . . , xn)-vector space
endomorphism Φ of R defined by

Φ(r) = (A1g1 + · · ·+Amgm) · r ,

for every r in R. Note that we have

(4.1) g(Φ(r)) = φ(g(r)),

for all r ∈ R. We infer from (4.1) that the characteristic polynomialP of Φ will also annihilate
the endomorphism φ, since g is surjective.

Let Ri be a nonzero polynomial in K[x1, . . . , xm] of degree at most d with the property
that AiRi is also a polynomial. Let H := max{h1, . . . , hm}. Observe that

(A1g1 + · · ·+Amgm) · (f j11 ⊗ f
j2
2 · · · ⊗ f jmm )

is a K(x1, . . . , xn)-linear combination of tensors f j11 ⊗ f j22 · · · ⊗ f jmm with numerators
and denominators of degrees bounded by H + d and each denominator dividing Qi,ei

Ri
for some i (note that by definition Qi,ei

is nonzero). Thus, using a common denomina-
tor Q1,e1 · · ·Qm,em

R1 · · ·Rm, we see that the endomorphism Φ can be represented by an
e1 · · · em×e1 · · · em matrix whose entries are rational functions with a common denominator
Q1,e1 · · ·Qm,em

R1 · · ·Rm and with numerators of degree at most m(H + d).

This gives that P , the characteristic polynomial of Φ, has height at most
(e1 · · · em)(H + d)m (and of course degree equal to e1 · · · em). It follows that
A1f1 + · · · + Amfm has height at most m(d1 · · · dm)(H + d) and degree at most d1 · · · dm,
as required.

A similar argument in which we lift ψ, the endomorphism given by left multiplica-
tion by f1 . . . fm, gives that f1 · · · fm has degree at most d1 · · · dm and height at most
m(d1 · · · dm)H.

L 4.2. – Let f ∈ K〈〈x1, . . . , xn〉〉 be algebraic of degree d and height at most h.
Then |νn(f)| ≤ h and x−νn(f)

n f is algebraic of degree d and height at most h(d+ 1).

Proof. – Let j := νn(f). By assumption f satisfies a non-trivial polynomial equation of
the form Pdf

d + · · · + P1f + P0 = 0 with PdP0 6= 0 and with the degrees of P0, . . . , Pd
bounded above by h. Then g := x−jn f satisfies a polynomial equation of the form

(4.2) Pdx
−jd
n gd + · · ·+ P1x

−j
n g + P0 = 0 .

If |j| > h then {νn(Pix
−ji
n gi) | 0 ≤ i ≤ d} are all distinct, and hence Equation (4.2) cannot

hold, a contradiction. By multiplying by an appropriate power of xn, we see that the height
of x−jn f is at most dj + h ≤ h(d+ 1).
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Note that, by definition of the field K〈〈x1, . . . , xn〉〉, every f ∈ K〈〈x1, . . . , xn〉〉 has a
unique infinite decomposition

(4.3) f =
∞∑

i=νn(f)

fix
i
n ,

where fi ∈ K〈〈x1, . . . , xn−1〉〉 and fνn(f) 6= 0. For every nonnegative integer k, we set

(4.4) gνn(f)+k := x−ν(f)−k
n

Ñ
f −

ν(f)+k∑
i=νn(f)

fix
i
n

é
.

For every integer r ≥ νn(f), we thus have the following decomposition:

(4.5) f =
r∑

i=νn(f)

fix
i
n + xrngr .

L 4.3. – Let d and h be natural numbers and let f be an algebraic element
of K〈〈x1, . . . , xn〉〉 of degree at most d and height at most h over K(x1, . . . , xn). Then,
for every nonnegative integer k, the following hold.

(i) The Laurent series fνn(f)+k is algebraic over K(x1, . . . xn−1) of degree at most d2k

and
height at most 8k+1d2k+2

h.

(ii) The Laurent series gνn(f)+k is algebraic overK(x1, . . . , xn) of degree at most d2k+1

and
height at most 8k+1d3·2k+1

h.

Proof. – We prove this by induction on k. We first assume that k = 0. Set j := νn(f) and
g = x−jn f . By Lemma 4.2, g satisfies a polynomial equation of the form

d∑
i=0

Qig
i = 0

where theQi have degree at most h(d+1) and such that νn(Qi) = 0 for some i. Let us denote
by φ the canonical homomorphism from K〈〈x1, . . . , xn−1〉〉[[xn]] to K〈〈x1, . . . , xn−1〉〉
given by xn 7→ 0. Then

0 = φ

(
d∑
i=0

Qig
i

)
=

d∑
i=1

φ(Qi)f
i
j

and so fj is an algebraic Laurent series overK(x1, . . . , xn−1) of degree at most d and height
at most h(d + 1). Also by Equation (4.4) we have that gj = fx−jn − fj . Lemma 4.1
implies that gj is algebraic over K(x1, . . . , xn) with degree at most d2 and height at most
2d2(h(d+ 1) + 1) ≤ 8d6h. This establishes the case k = 0.

Now suppose that the claim is true for all natural numbers less than k, for some nonnega-
tive integer k. Let us first note that fνn(f)+k+1 = φ(gνn(f)+k/xn). Using Lemma 4.2, we get
that

(4.6) deg fνn(f)+k+1 ≤ deg gνn(f)+k

and

(4.7) h(fνn(f)+k+1) ≤ (deg gνn(f)+k + 1)h(gνn(f)+k) .
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From these relations we deduce by induction that fνn(f)+k+1 has degree at most d2k+1

and

height at most (d2k+1

+ 1)(8k+1d3·2k+1

h) ≤ 8k+2d2k+3

h, as required.
On the other hand, we have the relation

gνn(f)+k+1 = x−1
n gνn(f)+k − fνn(f)+k+1 .

By Lemma 4.1 and Inequalities (4.6) and (4.7), we obtain that

(4.8) deg gνn(f)+k+1 ≤ deg gνn(f)+k · deg fνn(f)+k+1 ≤ (deg gνn(f)+k)2

and
h(gνn(f)+k+1) ≤ 2(deg g2

νn(f)+k) · (max(h(fνn+k+1), h(gνn(f)+k)) + 1) ,

which gives

(4.9) h(gνn(f)+k+1) ≤ 8(deg gνn(f)+k)3h(gνn(f)+k) .

From Equations (4.8) and (4.9), it follows directly by induction that gνn(f)+k has degree at

most d2k+1

and height at most 8k+1d3·2k+1

h, as required. This ends the proof.

5. Cartier operators and diagonals

Throughout this section K will denote a perfect field of positive characteristic p. We
recall that a field K of characteristic p is perfect if the map x 7→ xp is surjective on K.
We introduce a family of operators from K〈〈x1, . . . , xn〉〉 into itself, usually referred to
as Cartier operators. With these operators is associated a Frobenius-type decomposition
given by Equation (5.10) and which is well-known to be relevant in this framework. We
show that it is possible to bound the degree and the height of the diagonal ∆(f) of a
Laurent series f inK〈〈x1, . . . , xn〉〉 by finding a finite-dimensionalK-vector space contained
in K〈〈x1, . . . , xn〉〉, containing f and invariant under the action of Cartier operators.

Let

f(x1, . . . , xn) :=
∑

(i1,...,in)∈Zn

a(i1, . . . , in)xi11 · · ·xinn ∈ K〈〈x1, . . . , xn〉〉 .

D 5.1. – For all j := (j1, . . . , jn) ∈ Σnp := {0, 1, . . . , p − 1}n, we define the
Cartier operator Λj from K〈〈x1, . . . , xn〉〉 into itself by

Λj(f) :=
∑

(i1,...,in)∈Zn

a(pi1 + j1, . . . , pin + jn)1/pxi11 · · ·xinn .

Note that the support of Λj(f) is well-ordered and thus Λj(f) ∈ K〈〈x1, . . . , xn〉〉. We
have the following useful decomposition:

(5.10) f =
∑
j∈Σn

p

Λj(f)p xj11 · · ·xjnn .

Let us denote by Ωn, or simply Ω if there is no risk of confusion, the monoid generated
by the Cartier operators under composition. We then prove the following result.

P 5.1. – LetW be aK-vector space of dimension d included inK〈〈x1, . . . , xn〉〉
and invariant under the action of Ω. Then for every f ∈W , the Laurent series ∆(f) ∈ K((x))

is algebraic over K(x) with degree at most pd.
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Proof. – Let f(x1, . . . , xn) be a Laurent series in W . Let us first remark that ∆ is a
K-linear operator. The set

∆(W ) := {∆(g) | g ∈W}
is thus aK-vector subspace ofK[[x]] whose dimension is at most equal to d. Let r, 1 ≤ r ≤ d,
denote the dimension of this vector space. Let U denote the K(x)-submodule of K((x))

generated by ∆(W ). Let s denote the dimension of U as a K(x)-vector space. Then s ≤ r.
Let f1(x), . . . , fs(x) ∈ ∆(W ) be a basis of U as a K(x)-vector space. For every integer
i ∈ {0, . . . , p− 1} and every g(x1, . . . , xn) ∈ K〈〈x1, . . . , xn〉〉, we have that

Λi(∆(g)) = ∆(Λ(i,...,i)(g)) .

Thus ∆(W ) is invariant under the action of Ω1. Using, for i ∈ {1, . . . , s}, the Frobenius
decomposition

fi(x) =

p−1∑
`=0

x`Λ`(fi(x))p ,

we get that

fi(x) =

p−1∑
`=0

x`
s∑
j=1

ri,j,`(x)fj(x)p ,

for some rational functions ri,j,`(x) in K(x). There thus exist rational functions Ri,j(x),
(i, j) ∈ {1, . . . , s}2, so that

fi(x) =
s∑
j=1

Ri,j(x)fj(x)p .

Let v(x) = [f1(x), . . . , fs(x)]T and let

M(x) := (Ri,j(x)) .

Then we have v(x) = M(x)v(xp).

We claim that the matrixM(x) belongs to GLs(K(x)). Indeed, ifM(x) were not invertible
there would exist a nonzero row vector (T1(x), . . . , Ts(x)) ∈ K(x)s such that

(T1(x), . . . , Ts(x))M(x) = 0 .

Right-multiplication by v(xp) then gives
s∑
i=1

Ti(x)fi(x) = 0

and we then have a contradiction, as f1, . . . , fs is a basis of the K(x)-vector space U . By
inverting M , we immediately obtain that for every integer i, 1 ≤ i ≤ s, the Laurent series fpi
belongs to the K(x)-vector space generated by f1, . . . , fs. Then the field

L := K(x)(f1, . . . , fs)

is a finite dimensional K(x)-vector space spanned by the elements of the set¶
f i11 · · · f iss | 0 ≤ i1, . . . , is < p

©
.

In particular we have that [L : K(x)] ≤ ps ≤ pd. Now, since f ∈ W , we have ∆(f) ∈ L and
thus [K(x)(∆(f)) : K(x)] ≤ pd. This ends the proof.
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We complete Proposition 5.1 by showing that, under the previous assumptions, it is also
possible to bound the height of the Laurent series ∆(f).

P 5.2. – LetW be aK-vector space of dimension d included inK〈〈x1, . . . , xn〉〉
and invariant under the action of Ω. Then for every f ∈W , the Laurent series ∆(f) ∈ K((x))

is algebraic over K(x) with height at most dpd.

Proof. – Let f ∈ W . We already showed in the proof of Proposition 5.1 that there is a
K-vector space ∆(W ) of dimension r ≤ d that is invariant under the action of the Cartier
operators and that contains ∆(f). Let {g1, . . . , gr} be a K-basis of ∆(W ) with g1 = ∆(f).
Then we have

Λi(gj(x)) =
r∑

k=1

c
(k)
i,j gk(x)

for some constants c(k)
i,j in K. Furthermore, we have that

gj(x) =

p−1∑
i=0

xiΛi(gj)(x
p) .

We thus see that each gj(x) can be expressed as a polynomial-linear combination of
g1(xp), . . . , gr(x

p) in which the polynomials have degrees uniformly bounded by p − 1.
In other words, there is a matrix-valued function A(x) ∈ Mr(K[x]), in which every entry
has degree at most p− 1, such that

v(x) = A(x)v(xp) ,

where v(x) := [g1(x), . . . , gr(x)]T .

Thus for i ∈ {0, 1, . . . , r}, we have

v(xp
i

) = A(xp
i

)A(xp
i+1

) · · ·A(xp
r−1

)v(xp
r

) .

Let e1 denote the r × 1 column vector that has a one in the first coordinate and zeros
everywhere else.

Then

eT
1 , e

T
1 A(xp

r−1

), eT
1 A(xp

r−2

)A(xp
r−1

) . . . , eT
1 A(x)A(xp) · · ·A(xp

r−1

)

are r+1 vectors of length r with polynomial coordinates. The coordinates of each vector are
polynomials of degree at most pr−1, and so by Lemma 5.1 there is a non-trivial dependence
relation

Qr(x)eT1 + · · ·+Q0(x)eT1 A(x)A(xp) · · ·A(xp
r−1

) = 0 ,

with each Qi(x) having degree at most r(pr − 1). Right-multiplication by v(xp
r

) then gives

Qr(x)eT1 v(xp
r

) + · · ·+Q0(x)eT1 A(x)A(xp) · · ·A(xp
r−1

)v(xp
r

) = 0 ,

that is,
r∑
i=0

Qi(x)g1(x)p
i

= 0 .

Since g1 = ∆(f) and r ≤ d, we get the required bound on the height.
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L 5.1. – Let K be a field and let r and H be natural numbers. Suppose that
w0, . . . ,wr are r + 1 row vectors in K[x]r whose coordinates all have degree at most H. Then
there exists a non-trivial dependence relation

r∑
i=0

Qi(x)wi = 0,

in which Q0(x), . . . , Qr(x) are polynomials in K[x] whose degrees are all bounded by Hr.

Proof. – Let j be the largest natural number for which w0, . . . ,wj are linearly indepen-
dent. Then j < r. Since some (j + 1) × (j + 1) minor of the (j + 1) × r matrix whose
ith row is wi is nonzero, it is no loss of generality to assume that the “truncated” row vectors
obtained by taking the first j+1 coordinates of each of w0, . . . ,wj are linearly independent.
Let w′0, . . . ,w

′
r denote the truncated vectors of length j + 1.

Using Cramer’s rule, we see that there is a non-trivial solution [P0, . . . , Pj+1] to the vector
equation

j+1∑
i=0

Pi(x)w′i = 0,

in which Pj+1 = −1 and for k ≤ j, Pk is given by a ratio of two j × j determinants; the
denominator is the determinant of the (j + 1) × (j + 1) matrix whose ith row is w′i and
the numerator is the determinant of the (j + 1)× (j + 1) matrix whose ith row is w′i unless
i = k, in which case the row is given by w′j+1. We note that the degrees of the numerators and
of the common denominator are all bounded by H(j + 1) ≤ Hr. By clearing the common
denominator, we get a polynomial solution

j+1∑
i=0

Qi(x)w′i = 0,

in which the Qi have degrees uniformly bounded by Hr. By construction,

j+1∑
i=0

Qi(x)wi = 0,

and the result now follows by taking Qk(x) = 0 for j + 2 ≤ k ≤ r.

6. Rationalization of algebraic Laurent series

Throughout this section,K will denote an arbitrary field. It is known that every algebraic
power series inK[[x1, . . . , xn]] arises as the diagonal of a rational power series in 2n variables.
This result is due to Denef and Lipshitz [15] who used an idea of Furstenberg [20]. It is
ineffective in the sense that it does not say how large the height of the rational function can be
with respect to the height and degree of the algebraic power series we start with. In order to
establish our main result, we need to prove an effective version of this rationalization process
for algebraic Laurent series in K〈〈x1, . . . , xn〉〉. Though our approach differs from the one
of Denef and Lipshitz it is also based on Furstenberg’s pioneering work.
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Let us first recall some notation. Given a Laurent series in 2n variables

f(x1, . . . , x2n) :=
∑

(i1,...,i2n)∈Z2n

a(i1, . . . , i2n)xi11 · · ·x
i2n
2n ∈ K〈〈x1, . . . , x2n〉〉 ,

we define the diagonal operator ∆1/2 from K〈〈x1, . . . , x2n〉〉 into K〈〈x1, . . . , xn〉〉 by

∆1/2(f) :=
∑

(i1,...,in)∈Zn

a(i1, . . . , in, i1, . . . , in)xi11 · · ·xinn .

We are now ready to state the main result of this section.

T 6.1. – Let d and h be natural numbers and let f(x1, . . . , xn) ∈ K〈〈x1, . . . , xn〉〉
be an algebraic Laurent series of degree d and height at most h. Then there is an explicit
number N(n, d, h) depending only on n, d and h, and a rational Laurent power series
R ∈ K〈〈x1, . . . , xn, y1, . . . yn〉〉 of height at most N(n, d, h) such that f = ∆1/2(R).

In order to prove Theorem 6.1, we will prove three auxiliary results. We also need to
introduce a third type of diagonal operators. Given a Laurent series in n+ 1 variables

f(x1, . . . , xn, y) :=
∑

(i1,...,in+1)∈Zn+1

a(i1, . . . , in+1)xi11 · · ·xinn yin+1

in K〈〈x1, . . . , xn, y〉〉, we define the diagonal operator ∆xn,y from K〈〈x1, . . . , xn, y〉〉 into
K〈〈x1, . . . , xn〉〉 by

∆xn,y(f) :=
∑

(i1,...,in)∈Zn

a(i1, . . . , in, in)xi11 · · ·xinn .

Our first auxiliary result is essentially (an effective version of) Furstenberg’s lemma. We
include a proof here for completeness.

L 6.1. – Let P (xn, y) ∈ K〈〈x1, . . . , xn−1〉〉[xn, y] be a polynomial of degree at
most d in xn and y and suppose that all coefficients appearing in P are algebraic elements
ofK〈〈x1, . . . , xn−1〉〉 of degree at most d0 and height at most h. Suppose that f(x1, . . . , xn) ∈
K〈〈x1, . . . , xn〉〉 is a solution to the equation P (xn, f) = 0 with νn(f) ≥ 1 and that ∂P/∂y
does not belong to the ideal (xn, y)K〈〈x1, . . . , xn−1〉〉[xn, y]. Then

R(xn, y) := y2 ∂P

∂y
(xny, y)/P (xny, y)

is a rational function of the variables xn and y that belongs to K〈〈x1, . . . , xn−1〉〉[[xn, y]]

and such that

∆xn,y (R)) = f .

Furthermore, the numerator and denominator of R have total degree at most 2d+ 1 in xn and
y and their coefficients are algebraic elements of K〈〈x1, . . . , xn−1〉〉 of degree at most d0 and
height at most h.
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Proof. – We first observe that our assumptions on P ensure that both polynomials
y2∂P/∂y(xny, y) and P (xny, y) have total degree at most 2d+ 1 in xn and y. It also implies
that the coefficients of these polynomials are algebraic elements of K〈〈x1, . . . , xn−1〉〉 of
degree at most d0 and height at most h.

Since y = f(x1, . . . , xn) is a solution to the equation P (xn, y) = 0, we see that

(6.11) P (xn, y) = (y − f(x1, . . . , xn))Q(x1, . . . , xn, y) ,

for some nonzero polynomial Q ∈ K〈〈x1, . . . xn−1〉〉[[xn]][y]. Differentiating (6.11) with
respect to y, we get that

(6.12)
∂P

∂y
= Q+ (y − f)

∂Q

∂y
·

Looking modulo the prime ideal (xn, y) and using the fact that ∂P/∂y does not vanish
at (xn, y) = (0, 0), we infer from (6.12) that Q is nonzero when evaluated at (xn, y) = (0, 0).
Hence Q is a unit in the power series ring K〈〈x1, . . . xn−1〉〉[[xn, y]]. Then Equations (6.11)
and (6.12) give

1

P
· ∂P
∂y

=
1

y − f
+

1

Q
· ∂Q
∂y
·

Thus

R(xn, y) =
y2

P (x1, . . . , xn−1, xny, y)
· ∂P
∂y

(x1, . . . , xn−1, xny, y)

=
y2

y − f(x1, . . . , xn−1, xny)
+

y2

Q(x1, . . . , xn−1, xny, y)
· ∂Q
∂y

(x1, . . . , xn−1, xny, y)

=
y

1− y−1f(x1, . . . , xn−1, xny)
+

y2

Q(x1, . . . , xn−1, xny, y)
· ∂Q
∂y

(x1, . . . , xn−1, xny, y) .

Furthermore, since νn(f) ≥ 1, we have that 1 − y−1f(x1, . . . , xn−1, xny) is a unit in the
ring K〈〈x1, . . . xn−1〉〉[[xn, y]]. We thus obtain that R ∈ K〈〈x1, . . . xn−1〉〉[[xn, y]]. On the
other hand, since 1/Q · ∂Q/∂y belongs to K〈〈x1, . . . xn−1〉〉[[xn, y]], we clearly have

∆xn,y

Å
y2 ∂Q

∂y
(x1, . . . , xn−1, xny, y)/Q(x1, . . . , xn−1, xny, y)

ã
= 0 .

Thus

∆xn,y(R) = ∆xn,y

Å
y

1− y−1f(x1, . . . , xn−1, xny)

ã
=
∑
j≥0

∆xn,y

(
y1−jf(x1, . . . , xn−1, xny)

)
= ∆xn,y (f(x1, . . . , xn−1, xny))

= f(x1, . . . , xn) .

This ends the proof.
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In the previous result, we make the assumption that our algebraic Laurent series f is a root
of a polynomial P such that ∂P/∂y does not belong to the ideal (xn, y)K〈〈x1, . . . , xn−1〉〉[xn, y].
We now remove this assumption.

L 6.2. – Let P (x1, . . . , xn, y) ∈ K[x1, . . . , xn][y] be a nonzero polynomial of degree
d ≥ 2 in y and suppose that the coefficients of P (in K[x1, . . . , xn]) all have degree at most h.
Let f be an algebraic Laurent series in K〈〈x1, . . . , xn〉〉. Suppose that νn(f) = 1 and that
f satisfies the polynomial equation P (x1, . . . , xn, f) = 0. Then there is a rational function
R ∈ K〈〈x1, . . . xn−1〉〉(xn, y) such that the following hold.

(i) One has f = ∆xn,y(R) .

(ii) The numerator and denominator ofR have total degrees at mosth(2d−1)(2d+1)+2h+1

in xn and y.

(iii) The coefficients of R are algebraic Laurent series in K〈〈x1, . . . xn−1〉〉 of degree at most
d2h(2d−1)−1 and height at most d8dh2h(2d−1)

.

Proof. – We first note that if ∂P/∂y does not belong to the ideal

(xn, y)K〈〈x1, . . . , xn−1〉〉[xn, y],

then the result follows directly from Lemma 6.1 (with much better bounds). We thus assume
from now on that ∂P/∂y ∈ (xn, y)K〈〈x1, . . . , xn−1〉〉[xn, y].

By assumption νn(f) = 1. We thus infer from Equation (4.5) that for every positive
integer r, we have the following decomposition:

f = f1xn + · · ·+ frx
r
n + xrngr ,

where f1, . . . , fr are algebraic Laurent series in K〈〈x1, . . . , xn−1〉〉 and gr is an algebraic
Laurent series in K〈〈x1, . . . , xn〉〉 with νn(gr) ≥ 1. Our aim is now to prove that, for a
suitable r, gr does satisfy a polynomial relation as in Lemma 6.1.

Let S(x1, . . . , xn) ∈ K[x1, . . . xn] denote the resultant with respect to the variable y of
the polynomials P and ∂P/∂y. Since by assumption P ∈ (xn, yn)K[x1, . . . , xn, yn] and
∂P/∂y ∈ (xn, yn)K〈〈x1, . . . , xn−1〉〉[xn, yn], we get that S ∈ xnK[x1, . . . , xn]. There
thus exist a polynomial T ∈ K[x1, . . . , xn] with νn(T ) = 0 and a positive integer r such
that S = xrnT . Furthermore, using the determinantal formula for the resultant, we obtain
that S is the determinant of a (2d − 1) × (2d − 1) matrix whose entries are polynomials
in K[x1, . . . , xn] of degree at most h. It follows that

(6.13) r ≤ h(2d− 1) .

Set V (x1, . . . , xn) := f1xn+ · · ·+frxrn. Denoting byAi(x1, . . . , xn) the coefficients of P ,
we get that

d∑
i=0

Ai(x1, . . . , xn)(V + xrngr)
i = 0 .

Setting

(6.14) Bi(x1, . . . , xn) :=
1

i!
· ∂

iP

∂yin
(x1, . . . , xn, V (x1, . . . , xn)) ,
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we easily check that

(6.15)
d∑
i=0

Bi(x1, . . . , xn)(xrngr)
i = 0 .

Moreover, we note that each Bi is a polynomial in xn of degree at most (d− i)r + h whose
coefficients are algebraic Laurent series in K〈〈x1, . . . , xn−1〉〉.

On the other hand, since S is the resultant of P and ∂P/∂y with respect to the variable y,
there exist two polynomials A(x1, . . . , xn, y) and B(x1, . . . , xn, y) in K[x1, . . . , xn, y] such
that

(6.16) S = AP +B
∂P

∂y
·

Note that

P (x1, . . . , xn, V ) = P (x1, . . . , xn, V )− P (x1, . . . , xn, f)

= (V − f)C(x1, . . . , xn)

= xrngrC(x1, . . . , xn)

for some C ∈ K〈〈x1, . . . , xn−1〉〉[[xn]]. Thus xr+1
n divides

P (x1, . . . , xn, V )

in K〈〈x1, . . . , xn−1〉〉[xn]. Substituting y = V into Equation (6.16) gives

xrnT (x1, . . . , xn)−A(x1, . . . , xn, V )P (x1, . . . , xn, V )

= B(x1, . . . , xn, V )
∂P

∂yn
(x1, . . . , xn, V ) .

It follows that

νn(B1) = νn

Å
∂P

∂y
(x1, . . . , xn, V )

ã
= r

and thus νn(Bkx
rk
n ) ≥ 2r for every k, 1 ≤ k ≤ d. Then Equation (6.15) implies that

νn(B0) ≥ 2r+ 1 since νn(gr) ≥ 1. In particular, for every integer k, 0 ≤ k ≤ d, the quantity
Ck := Bkx

rk
n /x

2r
n belongs to K〈〈x1, . . . , xn−1〉〉[xn]. Setting

Q(x1, . . . , xn, y) :=
d∑
i=0

Ci(x1, . . . , xn)yi ,

we obtain that Q is a polynomial in xn and y whose coefficients are algebraic Lau-
rent series in K〈〈x1, . . . , xn−1〉〉 and such that Q(x1, . . . , xn, gr) = 0. Furthermore,
since νn(gr) ≥ 1 and νn(C1) = 0, we have that ∂Q/∂y does not belong to the ideal
(xn, y)K〈〈x1, . . . , xn−1〉〉[xn, y]. It follows that the pair (Q, gr) satisfies the assumption of
Lemma 6.1.

In order to apply Lemma 6.1, it just remains to estimate the degree of Q in xn and y

and also the height and the degree of the coefficients of Q (as algebraic Laurent series
in K〈〈x1, . . . , xn−1〉〉).

First, an easy computation using (6.14) and the definition of V gives that the degree of Q
in xn and y is at most

(6.17) d1 := dr + h .
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On the other hand, we infer from Lemma 4.3 that each fi is an algebraic Laurent
series in K〈〈x1, . . . , xn−1〉〉 with degree at most d2i−1

and height at most 8id2i+1

h. Then
Lemma 4.1 implies that V (x1, . . . , xn) is a polynomial in xn whose coefficients are alge-
braic Laurent series in K〈〈x1, . . . , xn−1〉〉 with degree at most d2r−1 and height at most
rd2r−1(8rd2r+1

h + r) ≤ 2r8rd2r+2

h. We also note that for every k, 1 ≤ k ≤ d, V k is a
polynomial in xn whose coefficients are algebraic Laurent series in K〈〈x1, . . . , xn−1〉〉 with
degree at most d2r−1, while Lemma 4.1 implies that the height of these coefficients is at most
k(d2r−1)k2r8rd2r+2

h. Furthermore, the definition of Bk implies that

Bk =
d−k∑
j=0

Ç
j + k

k

å
Aj+k(x1, . . . , , xn)V j ,

for every integer k, 0 ≤ k ≤ d. Lemma 4.1 thus gives that Bk is a polynomial in xn whose
coefficients are algebraic Laurent series inK〈〈x1, . . . , xn−1〉〉 with degree at most d2r−1 and
height at most

(d− k + 1)(d2r−1)d−k+1(k(d2r−1)k2r8rd2r+2

h+ h) .

It follows finally thatCk is a polynomial in xn whose coefficients are algebraic Laurent series
in K〈〈x1, . . . , xn−1〉〉 of degree at most

(6.18) d2 := d2r−1

and height at most

(6.19) h2 := (d+ 1)(d2r−1)d+1(d(d2r−1)d2r8rd2r+2

h+ h) .

We now infer from Lemma 6.1 that there is a rational function

U ∈ K〈〈x1, . . . , xn−1〉〉(xn, yn)

whose numerator and denominator have total degree at most d3 := 2d1 + 1 in xn and yn
such that ∆xn,y(U) = gr. Moreover, the coefficients of U are algebraic Laurent series
in K〈〈x1, . . . , xn−1〉〉 of degree at most d2 and height at most h2.

Then setting R := (xny)rU(x1, . . . , xn, y) + V (x1, . . . , xn−1, xny), we easily obtain that

∆xn,y(R) = f .

Furthermore,R is a rational function in the variables xn and y whose numerator and denom-
inator have degree at most

d3 + r ≤ h(2d− 1)(2d+ 1) + 2h+ 1 .

This proves (i) and (ii).
It thus remains to prove that (iii) holds. Note that by construction all coefficients

of R are algebraic Laurent series in K〈〈x1, . . . , xn−1〉〉 that belong to the field extension
K(x1, . . . , xn−1)(f1, . . . , fr). It follows that they all have degree at most d2r−1 (the product
of the degree of each fi). Furthermore, we infer from (6.13) that d2r−1 ≤ d2h(2d−1)−1, as
required.

Note also that the denominator of (xnyn)rU(xn, yn) + V (xnyn) can be chosen to be the
same as that of U . The numerator, however, is a sum of at most r + 1 elements, each of
which is of the form fg, where f and g are algebraic elements in K〈〈x1, . . . , xn−1〉〉 with
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degree at most d2 and height at most h2. Lemma 4.1 gives that each product has height at
most 2d2

2h2. Applying Lemma 4.1 again, we obtain that the coefficients appearing in R are
algebraic elements of K〈〈x1, . . . , xn−1〉〉 whose heights are all bounded by

h3 := (r + 1)dr+1
2 (2d2

2h2 + 1) .

A simple computation using (6.13), (6.18) and (6.19) shows that h3 ≤ d8dh2h(2d−1)

, as
required. This ends the proof.

L 6.3. – Let M,d and h be positive integers and let f(xn, y) be a rational function
in K〈〈x1, . . . , xn−1〉〉(xn, y) defined by

f(xn, y) :=

∑
0≤i,j<M

αi,jx
i
ny

j

∑
0≤i,j<M

βi,jx
i
ny

j
,

where eachαi,j and βi,j are algebraic Laurent series inK〈〈x1, . . . , xn−1〉〉with degree at most d
and height at most h. Then there are two polynomials

A(xn, y) =
∑

0≤i,j≤(M−1)dM2

γi,jx
i
ny

j ∈ K〈〈x1, . . . , xn−1〉〉[xn, y]

and B(x1, . . . , xn, y) ∈ K[x1, . . . , xn, y] such that the following conditions hold.

(i) f = A/B.

(ii) The polynomial B has total degree at most (h+ 2M − 2)dM
2

.

(iii) Each γi,j is an algebraic Laurent series in the fieldK〈〈x1, . . . , xn−1〉〉with degree at most

d(d+1)M2

and height at most M2(dM2
)d(d+1)M2·M

2

(
dM2
)
dM

2

d(dM2
)h.

Proof. – For every (i, j) ∈ {0, . . . ,M−1}2, we denote by Pi,j(X) ∈ K[x1, . . . , xn−1][X]

the minimal polynomial of βi,j over K(x1, . . . , xn−1). By assumption, Pi,j has degree
di,j ≤ d in X and its coefficients have total degree at most h. The polynomial Pi,j can be
split into linear factors in an algebraic closure, say L, of K(x1, . . . , xn−1). There thus exist
a polynomial Ci,j(x1, . . . , xn−1) ∈ K[x1, . . . , xn−1] and (possibly equal) algebraic elements

β
(1)
i,j = βi,j , β

(2)
i,j , . . . , β

(di,j)
i,j in L such that

(6.20) Pi,j(X) = Ci,j(x1, . . . , xn−1)

di,j∏
k=1

(X − β(k)
i,j ) .

Let us define the polynomial

C(x1, . . . , xn−1) :=
∏

0≤i,j<M
Ci,j(x1, . . . , xn−1)

and the set

S :=
∏

0≤i,j<M
{1, . . . , di,j} .
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We thus note that

(6.21) B(x1, . . . , xn, y) := C ·
∏

(k0,0,...,kM−1,M−1)∈ S

Ñ ∑
0≤i,j<M

β
(ki,j)
i,j xiny

j

é
belongs toK[x1, . . . , xn, y]. Indeed, by construction, for every (i, j) ∈ {0, . . . ,M−1}2,B is
a symmetric polynomial in the β(k)

i,j , 1 ≤ k ≤ di,j , and thus the result follows from Equation
(6.20).

Now, set

(6.22) A(xn, y) :=

Ü
B(x1, . . . , xn, y)∑
0≤i,j<M

βi,jx
i
ny

j

êÑ ∑
0≤i,j<M

αi,jx
i
ny

j

é
.

The assumptions made on the βi,j and the γi,j , and the definition ofB ensure thatA belongs
toK〈〈x1, . . . , xn−1〉〉[xn, y] and has total degree at most (M−1)dM

2

in xn and y. This shows
the existence of algebraic Laurent series γi,j ∈ K〈〈x1, . . . , xn−1〉〉 such that

A(xn, y) =
∑

0≤i,j≤(M−1)dM2

γi,jx
i
ny

j .

Furthermore, the definition of A implies that f = A/B. Thus (i) is satisfied.

We infer from (6.21) thatB has total degree at most (M−1)dM
2

in xn and y. Also, for each
i and j, the coefficient of xiny

j in B is a polynomial of degree at most dM
2

in the coefficients
of Pi,j(X) and hence has total degree at most h ·dM2

in x1, . . . , xn−1. We deduce thatB has
total degree at most (h+ 2M − 2)dM

2

, which proves (ii).

Now, letE denote the field extension ofK(x1, . . . , xn−1) formed by adjoining all the αi,j
and all the β(k)

i,j . Then [E : K(x1, . . . , xn−1)] ≤ d(d+1)M2

. By definition ofA, the coefficients

γi,j all belong to E and are thus all algebraic Laurent series of degree at most d(d+1)M2

.

Furthermore, it follows from (6.22) that each γi,j can be obtained as a sum of at mostM2dM2

algebraic elements, each of which is a product of dM
2

algebraic elements of degree at most d
and height at most h. Using Lemma 4.1, we get that the γi,j are all algebraic Laurent series

overK(x1, . . . , xn−1) of height at mostM2(dM2
)d(d+1)M2·M

2

(
dM2
)
dM

2

d(dM2
)h. This proves

(iii) and concludes the proof.

We are now ready to prove the main result of this section.

Proof of Theorem 6.1. – We prove this by induction on n.
Let f(x1, . . . , xn) ∈ K〈〈x1, . . . , xn〉〉 be an algebraic Laurent series of degree at most d

and height at most h.
We first infer from Lemma 4.2 that νn(f) ≤ h. Furthermore, arguing as for the proof of

Lemma 4.2, we get that f̃ := x
−νn(f)+1
n f is an algebraic Laurent series of degree at most d

and height at most hd. We also note that by definition νn(f̃) ≥ 1.

Let us prove the case where n = 1. By Lemma 6.2, there exists a rational function
R(x1, y) ∈ K(x1, y) whose height is at most hd(2d − 1)(2d + 1) + 2hd + 1 and such that
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∆1/2(R) = f̃ . Thus, S(x1, y) := (x1y)νn(f)−1R(x1, y) is a rational function whose height is
at most 2h+ hd(2d− 1)(2d+ 1) + 2hd+ 1 and such that ∆1/2(S) = f . This proves the case
n = 1 with N(1, d, h) := hd(2d− 1)(2d+ 1) + 2h(d+ 1) + 1.

Let us assume now that n ≥ 2 is a fixed integer and that the conclusion of the theorem
holds for every natural number less than n. By Lemma 6.2, there exists a rational function
R(xn, yn) ∈ K〈〈x1, . . . , xn−1〉〉(xn, yn) such that f̃ = ∆xn,yn(B). Furthermore, the
numerator and the denominator of R have degree at most

M := hd(2d− 1)(2d+ 1) + 2hd+ 1

inxn and yn and the coefficients ofR are algebraic Laurent power series inK〈〈x1, . . . , xn−1〉〉
of degree at most

d0 := d2hd(2d−1)−1

and height at most

h0 := d8d2h2hd(2d−1)

.

By Lemma 6.3, we may write R(xn, yn) as A(xn, yn)/B(x1, x2, . . . , xn, yn) where
B is a polynomial in K[x1, . . . , xn, yn] of total degree at most (h0 + 2M − 2)dM

2

0 and
A ∈ K〈〈x1, . . . , xn−1〉〉[xn, yn] is a polynomial of degree at most M1 := (M − 1)dM

2

0 and

whose coefficients are all algebraic over K(x1, . . . , xn−1) of degree at most d1 := d
(d0+1)M2

0

and height at most h1 := M2(dM2

0 )d
(d0+1)M2·M

2

(
dM2

0

)
0 dM

2

0 d
(dM2

0 )
0 h0.

We can thus write

A =
∑

0≤i,j≤M1

γi,jx
i
ny

j
n .

Then by the inductive hypothesis, each γi,j is the diagonal of some rational function

Ri,j(x1, . . . , xn−1, y1, . . . , yn−1)

in K〈〈x1, . . . , xn−1〉〉 whose height is at most N(n− 1, d1, h1).

Consider the rational function S(x1, . . . , xn, y1, . . . , yn) ∈ K〈〈x1, . . . , xn〉〉 defined by

S :=

∑
0≤i,j≤M1

Ri,j(x1, . . . , xn−1, y1, . . . , yn−1)xiny
j
n

B(x1y1, . . . , xn−1yn−1, xn, yn)
·

Then by construction, we have that ∆1/2(S) = f̃ . Taking T = (xnyn)νn(f)−1S, we
obtain that ∆1/2(T ) = f . By noting that |νn(f)| ≤ h, we see that T has height at most
2(h − 1) + N(n − 1, d1, h1). This concludes the proof by taking N(n, d, h) := 2(h − 1) +

N(n− 1, d1, h1).
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7. Proof of Theorems 1.3 and 1.4

We are now ready to conclude the proof of our main result. What we will actually prove
is the following natural extension of Theorem 1.3 to fields of multivariate Laurent series.

T 7.1. – Let K be a field of characteristic p > 0 and f be an algebraic power
series inK〈〈x1, . . . , xn〉〉 of degree at most d and height at most h. Then there exists an explicit
constantA := A(n, d, h) depending only onn, d and h, such that ∆(f) ∈ K((x)) is an algebraic
Laurent series of degree at most pA and height at most ApA.

Proof. – Let K be a field of characteristic p > 0 and let f(x1, . . . , xn) be a power series
in K〈〈x1, . . . , xn〉〉 of degree at most d and height at most h. Without loss of generality, we
can assume thatK is a perfect field (otherwise we just enlarge it and consider the perfect clo-
sure of K). By Theorem 6.1, there exist an explicit positive number N depending only on n,
d, and h, and a rational function R(x1, . . . , xn, y1, . . . , yn) in K〈〈x1, . . . , xn, y1, . . . , yn〉〉,
with height at most N , such that ∆1/2(R) = f . The latter property clearly implies that
∆(R) = ∆(f).

We are now going to exhibit aK-vector space containingR and invariant under the action
of the monoid Ω2n generated by Cartier operators. SinceR is a rational function with height
at mostN , there exist two polynomialsP andQ inK[x1, . . . , xn, y1, . . . , yn] with total degree
at most N and such that R = P/Q. Set

V :=

ß
S(x1, . . . , xn, y1, . . . , yn)

Q(x1, . . . , xn, y1, . . . , yn)
| deg(S) ≤ N

™
⊆ K(x1, . . . , xn, y1, . . . , yn) .

Note that V is a K-vector space of dimension A :=
(
N+2n
N

)
. Let

S(x1, . . . , xn, y1, . . . , yn)/Q(x1, . . . , xn, y1, . . . , yn)

be an element of V and let j ∈ {0, . . . , p − 1}2n. Let Λj denote the Cartier operator
associated with j (see Section 5 for a definition). A useful property of Cartier operators is
that Λj(g

ph) = gΛj(h) for every pair (g, h) ∈ K〈〈x1, . . . , xn, y1, . . . , yn〉〉2. We thus deduce
that

Λj(S/Q) = Λj(SQ
p−1/Qp) =

1

Q
· Λj(SQ

p−1) .

Since deg(SQp−1) ≤ pN , we can write SQp−1 as

SQp−1 =
∑

i:=(i1,...,i2n)∈{0,...,p−1}2n

Spi x
i1
1 · · ·xinn y

in+1

1 · · · yi2n
n

where each Si is a polynomial of total degree at most N . Now, the unicity of such a decom-
position ensures that Sj = Λj(SQ

p−1). This implies that

Λj(S/Q) = Sj/Q .

Thus Λj(S/Q) belongs to V , which shows that V is invariant under the action of Cartier
operators. By Propositions 5.1 and 5.2, it follows that ∆(R) is algebraic over K(x) with
degree at most pA and height at most ApA. Since ∆(R) = ∆(f), this ends the proof.
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Proof of Theorem 1.4. – Theorem 1.4 is essentially a consequence of Theorem 1.3 (see
the discussion in the introduction about Jacobson rings). The only thing that remains to be
proven is that if K is a field of characteristic zero and if f(x1, . . . , xn) ∈ K[[x1, . . . , xn]] is
algebraic then the coefficients of ∆(f) all belong to a finitely generated Z-algebra R ⊆ K.
To see this, we use the result of Denef and Lipshitz [15] claiming that f(x1, . . . , xn) can be
written as the diagonal of a rational power series in 2n variables, say

P (x1, . . . , x2n)/Q(x1, . . . , x2n) ∈ K(x1, . . . , x2n).

Without loss of generality, we may assume that Q(0, . . . , 0) = 1. Let us write Q = 1 − U ,
withU ∈ (x1, . . . , x2n)K[x1, . . . , x2n]. LetR denote the finitely generated Z-subalgebra ofK
generated by the coefficients of P andU . Then the identity P/Q =

∑
k≥0 PU

k shows that all
the coefficients ofP/Q lie inR. Since ∆(f) = ∆(P/Q), it follows that all coefficients of ∆(f)

also belong to R.

8. Diagonals of rational functions with high degree modulo p

In this section, we prove Theorem 1.5. Throughout this section we make use of the follow-
ing notation already introduced in the introduction of this paper: if f(x) :=

∑∞
n=0 a(n)xn ∈

Z[[x]] and p is a prime number, we denote by f|p :=
∑∞
n=0(a(n) mod p)xn ∈ Fp[[x]] the

reduction of f(x) modulo p. An expression like “f vanishes modulo p” just means that f|p is
identically equal to zero. Also, given two polynomialsA(x) andB(x) in Z[x], the expression
“A(x) divides B(x) modulo p” means that A|p(x) divides B|p(x) in Fp[x].

An essential property that will be used all along this section is the so-called Lucas property.

D 8.1. – We say that a sequence a : N → Z has the Lucas property if for
every prime p we have a(pn + j) ≡ a(n)a(j) (mod p). We let L denote the set of all power
series in Z[[x]] that have constant coefficient one, whose sequence of coefficients has the
Lucas property, and that satisfy a homogeneous linear differential equation with coefficients
in Q(x).

R 8.1. – We note that if f(x) =
∑
n≥0 a(n)xn ∈ L and p is a prime number, then

f(x) ≡ A(x)f(xp) (mod p) ,

where A(x) :=
∑p−1
n=0 a(n)xn. Furthermore, since a(0) = 1, we always have that the

polynomialA|p(x) is not identically zero. In the sequel, there will be no problem with dividing
by such polynomial A(x) in congruences relation modulo p.

L 8.1. – Let f1, . . . , fs ∈ Z[[x]] such that f1|P , . . . , fs|p are linearly dependent over
Fp for infinitely many prime numbers p. Then, f1, . . . , fs are linearly dependent over Q.

Proof. – Let ai(n) denote the nth coefficient of fi. Let us considerâ
a1(0) a1(1) a1(2) · · ·
a2(0) a2(1) a2(2) · · ·

...
...

... . . .

as(0) as(1) as(2) · · ·

ì
,
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the s × ∞ matrix whose coefficient in position (k, n) is ak(n). Given a prime p such that
f1|P , . . . , fs|p are linearly dependent over Fp, we thus have that any s× sminor has determi-
nant that vanishes modulo p. Since this holds for infinitely many primes p, we obtain that all
s× sminors are equal to zero, which implies the linear dependence of f1, . . . , fs over Q.

L 8.2. – Let f1(x), . . . , fs(x) ∈ L and set f(x) := f1(x)+· · ·+fs(x). Let us assume
that the following hold.

(i) The functions f1, . . . , fs are linearly independent over Q.

(ii) The inequality deg(f|p) < ps/2 holds for infinitely many prime numbers p.

Then for infinitely many primesp there is a polynomialQ(x1, . . . , xs) ∈ Z[x][x1, . . . , xs] of total
degree at most

√
ps inx1, . . . , xd such thatQ|p is nonzero andQ(f1(x), . . . , fs(x)) ≡ 0 mod p.

Proof. – Let P0 denote the infinite set of primes p for which deg(f|p) < ps/2. From now
on, we let p denote a fixed element of P0. Let S denote the set of all numbers of the form
i0 + i1p + · · · + isp

s−1 with 0 ≤ i0, . . . , is−1 <
√
p. Then | S| ≥ √ps and hence there is a

non-trivial relation of the form

(8.23)
∑

0≤i0,...,is−1<
√
p

ci0,...,is−1
(x)f(x)i0 · · · f(x)p

s−1is−1 ≡ 0 (mod p).

Since by assumption each fi belongs to L, we infer from Remark 8.1 that there are polyno-
mialsA1, . . . , As of degree at most p−1 such that fi(x) ≡ Ai(x)fi(x

p) mod p. We also have
that each fi has constant coefficient 1, which implies that Ai(x) 6≡ 0 mod p. Then we have
that

fi(x
pj

) ≡ fi(x)
j−1∏
m=1

Ai(x
pm−1

)

(mod p)

for every positive integer j. Letting Bi,j(x) :=

j−1∏
m=1

Ai(x
pm−1

) for j ≥ 1 and Bi,j(x) := 1

for j = 0, Equation (8.23) can be rewritten as

(8.24)
∑

0≤i0,...,is−1<
√
p

ci0,...,is−1
(x)

s−1∏
j=0

Å
f1(x)

B1,j(x)
+ · · ·+ fs(x)

Bs,j(x)

ãij
≡ 0 (mod p).

If we expand the left-hand side, we obtain the existence of a polynomial P (x, x1, . . . , xs) ∈
Z(x)[x1, . . . , xs] of total degree at most

√
ps in x1, . . . , xs such that P (x, f1, . . . , fs) van-

ishes modulo p. If P|p is nonzero, we just have to multiply by the common denominator in
Equation (8.24) (which is nonzero modulo p by Remark 8.1) to obtain a nonzero polynomial
Q ∈ Z[x][x1, . . . , xs] with the desired properties.

It thus remains to prove that P does not vanish modulo p. From now on, we may assume
that P|p is identically zero and we will show this yields a contradiction. Let y1, . . . , ys be
indeterminates. Then

(8.25)
∑

0≤i0,...,is−1<
√
p

ci0,...,is−1
(x)

s−1∏
j=0

Å
y1

B1,j(x)
+ · · ·+ ys

Bs,j(x)

ãij
≡ 0 (mod p) .
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Let z1, . . . , zs be new variables defined by

zj := y1/B1,j(x) + · · ·+ ys/Bs,j(x) .

Then ∑
0≤i0,...,is−1<

√
p

ci0,...,is−1(x) zi10 · · · zis−1
s ≡ 0 (mod p)

and since ci0,...,is−1 is nonzero modulo p for some (i0, . . . , is−1), we see that x, z1, . . . , zs are
algebraically dependent over Fp(x).

On the other hand, we have

[z1, . . . , zs]
T = BT [y1, . . . , ys]

T

where B is an s× s matrix whose (i, j)-entry is 1/Bi,j−1(x). We claim that B is invertible as
a matrix with coefficients in Fp(x). To see this, let us assume that B is not invertible. Then
there exists a nonzero vector of polynomials [c1(x), . . . , cs(x)] ∈ Fp[x]s such that

s∑
j=1

cj(x)/Bi,j−1(x) ≡ 0(modp)

for i = 1, . . . , s. But, by construction, fi(x)p
j ≡ fi(x)/Bi,j(x) (mod p) and hence we must

have
s∑
j=1

cj(x)fi(x)p
j−1−1 ≡ 0 (modp)

for i = 1, . . . , s. Thus
s∑
j=1

cj(x)fi(x)p
j−1

≡ 0 (modp)

for i = 1, . . . , s.

In particular any Fp-linear combination of f1, . . . , fs, say y := λ1f1 + · · ·+ λsfs satisfies
the relation

s∑
j=1

cj(x)yp
j−1

≡ 0 mod p .

Regarding this expression as a polynomial in y, we get at most ps−1 distinct roots in Fp[[x]].
Since there are ps Fp-linear combinations of the form λ1f1 + · · · + λsfs, it follows that at
least two different linear combinations must be the same. Thus λ1f1 + · · · + λsfs = 0 for
some λ1, . . . , λs ∈ Fp not all of which are zero. Since this holds for infinitely many primes p,
Lemma 8.1 gives the linear dependence of f1, . . . , fs over Q, a contradiction with (i). This
proves that B is invertible.

Now since B is invertible, we can express y1, . . . , ys as Fp(x)-linear combinations
of z1, . . . , zs and thus Fp(x, y1, . . . , ys) ⊂ Fp(x, z1, . . . , zs). This contradicts the fact
that x, z1, . . . , zs are algebraically dependent over Fp(x). Thus the polynomial P|p is not
identically zero, which ends the proof.
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L 8.3. – Let f(x) =
∞∑
n=0

a(n)xn ∈ L, let p be a prime number, and set

A(x) :=
∑p−1
n=0 a(n)xn. Then there exist a nonzero polynomial Q(x) ∈ Z[x] and a num-

ber m (both independent of p) such that for every non-constant irreducible factor C(x)

of A|p(x) either Cm(x) does not divide A|p(x) or C(x) divides Q|p(x).

Proof. – By assumption f satisfies a relation of the form
r∑
i=0

Pi(x)f (i)(x) = 0 ,

where P0, . . . , Pr belong to Z[x] and Pr is nonzero. Let d be the largest of the degrees
of P0, . . . , Pr. Note that by Remark 8.1, we have f(x) ≡ A(x)f(xp) (mod p) and thus
f(x) ≡ A(x) mod (xp, p). This gives:

r∑
i=0

Pi(x)A(i)(x) ≡ 0 mod (xp, p) .

Thus we may write

(8.26)
r∑
i=0

Pi(x)A(i)(x) ≡ xpB(x) (mod p) ,

for some polynomial B ∈ Fp[x] with degB < d. Now take m = r + d and suppose that
A|p(x) has an irreducible factor C(x) ∈ Fp[x] such that Cm divides A|p. Then C(x)m−r

divides the left-hand side of Equation (8.26) modulo p and hence must divide xpB(x). Since
by assumption a(0) = 1, we have that C(0) 6= 0, and thus C(x)m−r divides B(x). But
m − r ≥ d and so the degree of C(x)m−r is strictly greater than the degree of B(x) which
implies that B(x) is identically zero. Thus we have

r∑
i=0

Pi(x)A(i)(x) ≡ 0 mod p .

Notice that the largest power of C(x) that divides A(i)(x) modulo p is larger than the
power dividing A(r)(x) modulo p for i < r. Hence C(x) divides Pr(x) modulo p. Taking
Q(x) = Pr(x), we get the desired result.

C 8.1. – Let f1(x), . . . , fs(x) ∈ L. Given a prime p and an integer i with
1 ≤ i ≤ s, let Ai(x) ∈ Z[x] be such that fi(x) ≡ Ai(x)fi(x

p) (mod p). Assume that for
every p in an infinite set of primes S, there are integers a1, . . . , as ∈ Z, not all zero, such that
the following hold.

(i) There are two relatively prime polynomials A(x) and B(x) in Fp[x] such that
A1(x)a1 · · ·As(x)as ≡ (A(x)/B(x))

p−1
mod p.

(ii) |a1|+ · · ·+ |as| ≤
√
ps.

Then there is a nonzero polynomial T (x) ∈ Z[x] that does not depend on p and such that every
non-constant irreducible factor of either A(x) or B(x) must be a divisor of T|p(x) for every
p ∈ S large enough.
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Proof. – Let p be in S. Let C(x) be some non-constant irreducible factor of either A(x)

or B(x). Let ν denote the valuation on Fp(x) induced by C(x). Then we infer from (i) that

|ν(A1(x)a1 · · ·As(x)as)| ≥ p− 1 .

But Lemma 8.3 gives that there is some Qi(x) ∈ Z[x] and some natural number mi (both
independent of p) such that

|ν(Ai(x)ai)| ≤ |ai|mi ,

unless C(x) divides Qi|p(x). We then infer from (ii) that C(x) should divide Qi|p(x) as soon
as p is large enough. Then, for p large enough in S, every irreducible factor of eitherA(x) or
B(x) must divide T|p(x), where T (x) := Q1(x) · · ·Qs(x). This ends the proof.

L 8.4. – Let s be a natural number and let f1(x), . . . , fs(x) ∈ L. Suppose that for
infinitely many primes p there is a polynomial Q(x, x1, . . . , xs) ∈ Z[x][x1, . . . , xs] of total
degree at most

√
ps in x1, . . . , xd such that Q|p is nonzero and Q(f1(x), . . . , fs(x)) ≡ 0 (mod p).

Then there is a nontrivial Q-linear combination of f ′1(x)/f1(x), . . . , f ′s(x)/fs(x) that belongs
to Q(x).

Proof. – Let S denote an infinite set of primes for which the assumption of the lemma
is satisfied and let p ∈ S with the property that p >

√
ps. Then we choose a polynomial

Q(x, x1, . . . , xs) ∈ Z[x][x1, . . . , xs] of total degree at most
√
ps in x1, . . . , xd, such thatQ|p is

nonzero and Q(f1(x), . . . , fs(x)) ≡ 0 (mod p). In addition, we choose Q having, among
such polynomials, the fewest number of monomials in x1, . . . , xs occurring with a nonzero
coefficient (coefficients are polynomials in x). As before, we let Ai(x) denote an element
of Z[x] such that fi(x) ≡ Ai(x)fi(x

p)(modp). Since Q(x, f1(x), . . . , fs(x)) ≡ 0 (mod p)

we also have Q(xp, f1(xp), . . . , fs(x
p)) ≡ Q(xp, f1(x)/A1(x), . . . , fs(x)/As(x)) ≡ 0 (mod p).

We let T be the set of indices (i1, . . . , is) ∈ Ns such that xi11 · · ·xiss occurs inQwith a nonzero
coefficient. Then we have

(8.27)
∑

(i1,...,is)∈ T

ci1,...,is(x)f i11 · · · f iss ≡ 0 (mod p)

and

(8.28)
∑

(i1,...,is)∈ T

ci1,...,is(xp)A1(x)−i1 · · ·As(x)−isf i11 · · · f iss ≡ 0 (mod p) .

Pick (j1, . . . , js) ∈ T . Multiplying Equation (8.27) by cj1,...,js(xp) and Equation (8.28)
by cj1,...,js(x)A1(x)j1 · · ·As(x)js and subtracting, we obtain a new relation with a smaller
number of terms. By minimality, this ensures that all coefficients should be congruent to zero
mod p. It thus follows that for all (i1, . . . , is) ∈ T we have

ci1,...,is(x)cj1,...,js(xp) ≡ ci1,...,is(xp)cj1,...,js(x)A1(x)j1−i1 · · ·As(x)js−is mod p .

Equivalently, this gives that

ci1,...,is(x)−(p−1)cj1,...,js(x)p−1 ≡ A1(x)j1−i1 · · ·As(x)js−is (mod p) .

Since T has at least two elements, we see that there exist a1, . . . , as ∈ Z, not all zero and
dependent on p, with |a1|+ · · ·+ |as| ≤

√
ps and such that Aa1

1 · · ·Aas
s ≡ (A(x)/B(x))p−1 (mod p),

for some relatively prime polynomialsA(x) andB(x) in Fp(x). By Corollary 8.1, there exists
a polynomial T (x) ∈ Z[x] that does not depend on p and such that every non-constant

4 e SÉRIE – TOME 46 – 2013 – No 6



DIAGONALIZATION AND RATIONALIZATION 997

irreducible factor of either A(x) or B(x) must be a divisor of T|p(x). Set
h(x) := f−a1

1 (x) · · · f−as
s (x) and R(x) = A(x)/B(x). Then

h(xp) = f−a1
1 (xp) · · · f−as

s (xp)

≡ f−a1
1 (x) · · · f−as

s (x)Aa1
1 (x) · · ·Aas

s (x) (mod p)

≡ h(x)R(x)p−1 (mod p)

and so h(x) is congruent to a scalar multiple of R(x) modulo p. Without loss of generality,
we may assume that f−a1

1 · · · f−as
s ≡ R(x) (mod p). Differentiating with respect to x and

dividing by f−a1
1 · · · f−as

s , we obtain that
s∑
i=1

aif
′
i(x)/fi(x) ≡ R′(x)/R(x) (mod p) .

Since by assumption p >
√
ps and not all the ai are equal to zero, this provides a non-trivial

linear relation over Fp. Now let us observe that R′(x)/R(x) ≡ U(x)/T (x) mod p for some
polynomial U(x) ∈ Z[x] of degree less than the degree of T (x). Let d denote the degree
of T (x). Then we just proved that 1, x, . . . , xd−1, T (x)f ′1(x)/f1(x), . . . , T (x)f ′s(x)/fs(x)

are Fp-linearly dependent when reduced modulo p. Since this holds for infinitely many p,
Lemma 8.1 implies the existence of linear relation over Q. Dividing such a relation by T (x),
we obtain that there exists a nontrivial Q-linear combination of f ′1(x)/f1(x), . . . , f ′s(x)/fs(x)

that belongs to Q(x). This ends the proof.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. – Let s be a positive integer. Set

Rs(x1, . . . , x6+s−1) :=
6+s−1∑
r=6

1

1− (x1 + · · ·+ xr)
∈ Z[[x1, . . . , x6+s−1]]

and f(x) := ∆ (Rs). An easy computation first gives that

∆

Å
1

1− (x1 + · · ·+ xr)

ã
=

∞∑
n=0

Ç
rn

n, . . . , n

å
xn

=
∞∑
n=0

(rn)!

n!r
xn =: fr(x) .

Thus, f(x) = f6(x) + · · · + f6+s−1(x). Our aim is now to prove that deg(f|p) ≥ ps/2 for
every prime p large enough.

We recall that for every r ≥ 1, the power series fr belongs to L. We also let Ar(x) be a
polynomial such that fr(x) ≡ Ar(x)fr(x

p) mod p. Notice that Stirling’s formula gives

(8.29)
(rn)!

n!r
∼ rrn+1/2

√
2πn

1−r

and so the radius of convergence of fr(x) is 1/rr and by Pringsheim’s theorem, a singularity
occurs at x = 1/rr. This implies that f1, f2, . . . are linearly independent over Q. Indeed,
if, for some positive integer n, there would be a nontrivial relation a1f1 + · · · anfn = 0 with
an 6= 0, we would have that anfn = a1f1 +· · ·+an−1fn−1; but the right-hand side is analytic
in a neighborhood of 1/nn while the left-hand side is not.
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We also infer from (8.29) that

(rn)!

n!r
r−rn ∼ r1/2

√
2πn

1−r
and n

(rn)!

n!r
r−rn ∼ nr1/2

√
2πn

1−r
.

For r ≥ 6, the right-hand sides are both in O(1/n3/2) which implies that limx→(1/rr)− fr(x)

and limx→1/(rr)− f
′
r(x) both exist and are finite.

We observe now that f ′r(x)/fr(x) must have a singularity at x = 1/rr, while it is clearly
analytic inside the disc of radius 1/rr. Indeed, otherwise it would be analytic in an open
ball U containing 1/rr and we may define a function Tr(z), analytic in U , by declaring
Tr(z) =

∫
γ
f ′r(z)/fr(z) dz, where γ is any path in U from 1/rr to z. Then notice that

fr(z) exp(−Tr(z)) has derivative zero on U and thus fr(z) = C exp(−Tr(z)) would be
analytic in U , contradicting the fact that fr has a singularity at 1/rr. Furthermore, if t > r,
then fr(1/tt) > 0 is nonzero and hence f ′r(z)/fr(z) is analytic in some neighborhood of 1/tt.

We claim there does not exist a nontrivial Q-linear combination of elements of
{f ′r(x)/fr(x) | r ≥ 6} that is equal to a rational function. To see this, suppose that we
have a nontrivial relation

(8.30)
n∑
i=6

cif
′
i(x)/fi(x) = R(x) ∈ Q(x)

with cn 6= 0. Recall that cnf ′n(x)/fn(x) has a singularity at x = 1/nn. But, by the preceding
remarks, the other terms are analytic in a neighborhood of x = 1/nn and thus R(x) must
have a pole at x = 1/nn. Otherwise, we could express cnf ′n(x)/fn(x) as a linear combination
of elements that are analytic in a neighborhood of 1/nn, which would give a contradiction.
But if we look at the limit as x → 1/nn from the left along the real line, we have that the
limit of the left-hand side of Equation (8.30) is a real number since limx→(1/nn)− fn(x) and
limx→1/(nn)− f

′
n(x) both exist and are finite, while the limit on the right-hand side goes to

infinity sinceR has a pole atx = 1/nn, a contradiction. Thus, there does not exist a nontrivial
Q-linear combination of elements of {f ′r(x)/fr(x) | r ≥ 6} that is equal to a rational
function.

Now, by Lemma 8.4, we obtain that there do not exist infinitely many primes p for which
there is a polynomial Q(x, x1, . . . , xs) ∈ Z[x][x1, . . . , xs] of total degree at most

√
ps

in x1, . . . , xd such that Q|p is nonzero and Q(f6(x), . . . , f6+s−1(x)) ≡ 0 (mod p). Since
f6, . . . , f6+s−1 are linearly independent over Q, Lemma 8.2 implies that deg(f|p) ≥ ps/2 for
every prime p large enough, concluding the proof.

9. Connection with enumerative combinatorics, automata theory and decidability

Formal power series with integer coefficients naturally occur as generating functions in
enumerative combinatorics (see [29, 31]). In this area we have the following natural hierarchy:

{ rational } ⊂ { algebraic } ⊂ { D-finite power series }

where a power series is differentially finite, orD-finite for short, if it satisfies a homogeneous
linear differential equation with polynomial coefficients. Most of the generating functions
that are studied in enumerative combinatorics turn out to be D-finite (see for instance [31]).
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Now it may be relevant to make the following observation: a D-finite power series in Z[[x]]

with a positive radius of convergence is a G-function and, according to a conjecture of
Christol, it should be the diagonal of a rational function, as it is “globally bounded” (see
[10, 11, 4]). Thus, at least conjecturally, most of the D-finite power series that appear in
enumerative combinatorics should be diagonals of rational functions.

The present work has some connection with the classical problem of finding congruence
relations satisfied by the coefficients of generating functions. Given a generating function
f(x) =

∑∞
n=0 a(n)xn ∈ Z[[x]], a prime number p, and two nonnegative integers b and r, a

standard problem is to determine the integers n such that a(n) ≡ b mod pr. In other words,
the aim is to describe sets such as S := {n ∈ N | a(n) ≡ b mod pr}. Now, if f is a diagonal of
a rational function (which as just explained should be the typical situation), the Furstenberg–
Deligne theorem implies that f|p is algebraic over Fp(x). Then a classical theorem of Christol
[12], as revisited in [15], implies that the sequence (a(n) mod pr) is p-automatic which means
that it can be generated by a finite p-automaton. In particular, S is a p-automatic set. We
recall that an infinite sequence a with values in a finite set is said to be p-automatic if a(n) is
a finite-state function of the base-p representation of n. Roughly, this means that there exists
a finite automaton taking the base-p expansion of n as input and producing the term a(n)

as output. A set E ⊂ N is said to be p-automatic if there exists a finite automaton that reads
as input the base-p expansion of n and accepts this integer (producing as output the symbol
1) if n belongs to E, otherwise this automaton rejects the integer n, producing as output the
symbol 0. For more formal definitions we refer the reader to [1]. It was already noticed in
[24] that such a description in terms of automata provides a vast range of congruences for
coefficients of diagonals of rational power series. The present work emphasizes some effective
aspects related to these congruences. Indeed, by Theorem 1.2 we are able to give an effective
bound for the degree and the height of the algebraic function f|p. As explained in [1], this
allows to bound the number of states of the underlying p-automaton. This gives the following
result.

T 9.1. – Let f(x) =
∑∞
n=0 a(n)xn ∈ Z[[x]] be the diagonal of an algebraic

function. Let b be a positive integer and p be a prime number. Then the set

S := {n ∈ N | a(n) ≡ b mod p}

is a p-automatic set that can be effectively determined. In particular, the following properties
are all decidable:

(i) the set S is empty.

(ii) the set S is finite.

(iii) the set S is periodic, that is, formed by the union of a finite set and of a finite number of
arithmetic progressions.

As an illustration, we give in Figure 1 the picture of a 5-automaton that generates the
Apéry numbers a(n) =

∑n
k=0

(
n
k

)2(n+k
k

)2
modulo 5. We thus have that: a(n) ≡ 0 mod 5 if

the base-5 expansion of n contains at least a 1 or a 3; a(n) ≡ 1 mod 5 if the base-5 expansion
of n does not contain the digits 1 and 3 and if the number of 2’s is congruent to 0 mod 4;
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Q0/1

Q2/3 Q1/0 Q4/2

Q3/4

2

2
2

2

1, 3

1, 3

1, 3

1, 3

0, 1, 2, 3, 4

0, 4

0, 4

0, 4 0, 4

F 1. A 5-automaton generating the Apéry sequence modulo 5.

a(n) ≡ 2 mod 5 if the base-5 expansion of n does not contain the digits 1 and 3 and if the
number of 2’s is congruent to 3 mod 4; a(n) ≡ 3 mod 5 if the base-5 expansion of n does not
contain the digits 1 and 3 and if the number of 2’s is congruent to 1 mod 4; a(n) ≡ 4 mod 5

if the base-5 expansion of n does not contain the digits 1 and 3 and if the number of 2’s
is congruent to 2 mod 4. In this direction, Beukers made the following conjecture [5]: if
r denotes the sum of the number of 1’s and the number of 3’s in the base-5 expansion
of n, then a(n) ≡ 0 mod pr. Recently, Delaygue [13] announced a proof of this conjecture.
In order to answer this kind of question, it would be interesting to understand, given the
diagonal of a rational power series f(x) =

∑
n≥0 a(n)xn ∈ Z[[x]], the connection between

the p-automaton that generates a(n) mod pr and the one that generates a(n) mod pr+1 for
every positive integer r.
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10. Algebraic independence for G-functions with the Lucas property

In this section, we come back to the results obtained in Section 8 when proving Theo-
rem 1.5. It turns out that we have incidentally proved a result of independent interest about
algebraic independence of some G-functions.

We recall that a sequence a : N → Z has the Lucas property if for every prime p and
every integer j, 0 ≤ j ≤ p − 1, we have a(pn + j) ≡ a(n)a(j) (mod p). In 1980, Stanley
[30] conjectured that, for positive integer t, the power series

∑∞
n=0

(
2n
n

)t
xn is transcendental

over Q(x) unless t = 1, in which case it is equal to 1/
√

1− 4x. He also proved the transcen-
dence in the case where t is even. The conjecture was proved independently by Flajolet [19]
and by Sharif and Woodcock [34] with two different methods. The proof of Sharif and Wood-
cock is based on the Furstenberg–Deligne theorem and use the fact that the sequence

(
2n
n

)t
satisfies the Lucas property. These authors also proved in the same way the transcendence
of
∑∞
n=0

(
rn

n,...,n

)t
xn for every integers r ≥ 3, t ≥ 1. Their approach was then developed by

Allouche et al. in [3] (see also [2]) who obtained a general criterion for the algebraicity of for-
mal power series with coefficients in Q satisfying the Lucas property. However, it seems that
not much is known about algebraic independence of such power series. As a first result in this
direction, we prove Theorem 10.1 below. We recall that L denotes the set of all power series
in Z[[x]] that have constant coefficient one, whose sequence of coefficients has the Lucas prop-
erty, and that satisfy a homogeneous linear differential equation with coefficients in Q(x).

T 10.1. – Let f1, . . . , fs be elements of L such that there is no nontrivial Q-lin-
ear combination of f ′1/f1, . . . , f

′
s/fs that belongs to Q(x). Then f1, . . . , fs are algebraically

independent over Q(x).

Proof. – Let us assume that f1, . . . , fs are algebraically dependent. Then there exists a
nonzero polynomial Q ∈ Z[x, x1, . . . , xs] such that Q(x, f1, . . . , fs) = 0. Note that for all
sufficiently large primes p, the total degree of Q is less than

√
ps and Q|p is nonzero. Thus

Lemma 8.4 implies the existence of nontrivial Q-linear combination of f ′1/f1, . . . , f
′
s/fs that

is equal to a rational function, a contradiction.

We then deduce the following consequences of Theorem 10.1.

C 10.1. – Set fr(x) :=
∞∑
n=0

Ç
rn

n, . . . , n

å
xn and gr :=

∞∑
n=0

Ç
2n

n

år

xn. Then

{fr | r ≥ 6} and {gr | r ≥ 4} are two families of algebraically independent functions over Q(x).

Proof. – The fact that fr and gr belong to L and are transcendental over Q(x) can be
found in [34]. Furthermore, we already obtained in the proof of Theorem 1.5 in Section 8
that there is no Q-linear combination of f ′r/fr, . . . , f

′
r+n/fr+n, r ≥ 6, n ≥ 1 that is equal to

a rational function. The fact that there is no Q-linear combination of g′r/gr, . . . , g
′
r+n/gr+n,

r ≥ 4, n ≥ 1 that is equal to a rational function can be proved in a very similar way. Thus
Theorem 10.1 applies, which implies the result.
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We note that Theorem 10.1 can actually be used to prove the best possible results regard-
ing algebraic independence of both families considered in Corollary 10.1. Indeed, we could
obtain that {fr | r ≥ 3} and {gr | r ≥ 2} are two families of algebraically independent func-
tions over Q(x). We choose to only give the statement in Corollary 10.1 here, as it is a direct
consequence of the results already proved in Section 8 and does not need additional work.
Furthermore, it may be the case that Theorem 10.1 also has interesting applications regard-
ing algebraic independence of other classical families ofG-functions. Since it is not the focus
of the present paper, we plan to investigate this question in more detail in a future work.
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