
Bull. London Math. Soc. 50 (2018) 697–708 C�2018 London Mathematical Society
doi:10.1112/blms.12168

Exceptional values of E-functions at algebraic points

Boris Adamczewski and Tanguy Rivoal

Abstract

E-functions are entire functions with algebraic Taylor coefficients satisfying certain arithmetic
conditions, and which are also solutions of linear differential equations with coefficients in Q(z).
They were introduced by Siegel in 1929 to generalize Diophantine properties of the exponential
function, and studied further by Shidlovskii in 1956. The celebrated Siegel–Shidlovskii theorem
deals with the algebraic (in)dependence of values at algebraic points of E-functions solutions of a
differential system. However, somewhat paradoxically, this deep result may fail to decide whether
a given E-function assumes an algebraic or a transcendental value at some given algebraic point.
Building upon André’s theory of E-operators, Beukers refined in 2006 the Siegel–Shidlovskii
theorem in an optimal way. In this paper, we use Beukers’ work to prove the following result:
there exists an algorithm which, given a transcendental E-function f(z) as input, outputs the
finite list of all exceptional algebraic points α such that f(α) is also algebraic, together with the
corresponding list of values f(α). This result solves the problem of deciding whether values of
E-functions at algebraic points are transcendental.

1. Introduction

In 1929, Siegel [23] wrote a landmark paper in which, amongst other important results,
he introduced the notion of E-function (in a slightly more general way than below) as a
generalization of the exponential function. Let us fix an embedding of the set of algebraic
numbers Q into C and let us denote by O the ring of algebraic integers. A power series
f(z) =

∑∞
n=0

an

n! z
n ∈ Q[[z]] is an E-function if the following three conditions are fulfilled.

(i) The series f(z) is solution of a linear differential equation with coefficients in Q(z).
(ii) There exists C > 0 such that for any σ ∈ Gal(Q/Q) and any n � 0, |σ(an)| � Cn+1.
(iii) There exists D > 0 and a sequence of natural numbers dn �= 0, with |dn| � Dn+1, such

that dnam ∈ O for all m � n.

Note that (i) implies that the coefficients an lie into a certain number field K. Furthermore,
the function f(z) is transcendental over C(z) if and only if an �= 0 for infinitely many n. In
other words, an E-function is algebraic over C(z) if and only if it is a polynomial in Q[z].

Siegel proved [23] a result about the Diophantine nature of the values taken by E-functions
at algebraic points, which was improved by Shidlovskii in 1956 (see [22]).

Theorem 1 (Siegel–Shidlovskii, 1956). Let Y (z) = (f1(z), . . . , fn(z))T be a vector of
E-functions such that Y ′(z) = A(z)Y (z) where A(z) ∈ Mn(Q(z)). Set T (z) ∈ Q[z] such that
T (z)A(z) ∈ Mn(Q[z]). Then for any α ∈ Q such that αT (α) �= 0,

degtrQ(f1(α), . . . , fn(α)) = degtrQ(z)(f1(z), . . . , fn(z)).
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Choosing n = 1 and f1(z) to be the exponential function, one immediately deduces the
famous Hermite–Lindemann theorem: the number eα is transcendental for every non-zero
algebraic number α. It is thus tempting to believe that E-functions should take transcendental
values at non-zero algebraic points. In some sense, this is the case but there may be a finite
number of exceptions, as illustrated by the transcendental E-function f(z) := (z − 1)ez which
vanishes at z = 1. The reason for this exceptional behaviour is that the point z = 1 is a singular
point with respect to the underlying differential system f′(z) = ( z

z−1 )f(z), that is a point such
that αT (α) = 0 in Theorem 1†. As shown in Section 7, the latter implies the following simple
dichotomy: a transcendental E-function solution to a differential equation of order 1 (possibly
inhomogeneous) takes algebraic values‡ at all singular points and transcendental values at
all other algebraic points. However, as powerful as it is, the Siegel–Shidlovskii theorem does
not completely solve the question of the algebraicity/transcendence for the values at algebraic
points of E-functions satisfying higher order equations. There are two reasons for that. First,
in the case of a differential equation of order at least 2, the mere transcendence of the function
f1(z) does not ensure that the number f1(α) is transcendental but only that at least one
amongst the numbers f1(α), . . . , fn(α) is transcendental, assuming furthermore that α is a
regular point, that is, a point which is not singular. The second difficulty arises precisely from
the fact that the Siegel–Shidlovskii theorem does not apply at singular points.

The aim of this paper is to overcome these deficiencies by proving the following result.

Theorem 2. There exists an algorithm to perform the following tasks. Given an E-function
f(z) as input, it first says whether f(z) is transcendental or not. If it is transcendental, it then
outputs the finite list of algebraic numbers α such that f(α) is algebraic, together with the
corresponding list of values f(α).

From now on, we will call exceptional any algebraic number, 0 included, where a given
E-function takes an algebraic value. We will deduce our result from the work of Beukers [10],
where he derived from André’s theory of E-operators [3] the following refinement of the Siegel–
Shidlovskii theorem.

Theorem 3 (Beukers [10]). Under the same assumptions as in Theorem 1, for any
homogeneous polynomial P ∈ Q[X1, . . . , Xn] such that P (f1(α), . . . , fn(α)) = 0, there exists
a polynomial Q ∈ Q[Z,X1, . . . , Xn], homogeneous in the variables X1, . . . , Xn, such that
Q(α,X1, . . . , Xn) = P (X1, . . . , Xn) and Q(z, f1(z), . . . , fn(z)) = 0.

A similar but weaker result, in which the assumption on α is replaced by α ∈ Q \ S where
S is an unspecified finite set, was first proved by Nesterenko and Shidlovskii [19] in 1996.
Another proof of Beukers’ Theorem was found later by André [4], more in the spirit of the
proof of Nesterenko and Shidlovskii. Let us mention two consequences of Beukers’ lifting results.
The first one is explicitly stated in [12] but its proof is essentially due to the referee of [11]
(where it is given in a less general case): Let f(z) be an E-function with Taylor coefficients
all in a number field K. Then for any α ∈ Q, either f(α) /∈ Q or f(α) ∈ K(α). The second
consequence follows from [10, Proposition 4.1]: Let f(z) be a transcendental E-function and
let {α1, . . . , αs} the set of exceptional non-zero algebraic numbers for it. If s � 1, there exist

†We slightly abuse the usual terminology by considering that zero is always a singular point, even when it is
not a pole of the matrix A(z). Indeed, any E-function takes an algebraic value at zero, which makes this point
a singular one from our Diophantine perspective.

‡In fact, such an E-function necessarily vanishes at all non-zero singular points in the homogeneous case.
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some integers m1, . . . ,ms � 1, a polynomial p ∈ Q[z] of degree at most m1 + · · · + ms − 1 and
an E-function g(z) transcendental over Q(z) such that

f(z) = p(z) +

⎛
⎝ s∏

j=1

(z − αj)mj

⎞
⎠ g(z)

and for all α ∈ Q
∗
, g(α) /∈ Q.

Finally, we mention that analogues of all the above mentioned theorems, Theorem 2 included,
have been recently proved in the setting of linear Mahler equations (see [1, 2, 20] for statements
and references). On the other hand, such results are far from being true for G-functions, also
defined and studied by Siegel [23]; see the introduction of [13] for an historical survey.

The proof of Theorem 2 is decomposed in four steps. In Step 1, we discuss how the function
f is given to us as initial input of the algorithm and how to determine an algebraic number.
In Step 2, the algorithm computes a minimal differential equation over Q(z) annihilating f , in
fact over K[z] where K is the number field generated over Q by the Taylor coefficients of f .
In Step 3, it computes a minimal inhomogeneous differential equation over K[z] annihilating
f , and it determines if f is transcendental. If so, let u0 denote the leading polynomial of this
(normalized) equation: we are then ensured by Beukers’ theorem that the exceptional non-zero
numbers α lie amongst the roots of u0. Then, in Step 4 based on the André–Beukers theory,
the algorithm determines which roots α of u0 are indeed such that f(α) ∈ Q. We stress that
there are at most deg(u0) exceptional non-zero numbers α. Furthermore, the degree and height
of u0 can be effectively bounded a priori in terms of L and K. The degree and height of the
corresponding f(α), which is in fact in K(α), can also be bounded a priori in terms of L and K.
We do not provide such explicit bounds because they depend on various huge explicit bounds in
the literature which are already far from optimal, and thus more of theoretical than of practical
interest. We then make some comments about effectivity. In the final section, we illustrate our
strategy with few examples. The last one provides in particular a situation where f(α) can
be transcendental even if u0(α) = 0. In fact, this should be the typical situation. Thus our
algorithm cannot return its output right after Step 3, and Step 4 must be performed.

2. Step 1: comments on Theorem 2

In this section, we first clarify the meaning of the expression Given an E-function f(z)
in Theorem 2. We also precise in which form the exceptional algebraic numbers (and the
corresponding values taken by f) are given by our algorithm.

2.1. How to give an E-function?

Let us write f(z) :=
∑∞

n=0
an

n! z
n. To say that f(z) is an E-function implies that it satisfies a

linear differential equation with polynomial coefficients whose coefficients are algebraic num-
bers, or equivalently, that the sequence (an)n�0 satisfies a linear recurrence with polynomial
coefficients with algebraic coefficients. In order to be able to uniquely determine f(z) from the
knowledge of such a differential equation or such a linear recurrence, one should also know the
values of a0, a1, . . . , am for a sufficiently large positive integer m†. Unfortunately, there is no

†One may need more terms than the order of the recurrence. For instance, the recurrence (n− 1)an = an−1

does not enable to compute a1, whatever value is given to a0; we need to be given a0 and a1 as initial conditions.

More generally, the recurrence
∑d

n=0 pj(n)an−j = 0 is readily computed from the differential equation (see [7,
p. 504; 13, proof of Lemma 2] for formulas): we take m = max(d, g + 1) where g is the largest positive integer
root of p0(n), and m = d if there is no such root. Incidentally, p0 is the indicial polynomial at 0 of the differential
equation.
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known algorithm so far to check from the recurrence whether the sequence (an)n�0 does satisfy
or not the arithmetical properties (ii) and (iii) which are requested in the definition of an E-
function. This is similar to the fact that given a linear differential operator in Q(z)[ d

dz ], there
is no known algorithm to determine whether it has an E-function for solution, except in some
very specific cases. Furthermore, it may happen that no explicit formula for the coefficients an
is known. For these reasons, the expression given an E-function f(z), as in Theorem 2, will
mean in this paper that

(i) one knows explicitly a linear differential operator L ∈ Q(z)[ d
dz ] that annihilates f(z);

(ii) one knows enough coefficients of the Taylor expansion of f(z) to be able to uniquely
determine f(z) from the knowledge of L and thus to be able to compute from L as
many Taylor coefficients of f(z) as needed (see the footnote);

(iii) an oracle guarantees that f(z) is an E-function.

Of course, when considering an E-function in practice, one often knows an explicit formula
for the coefficients an, involving a (possibly multiple) sum of hypergeometric type for instance.
This formula should show that the sequence an satisfies the requested properties (ii) and (iii)
of the definition of E-function. Moreover, to check the differential assumption (i) for f(z),
we can try to use Zeilberger’s algorithm [18, Chapter 7] or its generalization to multiple
hypergeometric sums by Weigschaider [25]: if successful, this provides a differential operator
L ∈ Q(z)[ d

dz ] such that Lf(z) = 0, but which is not necessarily minimal for the degree in d
dz .

In theory, this approach has the defect to work only for E-functions with Taylor coefficients
of multiple hypergeometric type. Again, in practice, all known examples of E-functions turn
out to be of this form. In fact, Siegel [24] asked whether any E-function (in his original sense)
is a linear combination of product of confluent hypergeometric series; see also [22, p. 184].
Gorelov [14] proved a weakened form of the conjecture for E-functions (in Siegel’s original
sense) of orders 1 and 2. For E-functions in the sense of this paper, a more precise version of
Gorelov’s result was proved in [21], building upon certain computations done by Katz in [17].
These results show that E-functions (at least in the sense of this paper) of orders 1 and 2
can be expressed with Kummer confluent hypergeometric functions 1F1[a; b; z], in the spirit of
Siegel’s conjecture. The higher order cases of the conjecture are still open. Another possibility,
that belongs to the folklore, is that any E-function could be obtained as ‘specialization’ of
multivariate GKZ hypergeometric series.

2.2. How to determine an algebraic number?

The situation is similar to the previous one. We say that a complex algebraic number β is
determined if one is able to provide the following.

(i) An explicit non-zero polynomial A ∈ Q[z] such that A(β) = 0; in particular, this provides
explicit bounds on the degree of β over Q and its height.

(ii) A numerical approximation of β sufficiently accurate to be able to distinguish β from
all the other roots of A(z).

3. Step 2: finding the minimal homogeneous differential equation for f(z)

We describe here an algorithm allowing to find a non-zero minimal homogeneous linear
differential equation of a power series f(z) solution of a given homogeneous linear differential
equation with coefficients in Q (embedded into C). Minimality is defined up to a non-zero
polynomial factor; from now on, we make the slight abuse of language to write ‘the’ instead of
‘a’. Given a differential operator L ∈ Q(z)[ d

dz ], the degree of L in d
dz is its order; its degree in z

is the maximum degree amongst all the numerators and denominators of the coefficients of L.
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In order to find a minimal operator from L, we assume that

(i) one knows an explicit differential operator L ∈ Q(z)[ d
dz ] annihilating f , say of order r0

and of degree δ0;
(ii) one knows enough Taylor coefficients of f in order to determine it uniquely from the

knowledge of L.

Under these assumptions, the knowledge of L enables one to compute as many Taylor
coefficients as wanted. Let us denote by Lmin ∈ Q(z)[ d

dz ] the minimal operator annihilating
f . By minimality, Lmin is a right factor of L. By [15, Theorem 1.2] of Grigoriev, it thus follows
that

deg(Lmin) � δ1,

where δ1 is explicit and depends on L†. Of course, Lmin is of order r1 � r0. Let us now describe
an algorithm to find Lmin.

Let 1 � r � r0 and 0 � δ � (r + 1)δ1. Given polynomials P0(z), . . . , Pr(z), not all zero and
of degrees at most δ, let us define

R(z) := P0(z)f(z) + · · · + Pr(z)f (r)(z).

By the multiplicity estimate of Bertrand and Beukers [8, Theorem 1], one has the following
alternative:

either R ≡ 0 or ordz=0R(z) � (δ + c1)r0 + c2r
2
0.

In [9], the constants c1 and c2 are made explicit, and they both depend on L. One can thus
find an explicit natural number N such that

R ≡ 0 ⇐⇒ ordz=0R(z) � N.

Lemma 1 then provides an algorithm to decide whether there exist some polynomials
P0(z), . . . , Pr(z) not all zero and of degrees at most δ, such that

P0(z)f(z) + P1(z)f ′(z) + · · · + Pr(z)f (r)(z) = 0.

Then one can check, for all 1 � r � r0 and 0 � δ � (r + 1)δ1, whether there exists a differential
operator Lr,δ ∈ Q[z, d

dz ] of order at most r and degree at most δ annihilating f . Starting from
r = 1, the smallest r with such a property will provide Lmin, as wanted.

Lemma 1. Let δ and N be two non-negative integers. Let

g0(z) :=
∞∑

n=0

a0(n)zn, . . . , gr(z) :=
∞∑

n=0

ar(n)zn

be explicitly given‡ power series in Q[[z]]. There exists an algorithm to determine whether
there exist some polynomials P0(z), . . . , Pr(z) not all zero and of degree at most δ, such that
the power series

P0(z)g0(z) + · · · + Pr(z)gr(z)

†We use Grigoriev’s notations [15] in this footnote. He showed that δ1 = exp(M(d1d22n)o(2
n)) is suitable,

where the quantities M,d, d1, n can be explicitly computed from the knowledge of our operator L. Because
of the exponent o(2n), the bound might seem ineffective. In fact, his proof shows that o(2n) can be replaced
by

( n
[n/2]

)
, which Grigoriev (private communication) confirmed to us. Hence [15, Theorem 1.2] is completely

explicit. For other methods to compute such a bound, see [16, Section 9].
‡In the sense that one can compute explicitly as many of their Taylor coefficients as needed. In the lemma,

one needs to know aj(n), j = 0, . . . , r, n = 0, . . . , N .
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has order at least N .

Proof. Set g(z) := (g0(z), . . . , gr(z))T and

g(z) :=
∞∑
i=0

giz
i

the power series expansion of g(z). Associated with the power series g(z), one defines the
following (r + 1)(δ + 1) × (N + 1) matrix:

SN (g) :=

⎛
⎜⎜⎜⎜⎝

g0 g1 · · · gδ · · · gN

0 g0
. . . . . . . . . gN−1

...
. . .

...
0 · · · 0 g0 · · · gN−δ

⎞
⎟⎟⎟⎟⎠ .

The form of the matrix SN (g) is reminiscent to Toeplitz matrices. We define the left null space,
or cokernel, of SN (g) by

coker(SN (g)) :=
{
λ ∈ Q

(r+1)(δ+1) ∣∣λT SN (g) = 0T
}
.

Then there exist some polynomials P0(z), . . . , Pr(z) not all zero and of degree at most δ, such
that

P0(z)g0(z) + · · · + Pr(z)gr(z)

has order at least N if, and only if, there exists a non-zero vector λT in coker(SN (g)). This
can be algorithmically determined as it is equivalent to determine whether some linear system
has a non-trivial solution or not. �

Remark 1. Minimality of a differential equation for a given E-function can be verified
by various means, especially if it is of small order, and not necessarily by the very general
procedure described in this section which can be rather lengthy.

4. Step 3: finding the minimal inhomogeneous differential equation for f(z)

Let us assume that we are given a function f(z) solution of a minimal differential equation
r∑

j=0

Pj(z)f (j)(z) = 0, Pj(z) ∈ Q(z) and Pr(z) ≡ 1. (4.1)

We want to find a minimal relation between 1, f(z), f ′(z), . . ., over Q(z). Either (4.1) is such
a minimal relation, or there exists a non-trivial relation

1 +
s∑

j=0

Qj(z)f (j)(z) = 0, Qj(z) ∈ Q(z) (4.2)

for some s � r. In this case, we necessarily have s = r − 1 by minimality of r. Indeed, if
otherwise s � r − 2, we differentiate (4.2) and get a non-trivial relation

s∑
j=0

(
Qj(z)f (j)(z)

)′
= 0 (4.3)

which is of the form (4.1) but of order s + 1 < r, contradiction.
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We now want to decide if there exists a relation with s = r − 1 . We have

0 =
r−1∑
j=0

(
Qj(z)f (j)(z)

)′
=

r−1∑
j=0

(
Q′

j(z)f
(j)(z) + Qj(z)f (j+1)(z)

)

= Qr−1(z)f (r)(z) +
r−1∑
j=0

(
Q′

j(z)f
(j)(z) + Qj−1(z)f (j)(z)

)
(Q−1(z) = 0)

=
r−1∑
j=0

(−Pj(z)Qr−1(z) + Q′
j(z) + Qj−1(z)

)
f (j)(z).

By minimality of r, we must have −PjQr−1 + Q′
j + Qj−1 = 0 for all j, that is,

Q′
j = PjQr−1 −Qj−1

for j = 0, . . . , r − 1, with Q−1 = 0. We then obtain a differential system:⎛
⎜⎜⎜⎜⎜⎝

Q0

Q1

Q2

...
Qr−1

⎞
⎟⎟⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 P0

−1 0 . . . 0 P1

0 −1 . . . 0 P2

...
...

...
...

...
0 0 . . . −1 Pr−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Q0

Q1

Q2

...
Qr−1

⎞
⎟⎟⎟⎟⎟⎠ . (4.4)

Any (Q0, . . . , Qr−1) ∈ Q(z)r such that (4.2) holds with s = r − 1, is a solution of (4.4).
Conversely, if we are given any explicit non-zero solution (Q0, . . . , Qr−1) ∈ Q(z)r of the system
(4.4), then by construction of this system, we obtain an explicit relation of the form (4.3) with
s = r − 1. Hence after integration

r−1∑
j=0

Qj(z)f (j)(z) = c (4.5)

for some constant c which we now have to compute. Since the Taylor coefficients of f(z) and
the rational functions Qj(z) are explicitly known, we can compute the constant term of the
Laurent expansion at z = 0 of the left-hand side of (4.5). This determines an algebraic number
equal to c.

It thus remains to decide whether the system (4.4) has a non-zero rational solution and, if so,
to compute it. There exist algorithms to perform this task, for instance Barkatou’s algorithm [5]
which works over any ground field of characteristic 0.

5. Step 4: applying the André–Beukers theory

In this section, we complete the proof of Theorem 2. Given an E-function f(z) together with
its minimal inhomogeneous differential equation of order s, we describe an algorithm to find
the set of algebraic points, where f takes algebraic values.

First, we remark that f(z) is algebraic over C(z) if and only if s = 0. Indeed, if s = 0, then
f(z) ∈ Q(z), hence f(z) ∈ Q[z] because it is an entire function. Conversely, if f(z) is algebraic
over C(z), then it is a polynomial in Q[z] and thus its minimal inhomogeneous differential
equation is of order s = 0.

Therefore, if after Step 3, our algorithm obtains that s = 0, then f(z) ∈ Q[z] and f takes
algebraic values at all algebraic points. The algorithm stops here.

Let us now assume that after Step 3, the algorithm obtains that s � 1. Then, it follows
from the previous remarks that f(z) is transcendental over C(z) and the algorithm proceeds as
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follows. From the minimal inhomogeneous differential equation of f(z) of order s ∈ {r, r − 1},
one can find some explicit polynomials, u0(z), u1(z), . . . , us+1(z), with u0 �≡ 0, such that⎛

⎜⎜⎜⎝
0

f ′(z)
...

f (s)(z)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0

u1(z)
u0(z)

u2(z)
u0(z)

· · · · · · · · · us+1(z)
u0(z)

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

1
f(z)

...
f (s−1)(z)

⎞
⎟⎟⎟⎠ (5.1)

with 1, f(z), f ′(z), . . . , f (s−1)(z) linearly independent over Q(z). For later use, let B(z) denote
the square matrix in (5.1).

Corollary 1.4 of [10] implies that 1, f(α), . . . , f (s−1)(α) are linearly independent over Q for
any non-zero algebraic numbers which is not a root of u0(z), because such a point is regular
for the system. In particular, f(α) is transcendental for such an algebraic number α.

It thus remains to decide which roots α of u0(z) are such that f(α) ∈ Q. Note that 0 is not
necessarily a root of u0 (as ez shows) and we have to take it into account in (5.3) below. By
[10, Theorem 1.5], there exists an (s + 1) × (s + 1) invertible matrix M(z) with entries in Q[z]
such that

f(z) :=

⎛
⎜⎜⎜⎝

1
f(z)

...
f (s−1)(z)

⎞
⎟⎟⎟⎠ = M(z)

⎛
⎜⎜⎜⎝

e0(z)
e1(z)

...
es(z)

⎞
⎟⎟⎟⎠ , (5.2)

where e0(z), . . . , es(z) is a vector of E-functions solution of a differential system with coefficients
in Q[z, 1/z]. Since the functions ej(z) are Q(z)-linearly independent, [10, Corollary 1.4] implies
again that e0(α), . . . , es(α) are Q-linearly independent for any α ∈ Q

∗
. Thus if f(α) ∈ Q then

there exists λ = (−β, 1, 0, . . . , 0) ∈ Q
s+1

such that the scalar product

0 = λ · f(α) = λM(α)

⎛
⎜⎝

e0(α)
...

es(α)

⎞
⎟⎠

and thus λ belongs to coker(M(α)). The converse is also true and we have thus proved:

{
α ∈ Q : f(α) ∈ Q

}
={

α ∈ Q : u0(α) = 0 and ∃(−β, 1, 0, . . . , 0) ∈ coker(M(α)) ∩ Q
s+1

}
∪ {0} . (5.3)

Provided the matrix M(z) is explicitly known, any algebraic number α in the set on the
right-hand side of (5.3), as well as the corresponding value f(α) = β, is determined.

In the final part of [10], Beukers constructs a suitable matrix M(z) by an effective ‘non-
zero singularity removal’ procedure, which is done one singularity after the other, using gauge
transforms. Starting from a singularity α �= 0 of B(z) of order k say, a sequence of matrices
Bj,α(z) is explicitly computed (for j = 1, then j = 2, etc.) each with a singularity at α of
order k − j; the matrix Bk,α(z) has no singularity at α and we repeat the same process with
its other singularities if there are any. We end up with a matrix M(z)†. The termination
of the procedure is justified at a metalevel by an argument from differential Galois theory
involving a fundamental matrix solution of the system (5.1) (and not only the vector solution
(1, f(z), . . . , f (s−1)(z))T ) but no explicit computation of this matrix is required to run the

†At each step, there is a degree of freedom in the construction of a certain matrix with algebraic coefficients
– called M by Beukers, and the resulting matrix M(z) is not necessarily unique.
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algorithm. We also observe that it is not always necessary to compute M(z) for our Diophantine
purposes. For instance, if B(z) has only one singularity α �= 0 (of order k), we have Bk,α(z) =
M(z) but the construction of one of the matrices Bj,α(z) for some j < k may already determine
whether f(α) ∈ Q or not; this is the case for the second example in Section 7.

6. Some remarks

Our input is an explicit differential operator L =
∑δ

j=0 aj(z)(
d
dz )j in K[z, d

dz ] and an oracle
provides us with an E-function f(z) ∈ K[[z]] such that Lf(z) = 0. The number field K is
explicit in the sense that K = Q[β], for some primitive element β which is determined, with
p as minimal polynomial. This enables us to make all the computations in Steps 2 and 3 in
Q[X]/(p(X)), without roundings. Similarly, in Step 4, we have to work over a finite extension
L of K but again we can work in L = Q[δ] for some determined primitive element δ.

In Step 2, we compute a minimal homogeneous differential equation Lmin ∈ K[z, d
dz ] satisfied

by f(z). The degree and height of its polynomials coefficients can be a priori effectively bounded
in terms of L, K and a certain integer N (equal to the number of needed Taylor coefficients of
f(z)) which itself depends on the degree and height of the coefficients aj .

In Step 3, we compute a minimal inhomogeneous differential equation satisfied by f(z), with
coefficients in K[z]. Again, the degree and height of its polynomial coefficients can be a priori
effectively bounded in terms of Lmin and K. In particular, any non-zero algebraic number α
such that f(α) ∈ Q is a root of the leading polynomial coefficient u0. This provides a priori
bounds for the degree and height of these (potentially) exceptional numbers α in terms of L
and K.

In Step 4, we determine which root α of u0 is indeed such that f(α) ∈ Q. A study of Beukers’
procedure shows that the degree and height of f(α) ∈ K(α) can be effectively a priori bounded
in terms of u0 and α.

As already mentioned, we did not try compute these bounds explicitly because they depend
on various huge explicit bounds in the literature which are already far from optimal, and thus
more of theoretical than of practical interest.

We conclude with a side remark. Beukers’ procedure to compute M(z) and the e′js is in fact
an algorithm to desingularize the differential system (5.1). There exist various procedures to
perform this task (see for instance [6]). But it seems that they cannot detect a priori which
finite singularity of an initial differential system (with coefficients in C(z)) is only apparent,
and thus will not appear in the desingularized system; this is only observed a posteriori on the
output matrix. Since Beukers proves that all non-zero finite singularities of (5.1) are apparent,
we know a priori that these desingularization procedures, when run on (5.1), will produce an
invertible matrix (similar to M(z)) and a vector of E-functions (similar to the functions ej)
solution of a differential system with entries in Q[z, 1/z], hence with at most 0 as a singularity.

7. Examples

In this section, we first explain why the Siegel–Shidlovskii theorem implies the dichotomy
mentioned in the introduction concerning E-functions solutions of order 1 equations. Then we
present three examples of E-functions for which we compute the set of exceptional algebraic
values. Some computations were done with the help of Maple 18.

• Let us assume that f(z) is a transcendental E-function satisfying an inhomogeneous
linear differential equation of order 1. There exist some polynomials a(z), b(z), c(z) ∈ Q[z],
with b(z)c(z) �= 0, such that

a(z) + b(z)f(z) + c(z)f ′(z) = 0. (7.1)
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Without loss of generality, we can assume that a(z), b(z) and c(z) are relatively prime. We
first note that if α is an algebraic regular point for the underlying differential system, then the
Siegel–Shidlovskii theorem implies that f(α) is transcendental (indeed, one has degtrQf(α) =
degtrQ(z)f(z) = 1). On the other hand, if α is a singular point for this system, then c(α) = 0
and thus b(α) �= 0 because a(z), b(z) and c(z) are relatively prime. It follows that

f(α) = −a(α)
b(α)

∈ Q. (7.2)

Furthermore, when f satisfies an homogeneous equation of order 1, that is when a(z) ≡ 0 in
(7.1), then (7.2) shows that f vanishes at all singular points.

• Let us first consider the transcendental E-function

f(z) =
∞∑

n=0

1
n!

(
n∑

k=0

(
n

k

)2(
n + k

n

))
zn.

We will prove that f(α) /∈ Q for any α ∈ Q
∗
.

The function f(z) is solution of the following homogeneous differential equation, which is
minimal for it because it is irreducible in Q(z)[ d

dz ]:

y′′′(z) +
3 − 11z

z
y′′(z) +

1 − 22z + z2

z2
y′(z) +

3 − z

z2
y(z) = 0. (7.3)

The minimal inhomogeneous differential equation satisfied by f(z) is either (7.3) or is of order
2. The latter possibility happens if and only if the differential system

Y ′(z) =

⎛
⎝ 0 0 3−z

z2

−1 0 1−22z+z2

z2

0 −1 3−11z
z

⎞
⎠Y (z)

has a non-zero solution Y (z) ∈ Q(z)3. As there is no such rational solution, (7.3) is indeed the
minimal inhomogeneous differential equation satisfied by f(z). In other words,⎛

⎜⎜⎝
0

f ′(z)
f ′′(z)
f ′′′(z)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 0 0 1
0 3−z

z2
1−22z+z2

z2
3−11z

z

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
f(z)
f ′(z)
f ′′(z)

⎞
⎟⎟⎠ . (7.4)

Since 0 is the only singularity of the matrix in (7.4), we deduce that f(α) /∈ Q for any α ∈ Q
∗
.

Moreover, Beukers’ matrix M(z) and basis (e0, e1, e2, e3) can simply be taken as the identity
matrix and (1, f, f ′, f ′′) respectively, because there is no non-zero singularity to remove in
(7.4).

• Let us now consider the transcendental E-function

f(z) =
∞∑

n=0

n2
(
2n
n

)
(n + 1)2

(z/2)n+1

n!
.

We will prove that f(α) /∈ Q for any α ∈ Q \ {0, 1}, and that f(1) = 1
2 .

The function f(z) is solution of the following homogeneous differential equation, which is
minimal for it:

y′′′(z) +
1 − 2z − 2z2

z(1 + z)
y′′(z) − 1 + 4z + z2

z2(1 + z)
y′(z) = 0. (7.5)
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The minimal inhomogeneous differential equation satisfied by f(z) is either (7.5) or is of order
2. The latter possibility happens if and only if the differential system

Y ′(z) =

⎛
⎜⎝

0 0 0
−1 0 − 1+4z+z2

z2(1+z)

0 −1 1−2z−2z2

z(1+z)

⎞
⎟⎠Y (z)

has a non-zero solution Y (z) ∈ Q(z)3. We find that

Y (z) =
(

1,
(1 − z)(1 − z + 2z2)

z(1 + z)
,
(1 − z)2

1 + z

)T

is indeed such a solution. Hence the minimal inhomogeneous differential equation satisfied by
f(z) is

y(z) +
(1 − z)(1 − z + 2z2)

z(1 + z)
y′(z) +

(1 − z)2

1 + z
y′′(z) = c

for some constant c. Now, the constant term of the Laurent expansion at z = 0 of

f(z) +
(1 − z)(1 − z + 2z2)

z(1 + z)
f ′(z) +

(1 − z)2

1 + z
f ′′(z)

is readily computed and seen to be equal to 1
2 , which is our constant c. Therefore,

z(1 − z)2f ′′(z) = (z − 1)(1 − z + 2z2)f ′(z) − z(1 + z)f(z) +
1
2
z(1 + z) (7.6)

or equivalently ⎛
⎝ 0
f ′(z)
f ′′(z)

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 1
1+z

2(z−1)2 − 1+z
(z−1)2

1−z+2z2

z(z−1)

⎞
⎠

⎛
⎝ 1

f(z)
f ′(z)

⎞
⎠ . (7.7)

At this stage, we are ensured that f(α) /∈ Q for any α ∈ Q \ {0, 1}. To determine the arithmetic
nature of f(1), we start Beukers’ removal process of the singularity 1 in the matrix in (7.7). To
do that, the first step is to multiply both sides of (7.7) by (z − 1)2 and then put z = 1 to get a
non-trivial Q-linear relation between 1, f(1) and f ′(1). This amounts to put z = 1 in (7.6) and
we observe that this gives f(1) = 1

2 . Hence, our problem is already solved and in fact there is
no need to compute Beukers’ matrix M(z).

Finally, the André-Beukers theory ensures that f(z) = 1
2 + (z − 1)g(z) for some E-function

g(z). It is readily checked that g(z) = 2
∑∞

n=0

(
2n
n

) (z/2)n

n! . Moreover, by the same methods
presented here, it can be proved that g(α) /∈ Q for any α ∈ Q

∗
.

• Finally, we present a class of examples showing that the roots of u0 are not always
exceptional values. Given two distinct integers a, b � 1, we consider the E-function f(z) =
zaeaz + zbebz. The minimal differential equation satisfied by f is

f ′′(z) +
1 − (a + b)(1 + z)2

z(1 + z)
f ′(z) +

ab(1 + z)2

z2
f(z) = 0. (7.8)

The latter is easily seen to be the minimal inhomogeneous differential equation satisfied by
f , because a and b are distinct. Thus u0(z) = z2(1 + z). Hence we are ensured that f(α) /∈
Q for any α ∈ Q \ {0,−1}. However, f(−1) = (−1)ae−a + (−1)be−b /∈ Q by the Lindemann–
Weierstrass theorem and thus there is no exceptional α �= 0 for f . Note that −1 is in fact
exceptional for f ′(z) because f ′(z) = (1 + z)(aza−1eaz + bzb−1ebz), so that f ′(−1) = 0; this
can be seen directly from the differential equation (7.8) as well.
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