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ON THE COMPUTATIONAL COMPLEXITY OF ALGEBRAIC

NUMBERS: THE HARTMANIS–STEARNS

PROBLEM REVISITED

BORIS ADAMCZEWSKI, JULIEN CASSAIGNE, AND MARION LE GONIDEC

Abstract. We consider the complexity of integer base expansions of algebraic
irrational numbers from a computational point of view. A major contribution
in this area is that the base-b expansion of algebraic irrational real numbers
cannot be generated by finite automata. Our aim is to provide two natural
generalizations of this theorem. Our main result is that the base-b expansion of
algebraic irrational real numbers cannot be generated by deterministic push-
down automata. Incidentally, this completely solves the Hartmanis–Stearns
problem for the class of multistack machines. We also confirm an old claim
of Cobham from 1968 proving that such real numbers cannot be generated by
tag machines with dilation factor larger than one. In order to stick with the
modern terminology, we also show that the latter generate the same class of
real numbers as morphisms with exponential growth.

1. Introduction

An old source of frustration for mathematicians arises from the study of integer
base expansions of classical constants like

√
2 = 1.414 213 562 373 095 048 801 688 724 209 698 078 569 · · ·

or
π = 3.141 592 653 589 793 238 462 643 383 279 502 884 197 · · · .

While these numbers admit very simple geometric descriptions, a close look at
their digital expansion suggests highly complex phenomena. Over the years, differ-
ent ways have been envisaged to formalize this old problem. This recurring theme
appeared in particular in three fundamental papers, using the language of proba-
bility according to É. Borel [17], the language of dynamical systems according to
Morse and Hedlund [37], and the language of Turing machines according to Hart-
manis and Stearns [30]. Each of these points of view leads to a different assortment
of challenging conjectures. As the title of this paper suggests, the present work
focuses on the latter approach. It is addressed to researchers interested both in
number theory and theoretical computer science. In this respect, we took care to
make the paper as self-contained as possible, and hopefully readable by members
from these different communities.
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After the seminal work of Turing [47], real numbers can be coarsely divided
into two classes. On one side we find the computable real numbers, those whose
base-b expansion can be produced by a Turing machine, while on the other side lie
uncomputable real numbers, which will remain forever beyond the ability of com-
puters. Note that, though most real numbers belong to the second class, classical
mathematical constants are usually computable. This is, in particular, the case
for any algebraic number. However, among computable numbers, some are quite
easy to compute, while others seem to have an inherent complexity that makes
them difficult to compute. In 1965, Hartmanis and Stearns [30] investigated the
fundamental question of how hard a real number may be to compute, introducing
the now classical time complexity classes. The notion of time complexity takes into
account the number T (n) of operations needed by a multitape deterministic Turing
machine to produce the first n digits of the expansion. In this regard, a real num-
ber is considered all the more simple as its base-b expansion can be produced very
quickly by a Turing machine. At the end of their paper, Hartmanis and Stearns
suggested the following problem.

Problem HS. Do there exist irrational algebraic numbers for which the first n
binary digits can be computed in O(n) operations by a multitape deterministic
Turing machine?

Let us briefly recall why Problem HS is still open and likely difficult to solve. On
the one hand, all known approaches to compute the base-b expansion of algebraic
irrational numbers efficiently intimately rely on the cost of the multiplication M(n)
of two n-digit numbers (see, for instance, [18]). This operation is computable in

quasilinear time, that is, computable in O(n logj n) operations for some positive
integer j. However, to determine whether M(n) = O(n) remains a famous open
problem in this area. On the other hand, a negative answer to Problem HS, which
may be the less surprising issue according to [26], would contain a powerful state-
ment about transcendence. A very special instance is the transcendence of the three
simple irrational real-time computable numbers

∞∑
n=1

1

2n!
,

∞∑
n=1

1

2n2 , and

∞∑
n=1

1

2n3 ·

Of course, for the first one, Liouville’s inequality [34] easily does the job. But
the transcendence of the second number only dates back to 1996 [16, 28] and its
proof requires the deep work of Nesterenko on the algebraic independence of values
of Eisenstein series [39]. Finally, the transcendence of the third number remains
unknown.

In 1968, Cobham [26] (also see [24, 25]) was the first to consider the restriction
of the Hartmanis-Stearns problem to some classes of Turing machines. The model
of computation he originally investigated is the so-called tag machine. Though
this model has some historical interest, this terminology is not much used today
by the computer science community. However, the class of sequences output by
tag machines precisely corresponds to the class of morphic sequences, a well-known
object of interest for both mathematicians and computer scientists. The latter
are especially used in combinatorics on words and symbolic dynamics (see, for
instance, [12, 42, 43]). The equivalence between the class of sequences output by
tag machines and the class of morphic sequences follows from [26, 27]. See also,
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for instance, [12, Chapter 7] concerning the more modern terminology of morphic
sequences. In what follows, we will present our result using the terminology of
morphic sequences but, for the interested reader, we describe the connection with
tag machines in Section 5.1.

In his paper, Cobham stated two main theorems without proof and only gave
some hints that these statements should be deduced from a general transcendence
method based on functional equations, now known as Mahler’s method. His first
claim was finally confirmed by the first author and Bugeaud [3], but using a totally
different approach based on a p-adic version of the subspace theorem (see [3, 8]).
Very recently, some advances in Mahler’s method [10, 41] permitted completion of
the proof originally envisaged by Cobham.

Theorem AB (Cobham’s first claim). The base-b expansion of an algebraic irra-
tional number cannot be generated by a uniform morphism or, equivalently, by a
finite automaton.

For definitions of real numbers generated by finite automata and by uniform
morphisms, we refer the reader to Definition 2.3 and Section 2.2.

Remark 1.1. Theorem AB actually refers to two conceptually quite different models
of computation: uniform morphisms and finite automata. There are two natural
ways a multitape deterministic Turing machine can be used to define computable
numbers. First, it can be considered as an enumerator, which means that the
machine produces one by one all the digits of a real number ξ in a given base b on
its output tape. Problem HS originally referred to the model of enumerators. In
the other model, referred to as a Turing transducer, the machine is fed with some
input representing a positive integer n and has to produce on its output tape the
nth digit in the base-b expansion of ξ. In Theorem AB, uniform morphisms (or
originally uniform tag machines) are enumerators while finite automata are used
as transducers. Note that, used as enumerators, finite automata can only produce
eventually periodic sequences of digits and thus rational numbers (see, for instance,
[12, Theorem 5.7.1]). In contrast, used as transducers, finite automata output the
interesting class of automatic sequences (see [12]). The fact that these two models
are equivalent is due to Cobham [27].

Theorem AB is the main contribution to date toward a negative solution to
Problem HS. In this paper, we show that the approach developed in [3, 8] leads to
two interesting generalizations of this result. Our first generalization is concerned
with enumerators. In this direction, we confirm the second claim of Cobham.

Theorem 1.2 (Cobham’s second claim). The base-b expansion of an algebraic
irrational number cannot be generated by a morphism with exponential growth.

For the definition of a real number generated by a morphism with exponential
growth, we refer the reader to Definition 2.6. We stress that, as stated above,
Theorem 1.2 also appeared in the Thèse de Doctorat of Julien Albert [11]. In order
to provide a self-contained proof of Cobham’s second claim, which was originally
formulated in terms of tag machines, we will complete and reprove with permission
some content of [11] in Section 4.1. The fact that Theorem 1.2 is equivalent to
Cobham’s second claim will be proved in Section 5.1.

Our second and main generalization of Theorem AB is concerned with transduc-
ers. We consider a classical computation model called the deterministic pushdown
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automaton. It is of great importance on the one hand for theoretical aspects be-
cause of Chomsky’s hierarchy [23] in formal language theory, and on the other for
practical applications, especially in parsing (see for instance [31,46]). Roughly, such
a device is a finite automaton with an unbounded memory organized as a stack,
that is, as an LIFO data structure. The acronym LIFO stands for Last-In-First-Out
and reflects the way symbols can be stored and removed from the stack. In what
follows, all stacks are LIFO. Our main result is the following.

Theorem 1.3. The base-b expansion of an algebraic irrational number cannot be
generated by a deterministic pushdown automaton.

For the definition of a real number generated by a deterministic pushdown au-
tomaton, we refer the reader to Definition 2.12. In Section 5.2, we use Theorem 1.3
to revisit the Hartmanis–Stearns problem as follows: instead of a time constraint,
we impose a restriction based on the way the memory may be stored by Turing ma-
chines. This leads us to consider a classical computation model called a multistack
machine. It corresponds to a version of the deterministic Turing machine where
the memory is simply organized as stacks. It is as general as the Turing machine if
one allows two or more stacks. Furthermore the one-stack machine turns out to be
equivalent to the deterministic pushdown automaton, while a zero-stack machine is
just the finite automaton of Theorem AB, that is, a machine with a strictly finite
memory only stored in the finite-state control. Incidentally, Theorems AB and 1.3
turn out to completely solve the Hartmanis–Stearns problem for multistack ma-
chines. Our approach also provides a method to prove the transcendence of some
real numbers generated by linearly bounded Turing machines (see the example in
Section 5.3).

This paper is organized as follows. Definitions related to finite automata, mor-
phisms, and pushdown automata are given in Section 2. The useful combinatorial
transcendence criterion of [8], on which our results are based, is recalled in Sec-
tion 3. Section 4 is devoted to the proofs of Theorems 1.2 and 1.3. In connection
with these results, two models of computation are discussed in Section 5: the tag
machine and the multistack machine. Finally, Section 6 is devoted to concluding
remarks regarding factor complexity, some quantitative aspects of this method, and
continued fractions.

2. Finite automata, morphic sequences, and pushdown automata

In this section, we give definitions for a real number to be generated by a finite
automaton, a morphism, and a deterministic pushdown automaton. This provides
a precise meaning to Theorems AB, 1.2, and 1.3.

Throughout this paper, we will use the following notation. An alphabet A is a
finite set of symbols, also called letters. A finite word over A is a finite sequence
of letters in A or, equivalently, an element of A∗, the free monoid generated by A.
The length of a finite word W , that is, the number of symbols in W , is denoted
by |W |. We let ε denote the empty word, the neutral element of A∗. We let A+

denote the set of finite words of positive length over A. If a is a letter and W a
finite word, then |W |a stands for the number of occurrences of the letter a in W .
Let k ≥ 2 be a natural number. We let Σk denote the alphabet {0, 1, . . . , k − 1}.
Given a positive integer n, we set 〈n〉k := wrwr−1 · · ·w0 for the canonical base-k
expansion of n (written from most to least significant digit), which means that
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n =
∑r

i=0 wik
i with wi ∈ Σk and wr �= 0. Note that by convention 〈0〉k := ε.

Let Rk := (Σk \ {0})Σ∗
k denote the language of all canonical base-k expansion of

positive integers. For every positive integer n, there is a unique word w in Rk such
that 〈n〉k = w. Conversely, if w := w0 · · ·wr is a finite word over the alphabet Σk,
we set [w]k :=

∑r
i=0 wr−ik

i. Given a real number ξ ∈ [0, 1), we let 〈ξ〉k := 0.a1a2 · · ·
denote the canonical base-k expansion of ξ, which means that ξ =

∑+∞
i=1 aik

−i with
ai ∈ Σk and ai �= k − 1 for infinitely many indices i. The usual notation {x}, �x	,
and 
x�, respectively, stands for the fractional part, the floor, and the ceiling of the
real number x.

2.1. Finite automata and automatic sequences. A sequence a := (an)n≥0

with values in a finite set is k-automatic if it can be generated by a finite automa-
ton used as a transducer. This means that there exists a finite-state machine (a
deterministic finite automaton with output) that takes as input the base-k expan-
sion of n and produces as output the symbol an. We use the following convention.
Inputs are read from left to right, that is, starting from the most significant digit.
In this paper, this convention is used for all machines which are used as a transducer
(k-automata, k-pushdown automata, k-multistack machines, one-way transducer-
like k-machines).

Let us give now a formal definition of a k-automatic sequence. Let k ≥ 2 be a
natural number. A k-automaton is defined as a 6-tuple A := (Q,Σk, δ, q0,Δ, τ ),
where

• Q is a finite set called the set of states,
• Σk is called the set of input symbols,
• δ : Q× Σk → Q is called the transition function,
• q0 ∈ Q is called the initial state,
• Δ is a finite set called the set of output symbols,
• τ : Q → Δ is called the output function.

Given a state q in Q and a finite word w := w1w2 · · ·wn over the alphabet Σk, we
define δ(q, w) recursively by δ(q, ε) = q and δ(q, w) = δ(δ(q, w1w2 · · ·wn−1), wn).

Definition 2.1. Let A := (Q,Σk, δ, q0,Δ, τ ) be a k-automaton. The output se-
quence produced by A is the sequence (τ (δ(q0, 〈n〉k)))n≥0. Such a sequence is called
a k-automatic sequence. A sequence or an infinite word is said to be automatic if
it is k-automatic for some integer k ≥ 2.

Example 2.2. By a classical result of Lagrange, it is known that every non-negative
integer can be written as the sum of four perfect squares. It is optimal in the sense
that some natural numbers cannot be written as the sum of only three squares.
More precisely, Legendre proved that

∃ a, b, c | n = a2 + b2 + c2 ⇐⇒ � ∃ i, j | n = 4i(8j + 7) ,

where n, a, b, c, i, j are non-negative integers. As a consequence, the binary sequence
s := (sn)n≥0 defined by sn = 1 if n can be written as the sum of three squares and
sn = 0 otherwise is 2-automatic. See Figure 2.1 for a finite automaton generating
the sequence s.

Definition 2.3. A real number ξ can be generated by a deterministic k-automaton
A if, for some integer b ≥ 2, one has 〈{ξ}〉b = 0.a1a2 · · · , where (an)n≥0 corresponds
to the output sequence produced by A.
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A/1

B/1

C/1

F/0 E/1 D/0

0

1

1

0

1
0

0

1

0

1
1

0

Figure 2.1. A 2-automaton generating the sequence s.

Remark 2.4. Note that a0 is not used in Definition 2.3. We could also have required
that (an+1)n≥0 be produced by A. As the set of k-automatic sequences is invariant
under shift [12, Corollary 6.8.5], this would not change the class of real numbers
generated by deterministic k-automata.

Theorem AB thus implies that the binary number

ξ0 := 1.111 111 011 111 110 111 111 101 111 011 011 111 110 · · ·

generated by the 2-automaton of Figure 2.1 is transcendental.

2.2. Morphic sequences. Here we recall some basic definitions. Let A be a finite
alphabet. A map from A to A∗ naturally extends to a map from A∗ into itself called
an (endo)morphism. Given two alphabets A and B, a map from A to B naturally
extends to a map from A∗ into B∗ called a coding or letter-to-letter morphism. A
morphism σ over A is said to be k-uniform if |σ(a)| = k for every letter a in A,
and just uniform if it is k-uniform for some k. A useful object associated with a
morphism σ is the so-called incidence matrix of σ, denoted by Mσ. We first need
to choose an ordering of the elements of A, say A = {a1, a2, . . . , ad}, and then Mσ

is defined by

∀i, j ∈ {1, . . . , d}, (Mσ)i,j := |σ(aj)|ai
.

The choice of the ordering has no importance. A morphism σ over A is said to
be prolongable on a if σ(a) = aW for some word W and if the length of the word
σn(a) tends to infinity with n. Then the word

σω(a) := lim
n→∞

σn(a) = aWσ(W )σ2(W ) · · ·

is the unique fixed point of σ that begins with a. An infinite word obtained by
iterating a prolongable morphism σ is said to be pure morphic. The image of a
pure morphic word under a coding is a morphic word. Thus, to define a morphic
word a, one needs a 5-tuple T := (A, σ, a,B, ϕ) such that a = ϕ(σω(a)), where

• A is a finite set of symbols called the internal alphabet,
• a is an element of A called the starting symbol,
• σ is a morphism of A∗ prolongable on a,
• B is a finite set of symbols called the external alphabet,
• ϕ is a letter-to-letter morphism from A to B.
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When σ is uniform (resp., k-uniform), the sequence a is said to be generated by
a uniform (resp., k-uniform) morphism.

Definition 2.5. A morphism σ is said to have exponential growth if the spectral
radius of the matrix Mσ is larger than one. When σ has exponential growth and
all letters of A appear in σω(a), the sequence a := ϕ(σω(a)) is said to be generated
by a morphism with exponential growth.

Definition 2.6. A real number ξ can be generated by a morphism with exponential
growth if, for some integer b ≥ 2, one has 〈{ξ}〉b = 0.a1a2 · · · , where a := (an)n≥0

can be generated by a morphism with exponential growth.

Theorem 1.2 thus implies the transcendence of the ternary number

ξ1 := 0.212 012 202 101 222 021 201 202 101 222 202 121 22 · · ·
whose expansion is the sequence a := ϕ1(σ

ω
1 (a)), where σ1(a) = acb, σ1(b) = abc,

σ1(c) = c, ϕ1(a) = 0, ϕ1(b) = 1, and ϕ1(c) = 2. One can check that σ1 has
exponential growth for the spectral radius of Mσ1

is 2. In contrast, Theorem 1.2

does not apply to the binary number
∑

2−n2

. Though this number can be generated
by the morphism σ2 defined below, the latter has non-exponential growth. Indeed
the characteristic sequence of squares can be obtained as ϕ2(σ

ω
2 (a)) where σ2(a) =

ab, σ2(b) = ccb, σ2(c) = c, ϕ2(a) = ϕ2(b) = 1, and ϕ2(c) = 0. One can check easily
that the spectral radius of Mσ2

is equal to 1.

Remark 2.7. Following Cobham [26], there is no loss of generality to assume that
the internal morphism σ is a non-erasing morphism, which means that no letter
is mapped to the empty word. Indeed, if an infinite word can be generated by an
erasing morphism, then there also exists a non-erasing morphism that can generate
it. From now on, we will only consider non-erasing morphisms.

It is worth mentioning that the class of sequences generated by uniform mor-
phisms is especially relevant because of the following result of Cobham [27].

Proposition C. A sequence is k-automatic if and only if it can be generated by
some k-uniform morphism.

Furthermore, the proof of Proposition C is completely constructive and provides
a simple way to go from k-uniform morphisms to k-automata and vice versa. This
general feature is exemplified below. For a complete treatment see [27] or [12,
Chapter 6].

q0/0 q1/1

0 0
1

1

Figure 2.2. A 2-automaton generating Thue–Morse sequence.

Example 2.8. The Thue–Morse sequence t := (tn)n≥0 is probably the most fa-
mous example among automatic sequences. It is defined as follows: tn = 0 if
the sum of the binary digits of n is even, and tn = 1 otherwise. It can be
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generated by the following finite 2-automaton, represented in Figure 2.2: A :=
({q0, q1}, {0, 1}, δ, q0, {0, 1}, τ ), where δ(q0, 0) = δ(q1, 1) = q0, δ(q0, 1) = δ(q1, 0) =
q1, τ (q0) = 0 and τ (q1) = 1. The Thue–Morse sequence can as well be gener-
ated by a 2-uniform morphism, for one has t = ϕ(σω(q0)), where σ(q0) = q0q1,
σ(q1) = q1q0, ϕ(q0) = 0, ϕ(q1) = 1.

2.3. Pushdown automata. A pushdown automaton is a classical device, but most
often used in formal language theory as an acceptor, that is, a machine that can ac-
cept or reject finite words and thus defines languages, namely context-free languages
(see, for instance, [13, 14, 31]). In particular, a classical reference about determin-
istic context-free languages and deterministic pushdown automata is [31, Chapter
10]. Our point of view here is slightly different, for we use the pushdown automaton
as a transducer, that is, a machine that associates a symbol with every finite word
over a given input alphabet.

Formally, a k-pushdown automaton is a complete deterministic pushdown au-
tomaton with output, or DPAO for short. It is defined as a 7-tuple M := (Q,Σk,Γ,
δ, q0,Δ, τ ), where

• Q is a finite set called the set of states.
• Σk := {0, 1, . . . , k − 1} is called the set of input symbols.
• Γ is a finite set called the set of stack symbols.
For convenience, a special symbol # denotes the empty word of Γ∗, i.e., the
empty stack.
The set Q× Γ∗ is called the set of (internal) configurations.

• δ : E ⊂ Q × (Γ ∪ {#}) × (Σk ∪ {ε}) → Q × Γ∗ is called the transition
function.

• q0 ∈ Q is called the initial state and (q0,#) is called the initial configuration.
• Δ is a finite set called the set of output symbols.
• τ : Q× (Γ ∪ {#}) → Δ is called the output function.

Furthermore, the transition function satisfies the following conditions:

• Determinism assumption: If (q, s, ε) belongs to E for some (q, s) ∈ Q ×
(Γ ∪ {#}), then no (q, s, a) with a ∈ Σk belongs to E. In this case we say
that M has an ε-move from internal configuration (q, s).

• Completeness assumption: If (q, s, ε) does not belong to E for some (q, s) ∈
Q× (Γ ∪ {#}), then {q} × {s} × Σk ⊂ E.

• Finiteness assumption on ε-moves: There does not exist an infinite sequence
of internal configurations (qi, Si)i≥1 such that δ(qi, si, ε) = (qi+1, Xi) for all
i ≥ 1, where si is the first symbol in Si, or # if Si is empty, Si = S′

isi, and
Si+1 = S′

iXi. This assumption is in particular satisfied when all ε-moves
decrease the stack height (see Remark 2.13).

Remark 2.9. Notice that δ being a function is also a part of the determinism as-
sumption. In a non-deterministic k-pushdown automaton, δ would be defined as a
subset of Q× (Γ ∪ {#})× (Σk ∪ {ε})×Q× Γ∗.

We now want to make sense of the computation τ (δ(q0,#,W )) for any input
word W in Σ∗

k. First, the transition function δ of a k-pushdown automaton can
naturally be extended to a subset of Q× Γ∗ × (Σk ∪ {ε}) by setting

∀S ∈ Γ∗, δ(q, Ss, a) = (q′, SX)
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when δ(q, s, a) = (q′, X) with s ∈ Γ (i.e., s �= #). After reading the symbol a,
the pushdown automaton could reach a configuration (q, S) from which ε-moves
are possible. In such a case, the determinism assumption forces the pushdown
automaton to perform all possible ε-moves before reading the next input symbol,
and the finiteness assumption ensures that this will eventually stop. We stress that
this appears to be a classical convention (see the discussion in [14, Section 5.2])
which can be formalized by using, instead of δ, the function δ defined as follows:⎧⎨

⎩
δ(q, S, a) = δ(δ(q, S, a), ε);

δ(q, S, ε) = (q, S) if (q, S, ε) /∈ E;

δ(q, S, ε) = δ(δ(q, S, ε), ε) if (q, S, ε) ∈ E.

Then δ can be extended to a subset of Q× Γ∗ × Σ∗
k by setting

δ(q, S, wa) = δ
(
δ(q, S, w), a

)
.

This means in particular that M scans its inputs from left to right. We also extend
the output function τ to Q × Γ∗ by simply setting τ (q, Ss) = τ (q, s) for q ∈ Q,
s ∈ Γ, and S ∈ Γ∗.

Definition 2.10. Let M := (Q,Σk,Γ, δ, q0,Δ, τ ) be a k-pushdown automaton.
The sequence (τ (δ(q0,#, 〈n〉k)))n≥0 is called the output sequence produced by M.

This class of sequences is discussed in [22]. They form a subclass of the context-
free sequences (see [22, 38]).

Example 2.11. Usually a deterministic pushdown automaton is represented as
a finite graph whose vertices are labelled by the elements of Q and whose edges
are labelled by transitions as follows: δ(q, s, a) = (q′, X) is represented by the edge

q
(a,s|X)−−−−−→ q′. An example of such internal representation is given by the 2-pushdown

automaton A in Figure 2.3. It outputs the binary sequence

a := 1110111001101000011111101110100000010110 · · ·
whose nth binary digit is 1 if the difference between the number of occurrences of
the digits 0 and 1 in the binary expansion of n is at most 1, and is 0 otherwise.

q1q0q−1

(1,#|X),
(1, X|XX),
(0, X|#)(0,#|#)

(1,#|#)(1,#|#)

(0,#|#)

(0,#|X),
(0, X|XX),
(1, X|#)

Figure 2.3. A 2-pushdown automaton producing the binary ex-
pansion of ξ2.

This automaton works as follows. Being in state q0 means that the part of the
input word that has been already read contains as many 1’s as 0’s. On the other
hand, being in state q1 means that the part of the input word that has been already
read contains more 1’s than 0’s, while being in state q−1 means that it contains
more 0’s than 1’s. Furthermore, in any of these two states, the difference between
the number of 0’s and 1’s (in absolute value) is one more than the number of X’s in
the stack. Thus, the difference between the number of occurrences of the symbols 1
and 0 in the input word is at most 1 if and only if the reading ends with an empty
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stack (regardless of the ending state). Choosing the output function accordingly,
we see that A produces the infinite word a.

Note that, formally, the pushdown automaton described above is defined as
A := ({q0, q1, q−1},Σ2, {X}, δ, q0, {0, 1}, τ ), where the transition function δ is given
by

δ(q0,#, 0) = (q−1,#), δ(q1,#, 0) = (q0,#), δ(q−1,#, 0) = (q−1, X),
δ(q0,#, 1) = (q1,#), δ(q1,#, 1) = (q1, X), δ(q−1,#, 1) = (q0,#),
δ(q0, X, 0) = (q0,#), δ(q1, X, 0) = (q1,#), δ(q−1, X, 0) = (q−1, XX),
δ(q0, X, 1) = (q0,#), δ(q1, X, 1) = (q1, XX), δ(q−1, X, 1) = (q−1,#),

and where the output function τ is defined by

τ (q0,#) = τ (q1,#) = τ (q−1,#) = 1

and

τ (q0, X) = τ (q1, X) = τ (q−1, X) = 0 .

The two transitions from q0 to q0 with stack symbol X ensure completeness of the
automaton, but they are never used in actual computations, so we omitted them
in Figure 2.3.

Definition 2.12. A real number ξ can be generated by a deterministic k-pushdown
automaton M if, for some integer b ≥ 2, one has 〈{ξ}〉b = 0.a1a2 · · · , where (an)n≥0

corresponds to the output sequence produced by M.

Theorem 1.3 thus implies the transcendence of the binary number

ξ2 := 1.110 111 001 101 000 011 111 101 110 100 000 010 110 · · ·
whose binary expansion is the infinite word a of Example 2.11.

Remark 2.13. About ε-moves.— Since we only consider deterministic pushdown
automata, we can assume without loss of generality that all ε-moves decrease the
stack height, that is, δ(q, s, ε) = (q′, X) implies s �= # and X = # (see, for instance,
[14, Proposition 5.4], or [31, Exercise 10.2(a)]).

Normal forms.— Further assumptions may be made without loss of generality.
For instance, we can assume that the transition function has only moves of the form
δ(q, s, a) = (q′,#), known as pop moves, and of the form δ(q, s, a) = (q′, ss′), with
s′ ∈ Γ, known as push moves (see [31, Lemma 10.2]).

About input words.— In our model of k-pushdown automaton, we choose to feed
our machines only with the canonical base-k expansion of each non-negative integer
n. Instead, we could as well imagine to ask that τ (δ(q0,#, w)) remain the same
for all words w ∈ Σ∗

k such that [w]k = n, that is, τ (δ(q0,#, w)) = τ (δ(q0,#, 0jw))
for every natural number j. Such a change would not affect the class of output
sequences produced by k-pushdown automata. The discussion is similar to the case
of the k-automaton and we refer to [12, Chapter 5] for more details.

Our second remark concerning inputs is more important. In our model, the k-
pushdown automaton scans the base-k expansion of a positive integer n starting
from the most significant digit. This corresponds to the usual way humans read
numbers, that is from left to right. In the case of the k-automaton, this choice is of
no consequence because both ways of reading are known to be equivalent. However,
this is no longer true for k-pushdown machines, as the class of deterministic context
free languages is not closed under reversal (see, for instance, [31, p. 281]).
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About uniqueness.— There always exist several different k-pushdown automata
producing the same output. In particular, it is possible to choose one with a single
state (by encoding the state into the stack). The 2-automaton given in Figure 2.3
is certainly not the smallest one with respect to the number of states, but it makes
the process of computation more transparent and it only uses one ordinary stack
symbol.

3. A combinatorial transcendence criterion

In this section, we recall the fundamental relation between Diophantine approxi-
mation and repetitive patterns occurring in integer base expansions of real numbers.

Let A be an alphabet and let W be a finite word over A. For any positive integer
m, we write Wm for the word

W · · ·W︸ ︷︷ ︸
m times

(the concatenation of the word W repeated m times). More generally, for any
positive real number x, W x denotes the word W �x�W ′, where W ′ is the prefix of
W of length 
{x}|W |�. The following natural measure of periodicity for infinite
words was introduced in [4] (also see [1, 9]).

Definition 3.1. The Diophantine exponent of an infinite word a is defined as the
supremum of the real numbers ρ for which there exist arbitrarily long prefixes of
a that can be factorized as UV α, where U and V are two finite words (U possibly
empty) and α is a real number such that

|UV α|
|UV | ≥ ρ.

The Diophantine exponent of a is denoted by dio(a).

Of course, for any infinite word a one has the following relation:

1 ≤ dio(a) ≤ +∞.

Furthermore, dio(a) = +∞ for an eventually periodic word a, but the converse is
not true. There is some interesting interplay between the Diophantine exponent
and Diophantine approximation, which is actually responsible for the name of the
exponent. Let ξ be a real number whose base-b expansion is 0.a1a2 · · · . Set a :=
a1a2 · · · . Let us assume that the word a begins with a prefix of the form UV α,
with V �= ε. Set q := b|U|(b|V | − 1). A simple computation shows that there exists
an integer p such that

〈p/q〉b = 0.UV V V · · · .
Since ξ and p/q have the same first |UV α| digits in their base-b expansion, we
obtain that ∣∣∣∣ξ − p

q

∣∣∣∣ < 1

b|UV α|

and thus

(3.1)

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qρ
,

where ρ := |UV α|/|UV |.
We do not claim here that p/q is written in lowest terms. Actually, it may

happen that the gcd of p and q is quite large but (3.1) still holds in that case.
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By Definition 3.1, it follows that for every ρ < dio(a), there exist infinitely many
rational numbers p/q such that ∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qρ
·

Note that when dio(a) < 2, such approximations look quite bad, for the existence of
much better ones is ensured by the theory of continued fractions or by the Dirichlet
pigeonhole principle. Quite surprisingly, the inequality dio(a) > 1 is already enough
to conclude that ξ is either rational or transcendental. This powerful combinatorial
transcendence criterion, proved in [8] and restated in Proposition ABL, emphasizes
the relevance of the Diophantine exponent for our purpose.

Proposition ABL. Let ξ be a real number with 〈{ξ}〉b := 0.a1a2 · · · . Suppose that
dio(a) > 1 where a := a1a2 · · · . Then ξ is either rational or transcendental.

Proposition ABL is obtained as a consequence of the p-adic subspace theorem.
It is the key tool for proving Theorem AB, and it will be the key tool for proving
Theorems 1.2 and 1.3 as well.

4. Proof of Theorems 1.2 and 1.3

In this section, we prove our two main results.

4.1. Proof of Theorem 1.2. In order to prove Theorem 1.2, we first need the
following definition.

Definition 4.1. Let A be a finite set and let σ be a morphism of A∗. A letter
b ∈ A is said to have maximal growth if there exists a real number C such that

|σn(c)| ≤ C|σn(b)|
for every letter c ∈ A and every positive integer n.

Lemma 4.2. Let A be a finite set and a ∈ A. Let σ be a morphism of A∗ pro-
longable on a and such that all letters of A appear in σω(a). Then the letter a has
maximal growth. Let θ denote the spectral radius of Mσ. Furthermore, there exist
a non-negative integer � and two positive real numbers c1 and c2 such that

(4.1) c1n
�θn < |σn(a)| < c2n

�θn

for every positive integer n.

Proof. Let c be a letter occurring in σω(a). Then c also occurs in σr(a), for some
positive integer r. Then

|σn(c)| ≤ |σn+r(a)| = |σr(σn(a))| ≤ ‖Mσr‖∞|σn(a)| ,
where ‖ · ‖∞ stands for the usual infinite norm. This shows that a has maximal
growth. Now recall that by a classical result of Salomaa and Soittola (see, for
instance, Theorem 4.7.15 in [21]), there exist a non-negative integer �, a real number
β ≥ 1, and two positive real numbers c1 and c2 such that

(4.2) c1n
�βn < |σn(a)| < c2n

�βn

for every positive integer n. Since a has maximal growth, a classical theorem on
matrices due to Gelfand (see, for instance, [21]) implies that β must be equal to θ,
the spectral radius of the incidence matrix of σ. �
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Proposition 4.3. Let a be an infinite sequence that can be generated by a morphism
with exponential growth. Then dio(a) > 1.

Proof. Let a be an infinite sequence that can be generated by a morphism with
exponential growth. Then a = ϕ(σω(a)) for some morphism σ with exponential
growth defined over a finite alphabet A, and some coding ϕ. Furthermore, we recall
that the spectral radius θ of the incidence matrixMσ satisfies θ > 1. Set u := σω(a).
Since by definition σ is prolongable on a and all letters of A appear in u, Lemma 4.2
implies that a has maximal growth and that there exist a non-negative integer �
and two positive real numbers c1 and c2 such that

(4.3) c1n
�θn < |σn(a)| < c2n

�θn

for every positive integer n.

Remark 4.4. If a ∈ A is a letter of maximal growth, and b ∈ A is not a letter of
maximal growth, then for any positive real number ε, one has |σn(b)| < ε|σn(a)|
for sufficiently large n.

We now prove that there are infinitely many occurrences of letters with maxi-
mal growth in u. Let us argue by contradiction. If there are only finitely many
occurrences of letters with maximal growth, then there exists a positive integer n0

such that u = σn0(a)w where w is an infinite word that contains no letter with
maximal growth. Since θ > 1, there is an integer m0 such that

(4.4) c2/θ
m0 < c1/2.

Let V0 denote the unique finite word such that σn0+m0(a) = σn0(a)V0. Then for
every positive integer n we get that

|σn+n0+m0(a)| = |σn+n0(a)|+ |σn(V0)| ≤ c2(n+ n0)
�θn+n0 + |σn(V0)| .

Given ε > 0, we have that |σn(V0)| < εn�θn for all n sufficiently large, since by
construction V0 contains no letter with maximal growth. Choosing ε = c1/2, we
then infer from (4.4) that

|σn+n0+m0(a)|
(n+ n0 +m0)�θn+n0+m0

< c1 ,

when n is large enough. This provides a contradiction with (4.3).
Since there are infinitely many occurrences in u of letters with maximal growth,

the pigeonhole principle ensures the existence of such a letter b that occurs at least
twice in u. In particular, there exist two possibly empty finite words U and V such
that UbV b is a prefix of u. Set r := |U |, s := |bV |, and for every non-negative
integer n, Un := σn(U), Vn := σn(bV ). Since by definition u is fixed by σ, we get
that UnV

δn
n is a prefix of u, where δn := 1+ |σn(b)|/|σn(bV )|. Since b has maximal

growth, there exists a positive real number c3 such that

|σn(c)| ≤ c3|σn(b)|
for every letter c in u. We thus obtain that

|UnV
δn
n |

|UnVn|
= 1 +

|σn(b)|
|σn(UbV )| ≥ 1 +

1

c3(r + s)
> 1.

This proves that dio(u) > 1. By definition, one has a := ϕ(u). It thus follows that
dio(a) ≥ dio(u) > 1, because applying a coding to an infinite word cannot decrease
the Diophantine exponent. This ends the proof. �
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Proof of Theorem 1.2. The result follows directly from Propositions ABL and 4.3.
�

4.2. Proof of Theorem 1.3. In order to prove Theorem 1.3, we first introduce
a useful and natural equivalence relation on the set of internal configurations of a
pushdown automaton. This equivalence relation is closely related to the classical
Myhill-Nerode relation used in formal language theory. Roughly, we think of two
configurations as being equivalent if, starting from each configuration, there is no
way to distinguish them by feeding the machine with arbitrary inputs.

Let us introduce some notation. An internal configuration of a k-pushdown
automaton M := (Q,Σk,Γ, δ, q0,Δ, τ ) is a pair C := (q, S) ∈ Q × Γ∗ where q
denotes the state of the finite control and S denotes the word on the stack. Given
an input word w, CM(w), or C(w) for short if there is no risk of confusion, denotes
the internal configuration reached by the machine M when it is started from the
initial configuration and fed with the input w, that is, C(w) := δ(q0,#, w). By
the way, τ (C(w)) denotes the corresponding output symbol produced by M. We
also use the classical notation C �w C ′ to express that starting from the internal
configuration C and reading the input word w, the machine enters into the internal
configuration C ′, that is, when C ′ = δ(C,w). When the input alphabet is Σk and
n is a natural number, we simply write C(n) instead of C(〈n〉k).

Definition 4.5. Let M be a k-pushdown automaton. Given two configurations
C1 and C2 of M, we say that C1 and C2 are equivalent, and we write C1 ∼ C2 if,
for every input word w ∈ Σ∗

k, one has τ (δ(C1, w)) = τ (δ(C2, w)).

It is obvious that ∼ is an equivalence relation. We are now ready to state the
following simple but key result.

Proposition 4.6. Let ξ be a real number generated by a k-pushdown automaton.
If there exist two distinct positive integers n and n′ such that C(n) ∼ C(n′), then
ξ is either rational or transcendental.

Proof. Let ξ be a real number whose base-b expansion can be generated by a k-
pushdown automaton M. Let a := (an)n≥0 be the output sequence of M, so that
〈{ξ}〉b = 0.a1a2 · · · . Let us assume that there exist two positive integers n and n′,
n < n′, such that C(n) ∼ C(n′). Set wn := 〈n〉k and w′

n := 〈n′〉k. By definition of
the equivalence relation, one has

a[wnw]k = a[w′
nw]k

for every word w ∈ Σ∗
k. Given a positive integer �, we obtain in particular the

following equalities:

(4.5) ∀i ∈ [0, k� − 1], ak�n+i = ak�n′+i .

Set U� := a1a2 · · · ak�n−1 and V� := ak�nak�n+1 · · · ak�n′−1. We thus deduce from
(4.5) that the word

U�V
1+1/(n′−n)
� = a1a2 · · · ak�n−1ak�nak�n+1 · · · ak�n′−1ak�n · · · ak�n+k�−1

is a prefix of a. Furthermore, one has

|U�V
1+1/(n′−n)
� |/|U�V�| = 1 +

1

n′ − 1/k�
≥ 1 +

1

n′ ·
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Since the exponent 1 + 1/n′ does not depend on �, this shows that

dio(a) ≥ 1 + 1/n′ > 1 .

Then Proposition ABL implies that ξ is either rational or transcendental, which
ends the proof. �

With this proposition in hand, we observe that Theorem AB becomes obvious.

Proof of Theorem AB. Indeed, a finite k-automaton can be seen as a k-pushdown
automaton with empty stack alphabet (transitions only depend on the state and
do not act on the stack), so a configuration is just given by the state of the finite
control, and the empty stack.

Since there are only a finite number of states, a finite automaton has only a finite
number of different possible configurations. By the pigeonhole principle, there thus
exist two distinct positive integers n and n′ such that C(n) = C(n′). Then the
proof follows from Proposition 4.6. �

We are now ready to prove Theorem 1.3. As mentioned to the authors by the
referee, the argument in the following proof is similar to the one given in the proof
of Theorem 4.7.4 in [44].

Proof of Theorem 1.3. Let ξ be a real number that can be generated by a k-
pushdown automaton, say M := (Q,Σk,Γ, δ, q0,Δ, τ ). Given an input word w ∈
Σ∗

k, we let qw denote the state reached by M when starting from its initial config-
uration and reading the input w. We also let S(w) ∈ Γ∗ denote the corresponding
contents of the stack of M and H(w) denote the corresponding stack height, that
is, the length of the word S(w). With this notation, we obtain that starting from
the initial configuration (q0,#) and reading the input w, M reaches the internal
configuration (qw, S(w)), that is, (q0,#) �w (qw, S(w)).

For every positive integer m, we consider the set

Hm := {w ∈ Rk : H(w) ≤ m} .

We distinguish two cases.
(i) Let us first assume that there exists a positive integer m such that Hm is

infinite. Note that for all w ∈ Hm, the configuration C(w) := (qw, S(w)) belongs
to the finite set Q×Γ≤m, where Γ≤m denotes the set of words of length at most m
defined over Γ. SinceHm is infinite, the pigeonhole principle ensures the existence of
two distinct words w and w′ in Hm such that C(w) = C(w′). Setting n := [w]k and
n′ := [w′]k, we obtain that n �= n′ and C(n) = C(n′). In particular, C(n) ∼ C(n′).
Then Proposition 4.6 applies, which concludes the proof in this case.

(ii) We now turn to the case where all the sets Hm are finite. For everym ≥ 1, we
can thus pick a word vm in Hm with maximal length. Note that since Hm ⊂ Hm+1,
we have |vm| ≤ |vm+1|. Furthermore, one has

Rk =

∞⋃
m=1

Hm ,

which implies that the set {vm : m ≥ 1} is infinite.
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As discussed in Remark 2.13, we can assume without loss of generality that all
ε-moves of M decrease the stack height. Furthermore, recall that all possible ε-
moves are performed after reading the last symbol of a given input. This leads to the
following alternative. For every internal configuration (qw, S(w)) with H(w) �= 0,
each time a new input symbol a is consumed:

• either the stack height is decreased, which means that H(wa) < H(w), and,
moreover, S(wa) is a prefix of S(w),

• or only the topmost symbol of the stack has been modified, which means
that there exist two words X,Y ∈ Γ∗ and a letter z ∈ Γ such that S(w) =
Xz while S(wa) = XY .

The definition of vm ensures that

(4.6) ∀w ∈ Σ∗
k, H(vm) < H(vmw) .

Furthermore, if m is large enough, we have that |vm| > |v1|, so that H(vm) > 1.
For such m, let us decompose the stack word S(vm) as

S(vm) = Xmzm ,

where zm ∈ Γ is the topmost stack symbol. Inequality (4.6) implies that for all
w ∈ Σ∗

k, the word Xm is a prefix of the stack word S(vmw). In other words, the
part of the stack corresponding to the word Xm will never be modified or even read
during the computation (qvm , S(vm)) �w (qvmw, S(vmw)). This means precisely that

(qvm , S(vm)) ∼ (qvm , zm) .

Note that (qvm , zm) ∈ Q × Γ, which is a finite set, while we already observed
that {vm : m ≥ 1} is infinite. The pigeonhole principle thus implies the existence
of two distinct integers m and m′ such that vm �= vm′ and C(vm) ∼ C(vm′).
Setting n := [vm]k and n′ := [vm′ ]k, we get that C(n) ∼ C(n′) and n �= n′. Then
Proposition 4.6 applies, which ends the proof. �

5. Some related models of computations:

Tag machines and stack machines

In this section, we complete our study by discussing different types of machines.
We first consider the tag machine that was originally introduced by Cobham [26]
and we prove that Theorem 1.2 is equivalent to Cobham’s second claim. Then we
introduce a general model of computation called a multistack machine and we show
how Theorem 1.3 allows us to solve the Hartmanis–Stearns problem for this class
of machines.

5.1. Tag machine. In [26], Cobham originally investigated a model of computa-
tion, called a tag machine, whose outputs turn out to be precisely the morphic
sequences defined in Section 2.2. Here we describe this model and the associated
notion of dilation factor, and prove the equivalence between sequences produced by
a tag machine with dilation factor larger than one and sequences generated by a
morphism with exponential growth. This shows that Theorem 1.2 is equivalent to
Cobham’s second claim, as claimed in the introduction.
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A tag machine is a two-tape enumerator that can be described as follows. In
internal structure, a tag machine T (see Figure 5.1) has

• a finite state control,
• a working tape on which operate a read-only head R and a write-only head
W.

In external structure, M has

• an output tape on which operates a write-only head W′ and from which
nothing can be erased.

��������
��������
��������
��������

��������
��������
��������
��������

a σ(a)

ϕ(a)

R W

W
′

Q

Working tape

Finite control

Output tape

Figure 5.1. A tag machine.

Let us briefly describe how a tag machine operates. The finite state control of
T contains the following basic information:

• a finite set of symbols A together with a special starting symbol a0,
• for every symbol a ∈ A, a (possibly empty) finite word σ(a) over A,
• for every symbol a ∈ A, a symbol ϕ(a) in another finite set of symbols B.

When the computation starts, R and W are both positioned on the leftmost
square of the blank working tape and W proceeds by writing the word σ(a0), one
symbol per square. Then both heads R and W move one square right, R scans the
symbol written in the corresponding square, say a, and W proceeds by writing the
word σ(a). Again, both heads move one square to the right and the process keeps
on forever unless R and W reach the same square of the working tape, in which
case the machine stops. Meanwhile, each time R reads a symbol a on the working
tape, W′ writes the symbol ϕ(a) on the output tape and moves one square right.
Each symbol written on the output tape is thus irrevocable and cannot be erased
in the process of computation. The output sequence produced by T is the sequence
of symbols written on its output tape.

Using this description [26], Cobham extracts the following usual definition of a
tag machine in terms of morphisms which confirms that output of tag machines
and morphic sequences are the same.

Definition 5.1. A tag machine is a 5-tuple T := (A, σ, a,B, ϕ) where

• A is a finite set of symbols called the internal alphabet,
• a is an element of A called the starting symbol,
• σ is a morphism of A∗ prolongable on a,
• B is a finite set of symbols called the external alphabet.,
• ϕ is a letter-to-letter morphism from A to B.
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The output sequence of T is the morphic sequence ϕ(σω(a)). A tag machine
is said to be uniform (resp., k-uniform) when the morphism σ has the additional
property to be uniform (resp., k-uniform).

In [26], Cobham also introduced the following interesting quantity which mea-
sures the rate of production of symbols by a tag machine.

Definition 5.2. The (minimum) dilation factor of a tag machine T is defined as

d(T ) := lim inf
n→∞

W(n)

n
,

where W(n) denotes the position of the write-only head W of T when the read-only
head R occupies the nth square of the working tape.

Remark 5.3. It follows from Definition 5.1 that W(n) = |σ(u1u2 · · ·un)|, where
u1u2 · · ·un is the prefix of length n of the infinite word σω(a).

It is easy to see that uniform tag machines, or equivalently finite automata used
as transducers (see Section 2.2), all have dilation factor at least two. As already
mentioned, Cobham claimed that the base-b expansion of an algebraic irrational
number cannot be generated by a tag machine with dilation factor larger than
one. This result will immediately follow from Theorem 1.2 once we have proved
Proposition 5.4 below. It is stated without proof by Cobham in [26].

Proposition 5.4. Let T := (A, σ, a,B, ϕ) be a tag machine. Then the following
statements are equivalent:

(i) d(T ) > 1.
(ii) The spectral radius of Mσ is larger than one.

Proof. Let us first prove that (i) implies (ii). Since d(T ) > 1, Remark 5.3 ensures
the existence of a positive real number ε such that

|σn+1(a)|
|σn(a)| =

W(|σn(a)|)
|σn(a)| > 1 + ε

for every n sufficiently large. This implies that there exists a positive real number
c such that

|σn(a)| > c(1 + ε)n

for every positive integer n. By Lemma 4.2, we obtain that θ, the spectral radius
of Mσ, must satisfy θ ≥ 1 + ε > 1.

Let us now prove that (ii) implies (i). Let θ > 1 denote the spectral radius
of Mσ. We argue by contradiction assuming that d(T ) = 1. Let u := σω(a). By
Lemma 4.2, there exist a non-negative integer �, and two positive real numbers c1
and c2 such that

(5.1) c1n
�θn < |σn(a)| < c2n

�θn

for every positive integer n. Set C := ‖Mσ‖∞. Let ε be a positive real number and
let m be a positive integer such that

θm > C(1 + ε)c2/c1 .

We then infer from (5.1) that

|σm+n(a)| > c1(m+ n)�θm+n > θmc1n
�θn > C(1 + ε)c2n

�θn
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and thus

|σm+n(a)| > C(1 + ε)|σn(a)|
for every positive integer n. Let N be a positive integer and let u1u2 · · ·uN denote
the prefix of length N of u. Let n be the largest integer such that σn(a) is a prefix
of u1u2 · · ·uN . It thus follows that

|σm(u1 · · ·uN )| ≥ |σm(σn(a))| = |σm+n(a)| > C(1 + ε)|σn(a)| .
Since the definition of n ensures that |σn(a)| > N/C, we have

(5.2) |σm(u1u2 · · ·uN )| > (1 + ε)N .

On the other hand, for every δ > 0 there exists a positive integer N such that:

|σ(u1u2 · · ·uN )|
N

< 1 + δ ,

since by assumption d(T ) = 1. Let V be the finite word defined by the relation
σ(u1u2 · · ·uN ) = u1u2 · · ·uNV . Thus |V | < δN . Now it is easy to see that

σm(u1u2 · · ·uN ) = u1u2 · · ·uNV σ(V ) · · ·σm−1(V ) ,

which implies that

|σm(u1u2 · · ·uN )| < N + δN + CδN + · · ·+ Cm−1δN .

Choosing δ < ε(C − 1)/(Cm − 1), we get that |σm(u1u2 · · ·uN )| < (1 + ε)N , which
contradicts (5.2). This ends the proof. �

5.2. The Hartmanis-Stearns problem for multistack machines. In this sec-
tion, we discuss how our main result allows us to revisit the Hartmanis–Stearns
problem as follows. Instead of a time constraint, we impose a restriction based on
the way the memory may be stored by Turing machines. We consider a classical
model of computation called a multistack machine. It corresponds to a version of
the deterministic Turing machine where the memory is organized as stacks. It is
as general as the Turing machine if one allows two or more stacks. Furthermore
the one-stack machine turns out to be equivalent to the deterministic pushdown
automaton, while a zero-stack machine is just a finite automaton (a machine with
a strictly finite memory only stored in the finite state control).

For a formal definition of Turing machines the reader is referred to any of the
classical references such as [31, 36, 45]. We will content ourself with the following
informal definition of a multistack machine. A multistack machine (see Figure 5.2)
is a one-way multitape deterministic Turing machine in which the memory is orga-
nized as stacks. Used as a transducer, it can be divided into three parts:

• the input tape, on which there is a read-only head which cannot go to the
left (one-way machine),

• the internal part, which consists of a finite control and working tapes or-
ganized as stacks (the head of each working tape is always located on the
rightmost non-blank symbol so that the tape can be thought of as a stack
with a head on the topmost symbol),

• the output tape on which there is a write-only head and from which nothing
can be erased.

Let us briefly describe how such a machine operates. A move on a multistack
machine is based on the current state of the finite control, the input symbol read,
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w1 w2 w3 w4 w5

s1 s2 s3 s4 s5 s6 s7
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Working stacks
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Figure 5.2. A one-way stack machine.

and the top stack symbol on each of the stacks, and involves the following actions:

• for each stack, replacing the top symbol with a (possibly empty) string of
stack symbols;

• moving the head of the input tape to the right;
• changing the finite state control to a new state.

Remark 5.5. Again, to make the machine deterministic, a move is uniquely deter-
mined by the knowledge of the input symbol read, the state of the finite control,
and the top symbol of each stack. As for pushdown automata, a multistack machine
can also possibly perform an ε-move: a move for which the head of the input tape
does not move. The possibility of such a move depends only on the current state of
the finite control and the top stack symbol on each of the stacks. Also, a multistack
machine is not allowed to stop its computation in a state from which an ε-move is
possible.

After reading an input word w, a multistack machine M produces an output
symbol a(w) that belongs to a finite output alphabet. The symbol a(w) depends
only on the state of the finite control and the top symbol of each stack. Given an
integer k ≥ 2, a k-multistack machine is a multistack machine that takes as input
the base-k expansion of an integer, that is, for which the input alphabet is Σk. In
that case, the sequence (a(〈n〉k))n≥0 is called the output sequence produced by M.
With these definitions, a deterministic k-pushdown automaton is nothing else than
a k-multistack machine with a single stack. One can now define the class of real
numbers generated by multistack machines as follows.

Definition 5.6. A real number ξ can be generated by a k-multistack machine M
if, for some integer b ≥ 2, one has 〈{ξ}〉b = 0.a1a2 · · · , where (an)n≥0 corresponds
to the output sequence produced by M. A real number can be generated by a
multistack machine if it can be generated by a k-multistack machine for some k.

Theorem 1.3 (resp., Theorem AB) may now be rephrased as follows: No alge-
braic irrational can be generated by a one-stack (resp., by a zero-stack) machine.
Incidentally, this result turns out to provide a complete picture concerning the
Hartmanis-Stearns problem for multistack machines. Indeed, since the two-stack
machine has the same power as the general Turing machine, any computable number
(and in particular any algebraic number) can be generated by a two-stack machine.
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5.3. Beyond pushdown automata. We stress now that the equivalence relation
∼ given in Definition 4.5 and the associated Proposition 4.6 can be naturally ex-
tended to more general models of computation. For a multistack machine and more
generally for a multitape Turing machine, an internal configuration is determined
by the state of the finite control and the complete knowledge of all the working
tapes (that is, the word written on each tape). To use the equivalence given in Def-
inition 4.5 and the associated Proposition 4.6 we do not need to concretely describe
how the working part of the machine is organized (stacks, tapes, or whatever). All
that we need is to work with a machine with a one-way input tape and an output
tape on which every symbol written is irrevocable. We refer to these machines as
one-way transducer-like machines. When fed with a word, such a machine reads it
with a one-way reading head, and outputs a single letter on its output tape.

Let k ≥ 2 be an integer. A one-way transducer-like k-machine is defined as a
6-tuple M := (Σk, C, δ, C0,Δ, τ ) where

• Σk := {0, 1, . . . , k − 1} is called the alphabet of input symbols,
• C is a countable set called the set of configurations,
• δ : C × Σk → C is called the transition function,
• C0 ∈ C is called the initial configuration,
• Δ is a finite set called the alphabet of output symbols,
• τ : C → Δ is called the output function.

Note that we assume that the machine is complete, that is, δ is defined on all
of C × Σk. With this condition, the transition function can be extended to Σ∗

k by
setting, for every w ∈ Σ∗

k and i ∈ Σk, δ(C,wi) = δ(δ(C,w), i).

Definition 5.7. Let M := (Σk, C, δ, C0,Δ, τ ) be a one-way transducer-like k-
machine. The output sequence produced by M is the sequence (τ (C(n)))n≥0 where
C(n) := δ(C0, 〈n〉k) is the configuration reached by M after reading the input word
〈n〉k.
Remark 5.8. Without any further restriction, one-way transducer-like k-machines
can output any sequence (an)n≥0 with values in a finite alphabet. This comes from
the fact that the output function τ can be any function from C to Δ. In practice,
the value of the output functions τ (C) depends only on some finite amount of
information associated with the configuration C, for instance, the current state
for a finite automaton, the top symbol of the stack and the current state for a
pushdown automaton, the top symbol of each stack and the current state for a
multistack machine, etc.

We define now an equivalence relation over the set of configurations of a one-way
transducer-like k-machine just as in Definition 4.5.

Definition 5.9. Let M be a one-way transducer-like k-machine. Given two con-
figurations C1 and C2 in C, we say that C1 and C2 are equivalent, and we write
C1 ∼ C2 if, for every input word w ∈ Σ∗

k, τ (δ(C1, w)) = τ (δ(C2, w)).

Definition 5.10. A real number ξ can be generated by a one-way transducer-
like machine if there exist two integers k and b at least equal to 2, and a one-
way transducer-like k-machine M, such that 〈{ξ}〉b = 0.a1a2 · · · , where (an)n≥0

corresponds to the output sequence produced by M.

We then have the following proposition, which can be proved in exactly the same
way as Proposition 4.6.
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Proposition 5.11. Let ξ be a real number generated by a one-way transducer-like
machine. If there exist two distinct positive integers n and n′ such that C(n) ∼
C(n′), then ξ is either rational or transcendental.

This general result provides a method to prove the transcendence of real numbers
which can be generated by machines more powerful than a k-pushdown automaton.
For instance, it implies the transcendence of the ternary number

ξ3 := 0.110 120 110 010 110 100 101 100 110 100 110 010 110 011 010 010 112 · · ·
whose nth ternary digit is equal to 2 if the binary expansion of n is of the form
1j0j1j , for some j ∈ N

∗, to 1 if the binary expansion of n has an odd num-
ber of occurrences of ones, and to 0 otherwise. This number cannot be gener-
ated by a k-pushdown automaton because the set of words of the form 1j0j1j for
some j ∈ N

∗ is not a context-free language. In particular, ξ3 is irrational. How-
ever, ξ3 can be generated by a one-way transducer-like 2-machine M. This ma-
chine is obtained as the synchronisation product of the linearly bounded one-way
two-stack deterministic Turing machine recognizing the context sensitive language
{1j0j1j , j ∈ N} and the Thue-Morse automaton. We give now a precise definition.
The machine M has a finite control given by the set Q = {i, q, r, s, t} × {0, 1}
and two stacks with a single stack symbol X. For convenience, the set of stack
configurations {X}∗ × {X}∗ is identified with N

2 as follows. The stack configu-
ration (Xj , Xk) is simply denoted by (j, k). The set of configurations of M is
then defined by C = Q × {(j, k) ∈ N

2 : j ≤ k}. The initial configuration is
C0 = (i, 0, 0, 0). The transition function δ : C × Σ2 → C is defined as follows. We
set δ((i, 0, 0, 0), 1) = (q, 1, 1, 1). For all (e, j, k) ∈ {0, 1} × {(j, k) ∈ N

2 : j ≤ k}, we
set

δ((q, e, j, j), 1) = (q, 1− e, j + 1, j + 1), δ((r, e, 0, k), 0) = (t, e, 0, k),
δ((s, e, 0, 0), 1) = (t, 1− e, 0, 0), δ((s, e, 0, k), 0) = (t, e, 0, k),
δ((t, e, j, k), 1) = (t, 1− e, j, k), δ((t, e, j, k), 0) = (t, e, j, k),

and, if moreover j and k are positive, we set

δ((q, e, j, j), 0) = (r, e, j − 1, j), δ((r, e, j, k), 0) = (r, e, j − 1, k),
δ((r, e, j, k), 1) = (t, 1− e, j, k), δ((r, e, 0, k), 1) = (s, 1− e, 0, k − 1),
δ((s, e, 0, k), 1) = (s, 1− e, 0, k − 1) .

Note that we have just defined δ on C′×Σ2, where C′ is the set of all configurations
that can be reached from the initial configuration, which is of course enough for
our purpose. The alphabet of output symbols is Δ = Σ3. The output function
τ : C → Δ is defined by: τ (x, 1, j, k) = 1 if x ∈ {i, q, r, s, t} and (j, k) ∈ {(j, k) ∈
N

2 : j ≤ k}, τ (s, 0, 0, 0) = 2, and τ (x, 0, j, k) = 0 if (x, j, k) �= (s, 0, 0).
The machineM works as follows. Given a control state (x, e) with x∈{i, q, r, s, t}

and e ∈ {0, 1}, the “e-part” gives the parity of the number of ones already read by
the machine, while the “x-part” of the control state and both stacks are devoted
to the recognition of the natural numbers whose binary expansion is of the form
1j0j1j . More precisely, we have that

• in state (q, e) with stacks (j, j), the machine has read a prefix 1j ,
• in state (r, e) with stacks (j, k), the machine has read a prefix 1k0k−j ,
• in state (s, e) with stacks (0, k), the machine has read a prefix 1j0j1j−k,
• in state (t, e), the machine has read a word which is not a prefix of the
words 1j0j1j for any j ∈ N

∗.
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From the definition of M, it is easy to check that both configurations C(10) and
C(20) are equal to (t, 0, 0, 0). In particular, these two configurations are equivalent,
and it follows from Proposition 5.11 that ξ3 is a transcendental number.

6. Concluding remarks

We end this paper with several comments concerning factor complexity, tran-
scendence measures, and continued fractions, and also provide possible directions
for further research.

6.1. Links with subword complexity. Another interesting way to tackle prob-
lems concerned with the expansions of classical constants in integer bases is to
consider the subword complexity (also known as factor complexity) of real numbers.
Let ξ be a real number, 0 ≤ ξ < 1, and let b ≥ 2 be a positive integer. Let
a := (an)n≥1 ∈ ΣN

b denote its base-b expansion. The complexity function of ξ with
respect to the base b is the function that associates with each positive integer n the
positive integer

p(ξ, b, n) := Card{(aj , aj+1, . . . , aj+n−1), j ≥ 1}.

When ξ does not belong to [0, 1), we just set p(ξ, b, n) := p({ξ}, b, n).
To obtain lower bounds for the complexity of classical mathematical constants

remains a famous challenging problem. In this direction, the main result concerning
algebraic numbers was obtained by Bugeaud and the first author [3], who proved
that

(6.1) lim
n→∞

p(ξ, b, n)

n
= +∞

for all algebraic irrational numbers ξ and all integers b ≥ 2. This lower bound
implies Theorem AB, for it is well known that a real number generated by a finite
automaton has subword complexity O(n) [27]. We stress that the situation is really
different with pushdown automata and tag machines. Indeed, for every positive
integer d, there exist pushdown automata whose output sequence has subword
complexity growing at least like nd [38], while tag machines can output sequences
with quadratic complexity (see, for instance, [40]). In particular, Theorems 1.2
and 1.3 do not follow from (6.1). The referee informs the authors that the study
of the complexity of sequences related to pushdown automata and context-free
languages began with the work of Hamm on quasicontext-free sequences [29]. We
now illustrate this difference by providing lower bounds for the complexity of the
two numbers ξ1 and ξ2 defined in Sections 2.2 and 2.3.

6.1.1. Estimate for p(ξ1, 3, n). It follows from the definition of the number ξ1 that
its ternary expansion is the fixed point of the morphism μ defined by μ(0) = 021,
μ(1) = 012, μ(2) = 2. We note that the letter 2 has clearly bounded growth
(|μn(2)| = 1 for all n ≥ 0) and that μω(0) contains arbitrarily large blocks of
consecutive occurrences of the letter 2. Then, a classical result of Pansiot [40]
implies that the complexity of the infinite word μω(0) is quadratic. In other words,
one has

c1n
2 < p(ξ1, 3, n) < c2n

2

for some positive real numbers c1 and c2 and for every natural number n.
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6.1.2. Estimate for p(ξ2, 2, n). Recall that the binary number ξ2 is defined as fol-
lows: its nth binary digit is 1 if the difference between the number of occurrences
of the digits 0 and 1 in the binary expansion of n is at most 1, and is 0 otherwise.
We outline a proof of the fact that

c1n log2 n < p(ξ2, 2, n) < n log2 n

for some positive real numbers c1 and c2, and for every positive integer n. We can
first infer from [33] that p(ξ2, 2, n) = O(n log2 n), for this sequence is generated by
a pushdown automaton with only one ordinary stack symbol. In order to find a
lower bound for p(ξ2, 2, n), we describe a tag machine-like process (over an infinite
alphabet) generating the binary expansion of ξ2. We first notice that another
way to understand the action of the 2-PDA A in Figure 2.3 that generates the
binary expansion of ξ2 is to unfold it. This representation, given in Figure 6.1,
corresponds to the transition graph of A. States in this graph are given by all
possible configurations, and transitions between configurations are just labelled
by the input digits 0 or 1. In Figure 6.1, the notation qXn means that, in this
configuration, A is in state q and the content of the stack is XX · · ·X (n times).

...

...

q1# q1X q1X
2 q1X

3 q1X
4 q1X

5

q0#

q−1# q−1X q−1X
2 q−1X

3 q−1X
4 q−1X

5

1

0

1

0

1

0

1

0

1

0

1

0
01

01
0

1

0

1

0

1

0

1

0

1

0

1

Figure 6.1. The transition graph of A.

In Figure 6.2, states of the transition graph have been renamed as follows. Con-
figurations are replaced with integers, where reading a 1 in state n leads to a move
to state n+ 1 and reading a 0 in state n leads to a move to state n− 1. We easily
see that the output state is just the difference between the number of 1’s and 0’s
in the input word. Thus the nth binary digit of ξ2 is equal to 1 if and only if the
reading of the binary expansion of n by this infinite automaton ends in one of the
three states labelled by 0, −1 and 1.

...

...

1/1 2/0 3/0 4/0 5/0 6/0

0/1

−1/1 −2/0 −3/0 −4/0 −5/0 −6/0
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Figure 6.2. Relabelling of the transition graph of A.
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The action of 0 and 1 can be summarized by n
0−→ n − 1 and n

1−→ n + 1. This
leads to a tag machine-like process over an infinite alphabet T := (A, σ, s, B, ϕ) for
generating the expansion of ξ2. The starting symbol is s, A := Z∪{s}, σ is defined
by σ(s) = s1 and σ(n) = (n − 1)(n + 1), B := {0, 1}, ϕ(−1) = ϕ(0) = ϕ(1) =
ϕ(s) = 1, and ϕ(e) = 0 if e /∈ {s,−1, 0, 1}. Then we have 〈ξ2〉2 = a0.a1a2 · · · ,
where (an)n≥0 = ϕ(σω(s)) and

σω(s) = s 1 0 2 (−1) 1 1 3 (−2) 0 0 2 0 2 2 4 (−3) (−1) (−1) 1 (−1) 1 1 3 (−1) 1 · · ·
is the unique fixed point of the morphism σ. The strategy consists now in finding
sufficiently many different right special factors, that is, factors w of ϕ(σω(s)) for
which both factors w0 and w1 also occur in ϕ(σω(s)). We let r > 2 and n be two
natural numbers with 2r ≤ n < 2r+1. Arguing as in [32, Lemma 1.13], one can
actually show that, for every pair

(p, q) ∈ E := {(p, q) ∈ N
2 : 2 ≤ p ≤ q ≤ r − 1} ,

both words
A := ϕ(σr(r − 2p− 2)σr(r − 2p)σr(r − 2q))

and
B := ϕ(σr(r − 2p− 2)σr(r − 2p)σr(−r − 2))

occur in ϕ(σω(s)) and they have the same factor of length n, say w(p, q), occurring
at index 2r+1 + 2q − n − 1. That is, w(p, q) occurs just after the prefix of length
2r+1 + 2q − n− 2 in both A and B. In the word A the factor w(p, q) is followed by
a 1, while in the word B it is followed by a 0. Thus w(p, q) is a right special factor.
It can also be extracted from [32, Lemma 1.13] that the map (p, q) �→ w(p, q) is
injective on E . This ensures the existence of at least (r− 2)(r− 1)/2 distinct right
special factors of length n in ϕ(σω(s)). Then it follows that

p(ξ2, 2, n+ 1)− p(ξ2, 2, n) ≥
(r − 2)(r − 1)

2
,

from which one easily deduces the lower bound

p(ξ2, 2, n) ≥ cn log2 n

for some positive real number c, and for every positive integer n.

6.2. Quantitative aspects. Here we discuss some problems related to the quan-
titative aspects of our results.

6.2.1. The number theory side: Transcendence measures. A real number ξ is tran-
scendental if |P (ξ)| > 0 for all non-zero integer polynomials P . A transcendence
measure for ξ consists in a lower bound on |P (ξ)|, thus refining the transcendence
statement. In general, one looks for a non-trivial function f satisfying

|P (ξ)| > f(H, d)

for all integer polynomials of degree at most d and height at most H. Here, H(P )
stands for the näıve height of the polynomial P , that is, the maximum of the abso-
lute values of its coefficients. The degree and the height of an integer polynomial
P allow us to take into account the complexity of P . Here we will use the following
classification of real numbers defined by Mahler [35] in 1932. For every integer
d ≥ 1 and every real number ξ, we let wd(ξ) denote the supremum of the exponents
w for which

0 < |P (ξ)| < H(P )−w
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has infinitely many solutions in integer polynomials P of degree at most d. Further,
we set w(ξ) := lim supd→∞(wd(ξ)/d) and, according to Mahler [35], we say that ξ
is an

A-number if w(ξ) = 0;

S-number if 0 < w(ξ) < ∞;

T -number if w(ξ) = ∞ and wd(ξ) < ∞ for any integer d ≥ 1;

U -number if w(ξ) = ∞ and wd(ξ) = ∞ for some integer d ≥ 1.

An important feature of this classification is that two transcendental real numbers
that belong to different classes are algebraically independent. The A-numbers are
precisely the algebraic numbers and, in the sense of the Lebesgue measure, almost
all numbers are S-numbers.

A Liouville number is a real number ξ such that for any positive real number ρ
the inequality ∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qρ

has at least one solution (p, q) ∈ Z
2 with q > 1. Thus ξ is a Liouville number if

and only if w1(ξ) = +∞. Liouville numbers are a subclass of U -numbers.
Let ξ be an irrational real number defined through its base-b expansion, say

〈{ξ}〉b := 0.a1a2 · · · . Let us assume that the base-b expansion of ξ can be generated
either by a pushdown automaton or by a tag machine with dilation factor larger
than one. As recalled in Proposition ABL (Section 3), the key point for proving
that ξ is transcendental is to show that dio(a) > 1, where a := a1a2 · · · . This
amounts to finding two sequences of finite words (Un)n≥0 and (Vn)n≥0, a sequence
of rational numbers αn, and a real number δ > 0 such that the word UnV

αn
n is a

prefix of a, the length of the word UnV
αn
n increases, and

(6.2)
|UnV

αn
n |

|UnVn|
≥ 1 + δ .

A look at the proofs of Theorems 1.2 and 1.3 show that one actually has, in both
cases, the following extra property. There exists a real number M such that

(6.3) lim sup
n→∞

|Un+1Vn+1|
|UnVn|

< M .

Using an approach introduced in [9] and developed in [7], one can first deduce from
Inequalities (6.2) and (6.3) that

(6.4) dio(a)− 1 ≤ w1(ξ) ≤ c1 dio(a)

for some real number c1 that depends only on δ and M . In particular, inequalities
(6.2) and (6.3) imply that ξ is a Liouville number if and only if dio(a) is infinite.
Then it is proved in [7], following a general approach introduced in [5] and based
on a quantitative version of the subspace theorem, that this extra condition leads
to transcendence measures. Indeed, taking all parameters into account, one can
derive an upper bound of the type

(6.5) wd(ξ) ≤ max{w1(ξ), (2d)
c2(log 3d)(log log 3d)}

for all positive integers d and some real number c2 that depends only on δ and M .
The constants c1 and c2 can be made effective. In particular, we deduce the fol-
lowing result from inequalities (6.4) and (6.5).
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Theorem 6.1. Let ξ be an irrational real number such that 〈{ξ}〉b := 0.a1a2 · · ·
and let a := a1a2 · · · . Let us assume that the base-b expansion of ξ can be generated
either by a pushdown automaton or by a tag machine with dilation factor larger
than one. Then one of the following holds:

(i) dio(a) = +∞ and ξ is a Liouville number,
(ii) dio(a) < +∞ and ξ is an S- or a T -number.

Of course, in view of Theorem 6.1, it would be interesting to prove whether or
not there exist irrational real numbers that can be generated either by a pushdown
automaton or by a tag machine, and for which dio(a) = +∞. In this direction, it is
proved in [9] that dio(a) is always finite when ξ is generated by a finite automaton.
Here we add the following contribution to this problem.

Proposition 6.2. Let a := a0a1 · · · be an aperiodic pure morphic word generated
by a morphism σ defined over a finite alphabet A. Set M := max{|σ(i)| : i ∈ A}.
Then dio(a) ≤ M + 1.

Proof. By definition, there exists a letter a ∈ A such that σ is prolongable on
the letter a and σω(a) = a0a1 · · · . We argue by contradiction by assuming that
dio(a) > M +1. This assumption ensures that one can find two finite words U and
V and a real number s > 1 such that

(i) UV s is a prefix of a, and s is maximal with this property;
(ii) |UV s|/|UV | ≥ M + 1 ;
(iii) V is primitive (i.e., is non-empty and not the integral power of a shorter

word).

Note that since a is fixed by σ then the word σ(UV s) is also a prefix of a. By
definition of M , it follows from (ii) that

UV s = σ(U)W ,

where W := Ṽ α for some conjugate Ṽ of V (i.e., V = AB and Ṽ = BA for some
A,B) and α ≤ s. We stress that, since σ is prolongable on a, W and σ(V ) are non-
empty words. On the other hand, σ(V ) is also a period of W since UV s = σ(U)W

is a prefix of σ(UV s) = σ(U)σ(V )s
′
for some s′. Thus W has at least two periods:

Ṽ and σ(V ). Furthermore, (ii) implies that

|UV s−1| ≥ M(|U |+ |V |) ≥ |σ(U)|+ |σ(V )|

and then

|W | = |UV s| − |σ(U)| ≥ |σ(V )|+ |V | = |σ(V )|+ |Ṽ | .
We can thus apply Fine and Wilf’s theorem (see, for instance, [12, Chapter 1]) to

the word W and we obtain that there is a word of length gcd(|Ṽ |, |σ(V )|) that is a
period of W . But, since V is primitive, the word Ṽ is primitive too, and it follows

that gcd(|Ṽ |, |σ(V )|) = |Ṽ |. This gives that σ(V ) = Ṽ j for some positive integer j.
It follows that

σ(UV s) = σ(U)Ṽ js′
= UV s−α+js′

is a prefix of a. Now the inequality |σ(UV s)| > |UV s| gives a contradiction with
the maximality of s. This ends the proof. �
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6.2.2. The computer science side. Theorems AB, 1.2, and 1.3 show that some
classes of Turing machines are too limited to produce the base-b expansion of an
algebraic irrational real number. Let ξ be an irrational real number that can be
generated by a k-pushdown automaton or by a tag machine with dilation factor
larger than one. Then the results of Section 6.2 could be rephrased to provide a
limitation of the way ξ can be approximated by irrational algebraic numbers. In
this section, we suggest to view things from a different angle, changing our target.
Indeed, we fix an algebraic irrational real number α and a base b, and ask for how
long the base-b expansion of α can be imitated by outputs of a given class of Turing
machines.

Let us explain now how to formalize our problem. We can naturally take the
number of states as a measure of complexity of a k-automaton. One can also define
the size of k-pushdown automata and tag machines as follows. Let us define the size
of a k-pushdown automaton A := (Q,Σk,Γ, δ, q0,Δ, τ ) to be |Q| + |Γ| + L, where
L is the maximal length of a word that can be added to the stack by the transition
function δ of A. Let us also define the size of a tag machine T := (A, σ, a, ϕ,B) to
be |A| + L, where L := max{|σ(i)| : i ∈ A}. Now, let us fix a class M of Turing
machines among k-automata, k-pushdown automata, and tag machines. Let M be
a positive integer. We stress that there are only finitely many such machines with
size at most M . Then there exists a maximal positive integer I(α,M) for which
there exists a machine in M with size at most M whose output agrees with the
base-b expansion of α at least up to the I(α,M)th digit. We suggest the following
problem.

Problem 6.3. Let α be an algebraic irrational real number and fix a class of Turing
machines among k-automata, k-pushdown automata, and tag machines. Given a
positive integer M , find an upper bound for I(α,M).

In the case of finite automata, we can give a first result toward this problem.
Indeed, the subword complexity of the output a of a k-automaton with at most M
states satisfies p(a, n) ≤ kM2n (see, for instance, [12, Theorem 10.3.1]). Let d and
H denote the degree and the height of α, respectively. Then the main result of [19]
allows us to extract the following upper bound:

I(α,M) ≤ max
{
(max(logH, e)100kM2)8 log 4kM2

,(
(log d)10100(kM2)11/2 log(kM2)

)2.1
}

.

6.3. Computational complexity of the continued fraction expansion of
algebraic numbers. Replacing integer base expansions with continued fractions
leads to similar problems. Rational numbers all have a finite continued fraction ex-
pansion, while quadratic real numbers correspond to eventually periodic continued
fractions. In contrast, much less is known about the continued fraction expansion
of algebraic real numbers of degree at least three such as 3

√
2. In this direction, an

approach based on the subspace theorem was introduced by Bugeaud and the first
author [2]. Recently, Bugeaud [20] showed that this approach actually leads to the
following analogue of Proposition ABL.

Proposition B. Let ξ be a real number with ξ := [a0, a1, a2, . . .] where we assume
that (an)n≥1 is a bounded sequence of positive integers. Let us assume that dio(a) >
1 where a := a1a2 · · · . Then ξ is either quadratic or transcendental.
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In [20], the author deduces from Proposition B that the continued fraction ex-
pansion of an algebraic real number of degree at least 3 cannot be generated by a
finite automaton. This provides the analogue of Theorem AB in this framework.
As a direct consequence of our results and Proposition B, we obtain the following
generalization of Bugeaud’s result corresponding to the analogue of Theorems 1.2
and 1.3.

Theorem 6.4. Let ξ be an algebraic real number of degree at least 3. Then the
following holds:

(i) The continued fraction expansion of ξ cannot be generated by a one-stack
machine, or equivalently, by a deterministic pushdown automaton.

(ii) The continued fraction expansion of ξ cannot be generated by a tag machine
with dilation factor larger than one.

Using the approach introduced in [6] and the discussion of Section 6.2, it will also
be possible to produce transcendence measures analogous to Theorem 6.1 for real
numbers whose continued fraction expansion can be generated by a deterministic
pushdown automaton or by a tag machine with dilation factor larger than one.
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