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A HEIGHT GAP THEOREM FOR COEFFICIENTS OF MAHLER

FUNCTIONS

BORIS ADAMCZEWSKI, JASON BELL, AND DANIEL SMERTNIG

Abstract. We study the asymptotic growth of coefficients of Mahler power series
with algebraic coefficients, as measured by their logarithmic Weil height. We show
that there are five different growth behaviors, all of which being reached. Thus, there
are gaps in the possible growths. In proving this height gap theorem, we obtain that
a k-Mahler function is k-regular if and only if its coefficients have height in O(log n).
Furthermore, we deduce that, over an arbitrary ground field of characteristic zero, a
k-Mahler function is k-automatic if and only if its coefficients belong to a finite set. As
a by-product of our results, we also recover a conjecture of Becker which was recently
settled by Bell, Chyzak, Coons, and Dumas.
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1. Introduction

The study of power series solutions to linear differential equations with coefficients
in Q[z] provides a deep interplay between various fields of mathematics and physics,
including combinatorics and number theory. For instance, the study of generating series

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program under the Grant Agreement No 648132. Smertnig
was supported by the Austrian Science Fund (FWF) project J4079-N32. Part of the research was
conducted while Smertnig was visiting University of Waterloo; he would like to extend his thanks for
their hospitality.

1

http://arxiv.org/abs/2003.03429v1


2 BORIS ADAMCZEWSKI, JASON BELL, AND DANIEL SMERTNIG

in enumerative combinatorics benefits from the useful dictionary between asymptotics
of coefficients of D-finite power series and the type of singularities of the corresponding
differential equation (see [FS09FS09]). More surprisingly, prescribing some kind of arithmetic
behavior for coefficients gives rise to powerful number theoretical consequences, as first
perceived by Siegel [Sie29Sie29] when introducing E- and G-functions, and pursued more
recently by André [And00aAnd00a, And00bAnd00b] in his study of arithmetic Gevrey series.

This paper deals with the arithmetic behavior of coefficients of Mahler functions, or
M -functions, which are power series of a very different kind. Unless it is rational, an
M -function never satisfies a linear or even an algebraic differential equation [ADH19ADH19].
Instead, M -functions are solutions to linear difference equations with coefficients in Q[z]
associated with the Mahler operator z 7→ zk, where k ≥ 2 is a natural number. Precisely,
a power series f(z) ∈ QJzK is a k-Mahler function, or for short k-Mahler, if it satisfies
an equation of the form

(1) p0(z)f(z) + · · · + pd(z)f(zkd

) = 0

with p0, . . . , pd ∈ Q[z] and p0pd 6= 0. A power series is an M -function if it is a k-Mahler
function for some k. The study of M -functions and their values was initiated at the
end of the 1920’s by Mahler [Mah29Mah29, Mah30aMah30a, Mah30bMah30b], who developed a new direction
in transcendence theory, nowadays known as Mahler’s method. In fact, Mahler only
considered order one equations, but possibly inhomogeneous and also non-linear ones.
The interest for M -functions of arbitrary order really took on a new significance at the
beginning of the 1980’s after Mendès France popularized among number theorists a result
of Cobham [Cob68Cob68] stating that automatic power series are M -functions. After recent
results [Phi15Phi15, AF17AF17], the transcendence theory of M -functions mirrors exactly the one
of E-functions. Beyond Mahler’s method and automata theory, it is worth mentioning
that M -functions naturally occur as generating functions in various other topics such
as combinatorics of partitions, numeration, and analysis of algorithms. In particular,
the regular power series introduced by Allouche and Shallit [AS92AS92] form a distinguished
class of M -functions. There is also a mysterious interplay between G-functions and M -
functions that deserves more attention. Indeed, for some G-functions

∑∞
n=0 anzn ∈ QJzK,

the power series
∑∞

n=0 vp(an)zn, where vp(an) is the p-adic valuation of an, turns out to be
p-Mahler. This is likely related to the fact that Picard-Fuchs differential equations have
a strong Frobenius structure for almost all primes. In recent years, there is renewed
interest in M -functions, as evidenced by the flourishing literature on this topic. The
latter includes discussions on various perspectives such as transcendence and algebraic
independence, combinatorics and theoretical computer science, the study of Mahler’s
equations and associated Galois theories, and computational aspects. A number of
references can be found in the survey [Ada19Ada19].

1.1. The Height Gap Theorem. Let us first recall that the coefficients of a k-Mahler
function

∑∞
n=0 anzn ∈ QJzK satisfy some recurrence relation of the form

an =
s
∑

j=1

−αjan−j +
d
∑

i=1

s
∑

j=0

βi,ja n−j

ki
,

where αj and βi,j are algebraic numbers, and n is large enough (see Equation (55)). It
follows that the field extension of Q generated by all coefficients an is a number field. In
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the sequel, we will measure the coefficients of an M -function by their logarithmic Weil
height.

1.1.1. The logarithmic Weil height. For a number field, we normalize the non-trivial
absolute values as in [BG06BG06]. Thus, for Q and p a prime we let |p|p = 1/p; for the
archimedean place of Q we use the usual absolute value. For K a number field and a
place w of K extending a place v of Q, let

|α|
w

:= |NKw/Qv
(α)|1/[K:Q]

v
.

Then the set of places MK on K satisfies the product formula. For α ∈ Q the logarithmic
absolute Weil height is defined by

h(α) = log
∏

v∈MK

max{1, |α|
v
},

where K is any number field containing α. The value h(α) in this definition does not
depend on the choice of such a number field K. For a/b ∈ Qr{0} with a ∈ Z, 0 6= b ∈ Z,
and gcd(a, b) = 1,

h(a/b) = log max{|a|, |b|}.

For more properties about the logarithmic Weil height, as well as for comparison with
other notions of height, we refer the reader to [Wal00Wal00, Chapter 3].

1.1.2. Landau notation. Let (an)n≥0 be a sequence of nonnegative real numbers and
(bn)n≥0 be a sequence of positive real numbers. As usual, the notation an ∈ O(bn)
means that there exists a positive number c such that an < cbn for every positive integer
n, while the notation an = o(bn) means that an/bn tends to zero as n tends to infinity.
Furthermore, sticking to the usual practice in number theory, we write an ∈ Ω(bn) when
an 6∈ o(bn), that is, when there exists a positive number c such that an > cbn for infinitely
many positive integers n. We also write an = O ∩ Ω(bn) when both an ∈ O(bn) and
an ∈ Ω(bn).

We are now ready to state our first main result.

Theorem 1.1 (Height Gap Theorem). Let f(z) =
∑∞

n=0 anzn ∈ QJzK be an M -function.
Then one of the following properties holds.

(1) h(an) ∈ O ∩ Ω(n).
(2) h(an) ∈ O ∩ Ω(log2 n).
(3) h(an) ∈ O ∩ Ω(log n).
(4) h(an) ∈ O ∩ Ω(log log n).
(5) h(an) ∈ O(1).

It implies that the coefficients of an M -function can only exhibit certain specific
growth behaviors. For instance, as h(an) ∈ o(n) forces h(an) ∈ O(log2 n), there cannot
be such a power series with h(an) ∼ log3 n. Thus, there are gaps in the possible growths.
Let us make few comments on Theorem 1.11.1.

• In Section 22, we provide the reader with examples for each of the five growth classes,
thereby showing that all of them occur.
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• There is no chance in general of replacing lower bounds of the type Ω by stronger
ones. For instance, the 2-Mahler function

∑∞
n=0 2nz2n

belongs to class (3), but most
of its coefficients vanish.

• An M -function f can be uniquely specified by the finite data consisting of a k-
Mahler equation it satisfies and sufficiently many initial coefficients of the power
series. Assuming the knowledge of such data, we will show that it is decidable
which of the five growth classes in Theorem 1.11.1 the function f falls into. This is
Theorem 12.112.1.

1.2. Height and structural properties of M-functions. We already alluded to the
fact that inside the ring of k-Mahler functions two subsets are usually distinguished,
leading to the following hierarchy:

{k-automatic functions} ( {k-regular functions} ( {k-Mahler functions} .

We refer the reader to [AS03aAS03a] and Section 33 for precise definitions and more details
about automatic and regular power series. The following result shows that each of these
two subsets turns out to be equal to a special class in the refined hierarchy provided by
Theorem 1.11.1.

Theorem 1.2. Let f(z) =
∑∞

n=0 a(n)zn ∈ QJzK be a k-Mahler function. Then the two
following properties hold.

(a) f is k-automatic if and only if h(an) ∈ O(1), that is, if and only if the sequence an

takes values in a finite set.
(b) f is k-regular if and only if h(an) ∈ O(log n).

Case (a) of Theorem 1.21.2 extends to arbitrary ground fields of characteristic zero (see
Theorem 11.111.1). This generalizes the well-known fact that k-regular sequences taking
only finitely many values are k-automatic [AS03aAS03a, Theorem 16.1.5].

In fact, in proving Theorem 1.11.1, we will show that each of the five growth classes
corresponds to natural structural properties of the k-Mahler equation, respectively, the
coefficient series. The corresponding results are stated in Theorems 6.16.1, 7.17.1, 8.38.3 and 9.19.1.
Theorem 1.21.2 above provides only a sample. In order to get such structural results, we
reinforce the importance of measuring the size of coefficients by their height and not
only by their modulus. For instance, all the following three Mahler functions

∞
∏

n=0

(1 − z2n

) ,
∞
∑

n=0

2−nz2n

,
1

1 − z/2
·

∞
∏

n=0

(1 − z2n

)

have bounded rational coefficients, so we cannot distinguish them through the growth
of their coefficients. This is a deficiency, for the first one is automatic, the second one is
regular but not automatic, and the third one is not regular. However, their coefficients
have different height growth behaviors and they can be distinguished by Theorem 1.11.1.
They belong respectively to classes (1), (3), and (5).

Outline. This article is organized as follows. Section 22 provides the reader with a
collection of examples, showing that each of the five growth classes in the height gap
theorem actually occurs. In Sections 33 and 44, we give some background about Mahler
equations, automatic and regular power series, and Mahler’s method. Sections 55 to 99
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are then devoted to the proof of Theorem 1.11.1. In fact, we prove the much more precise
Theorems 6.16.1, 7.17.1, 8.38.3 and 9.19.1. The general upper bound h(an) ∈ O(n) is proved by
standard arguments. In proving Theorem 1.11.1, the hard part lies in showing that

(i) if h(an) ∈ o(n) then h(an) ∈ O(log2 n), and
(ii) if h(an) ∈ o(log2 n) then h(an) ∈ O(log n).

For (i), we use a result on linear independence of values of a Mahler function at
algebraic points. This relies on recent work of Philippon [Phi15Phi15] and Adamczewski–
Faverjon [AF17AF17] on Mahler’s method, which in turn makes essential use of a theorem
of Nishioka as well as a generalization thereof to non-archimedean absolute values. The
latter are deduced from the general algebraic independence criterion of Philippon [Phi86Phi86].
The proof of (ii) relies on an analysis of the asymptotics of a k-Mahler function f as

one approaches ζ with ζkj

= ζ for j ≥ 1. Thanks to a useful decomposition of Dumas
[Dum93Dum93] (Theorem 3.83.8), we write f as a quotient of a k-Becker function g and an infinite
product of polynomials. Arguments from Adamczewski–Bell [AB17AB17] yield a lower bound
for the vanishing of g at ζ. We also make use of the asymptotics of the number of
k-power partitions and a somewhat delicate application of the pigeonhole principle, to
ultimately obtain a lower bound on h(an) in terms of the asymptotics of f . In the end,
we deduce that an M -function belongs to (i) if and only if it is totally analytic (radius
of convergence equals 1 with respect to all places), and that it belongs to (ii) if and only
if it is a regular power series. Furthermore, membership to (i) and (ii) can be detected
thanks to the so-called k-Mahler dominator of f introduced in Section 3.43.4.

Then, we show that

(iii) if h(an) ∈ o(log n) then h(an) ∈ O(log log n), and
(iv) if h(an) ∈ o(log log n) then h(an) ∈ O(1).

The proofs of (iii) and (iv) largely follow arguments of Bell–Coons–Hare [BCH14BCH14, BCH16BCH16],
who studied the growth of Z-valued k-regular sequences. We deduce that the se-
quences with h(an) ∈ O(log log n) are precisely the linear combinations over Q of word-
convolution products of automatic sequences (see Definition 8.18.1). Finally, we also prove
that (iv) corresponds to the collection of automatic power series. As explained in Sec-
tion 3.43.4, the k-denominator is no more relevant to detect membership to (iii) and (iv).
Instead, we prove the following group-theoretic characterization. When (ii) holds, the
sequence (an)n≥0 is k-regular and it can be obtained thanks to a so-called linear repre-
sentation (see Definition 3.43.4). With such a linear representation is associated a finitely
generated semi-group of matrices. We prove that f belongs to (iii) if and only if for every
minimal linear representation associated with (an)n≥0 the corresponding semi-group is
tame, while f belongs to (iv) if and only if it is finite. A semi-group of matrices is tame
if all eigenvalues of all matrices that belong to it are either zero or roots of unity.

In Section 1010, we discuss how our main results implies Becker’s conjecture. In Section
1111, we characterize those k-Mahler functions which are automatic over an arbitrary
ground field of characteristic zero. In the final Section 1212, we deal with the question of
decidability in Theorem 1.11.1.

Notation. Throughout the paper, we use the following notation. We let k ≥ 2 be a
natural number. We let Σk denote the alphabet {0, 1, . . . , k − 1} and Σ∗

k denote the
free monoid generated by Σk, with neutral element ε. Given a positive integer n, we
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set 〈n〉k := wrwr−1 · · · w0 for the canonical base-k expansion of n (written from most
to least significant digit), which means that n =

∑r
i=0 wik

i with wi ∈ Σk and wr 6= 0.
Note that by convention 〈0〉k := ε. Conversely, if w := w0 · · · wr is a finite word over the
alphabet Σk, we set [w]k :=

∑r
i=0 wr−ik

i. We let U ⊆ Q denote the set of all roots of

unity. For 0 6= ζ ∈ Q, observe that there exists j > 0 with ζkj

= ζ if and only if ζ ∈ U
and ζ has order coprime to k. We let Uk ⊆ U denote the set of roots of unity whose
order is not coprime with k.

2. Zoology

In this section, we provide examples of Mahler functions for each of the five growth
classes occurring in the height gap theorem. We recall that a rational power series is
k-Mahler for all k ≥ 2.

2.0.1. Examples in (O ∩ Ω)(n).

(a) The rational function

1

1 − 2z
=

∞
∑

n=0

2nzn .

(b) The transcendental infinite product

∞
∏

n=0

1

1 − azkn =
∞
∑

n=0

anzn ,

where a ≥ 2 is an integer. Then an is at least as large as the coefficient of zn in
1/(1 − az), that is an ≥ an. Hence h(an) ≥ n log(a).

(c) The previous example can be refined to one that is analytic in the open unit disk
of C. Let a ≥ 2 be an integer and let us consider the infinite product

∞
∏

n=0

1

1 − a−1zkn =
∞
∑

n=0

anzn ∈ QJzK.

A partition of n into k-powers is an expression n = j1kn1 + · · ·+ jrknr with r ∈ Z≥0,
0 ≤ n1 < · · · < nr, and j1, . . . , jr ∈ Z≥0. Expanding the factors in the definition of
the infinite product as geometric series, we see that

an =
∑

n=j1kn1+···+jrknr

a−(j1+···+jr),

where the sum is over partitions of n into k-powers. The partition n = 1 + · · · + 1 =
n · k0 gives a summand a−n, and for all other summands j1 + · · · + jr < n. Let p be
a prime divisor of a. Thus |an|p ≥ pn, and h(an) ≥ n log p.

2.0.2. Examples in (O∩Ω)(log2 n). The following example is typical of the Mahler func-
tions in this class. It will play a prominent role in Section 77.
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(d) The infinite product of cyclotomic polynomials

∞
∏

n=0

1

1 − zkn =
∞
∑

n=0

anzn .

The integer an is equal to the number of partitions of n into k-powers. The asymp-
totics of an were first studied by Mahler [Mah40Mah40] who proved that

log an ∼ log2 n

2 log k
·

These results of Mahler have been refined and generalized by de Bruijn [dB48dB48] and
most recently by Dumas–Flajolet [DF96DF96].

(e) Multiplying the previous infinite product by any nonzero k-regular power series
(with positive coefficients) provides a transcendental k-Mahler function with the
required growth behavior. In fact, Theorem 3.83.8 shows that examples in this class
are essentially all of that type.

2.0.3. Examples in (O ∩ Ω)(log n). For every regular sequence (an)n≥0, the generating
series

∑∞
n=0 anzn is an M -function, and examples for which h(an) ∈ (O ∩ Ω)(log n)

abound. We give some examples and refer the reader to [AS03aAS03a, Chapter 16.5] and
[AS92AS92, AS03bAS03b] for more.

(f) The rational power series

z

(1 − z)2
=

∞
∑

n=0

nzn .

More generally, if p(z) is a non-constant polynomial with integer coefficients, then
∑∞

n=0 p(n)zn is a rational function with the required growth behavior.

(g) The power series
∞
∑

n=0

vp(n!)zn, where we let vp(n) denote the p-adic valuation of

the natural number n. It is is p-regular (see [AS92AS92, Example 8]). Furthermore, by
Legendre’s formula vp(n!) ∼ n/(p − 1).

(h) The power series
∞
∑

n=0

ℓnzn, where we let ℓn denote the number of positive integers at

most equal to n that can be written as sum of three squares. It is 2-regular [AS03aAS03a,
Example 16.5.2], and since every integer not of the form 4a(8b + 7) can be written
as a sum of three squares, the sequence has the required growth behavior.

(i) Any linear representation (u, µ, v) on the alphabet Σk gives rise to a k-regular se-
quence (see Definition 3.43.4). From our results, we will see that whenever there exists
a word w ∈ Σ∗

k such that the matrix µ(w) has an eigenvalue that is neither 0 nor a
root of unity, then the sequence associated with this linear representation has the
required growth behavior.
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2.0.4. Examples in (O ∩ Ω)(log log n).

(j) The power series
∞
∑

n=1

(1+ ⌊log2 n⌋)zn. It is 2-regular [AS92AS92, Example 11] and clearly

has the required growth behavior.

(k) The power series
∞
∑

n=0

snzn, where we let sn denote the sum of digits in the base-k

expansion of n. Then clearly (sn)n≥0 is k-regular and sn = O(log n). Furthermore,
for e ≥ 0 and n = ke − 1 we have sn = (k − 1)e ∼ (k − 1) logk n. Hence sn has he
required growth behavior.

2.0.5. Examples in O(1). By Theorem 1.21.2, this class of M -functions corresponds ex-
actly to generating series of automatic sequences. We refer the reader to the monograph
[AS03aAS03a] for numerous examples, including the generating series of the Thue-Morse se-
quence, the Rudin-Shapiro sequence, the Baum-Sweet sequence, and the paperfolding
sequence, to name a few.

3. Preliminaries

Throughout this section, we let K be a field. We will later restrict ourselves to K = Q.
We recall k-Mahler, k-automatic, k-regular, and k-Becker power series and their relation
to each other.

3.1. Mahler functions, equations, and systems. Let us recall that a power series
f(z) ∈ KJzK is a k-Mahler function if it satisfies an equation of the form (11), that is if
there exist a nonnegative integer d and polynomials p0(z), . . . , pd(z) ∈ K[z], not all zero,
such that

p0(z)f(z) + p1(z)f(zk) + · · · + pd(z)f(zkd

) = 0 .

It can be shown that every Mahler function satisfies such a functional equation with
p0pd 6= 0 and p0, . . . , pd coprime [AB17AB17, Lemma 4.1]. As we will only be interested
in the asymptotic behavior of the coefficients, the following lemma allows a further
simplification of the Mahler equation.

Lemma 3.1. Suppose f(z) =
∑∞

n=0 anzn ∈ KJzK satisfies a Mahler equation

(2) p0(z)f(z) = p1f(zk) + · · · + pdf(zkd

)

with p0pd 6= 0 and p0, . . . , pd coprime. Then there exists n0 ≥ 0 such that an0
6= 0 and

f0(z) :=
∑∞

n=0 an+n0
zn satisfies a k-Mahler equation

q0(z)f0(z) = q1f0(zk) + · · · + qd+1f0(zkd+1

)

with polynomials q0, . . . , qd+1 satisfying the following conditions.

(i) One has q0(0) = 1.
(ii) If 0 6= λ ∈ K, then p0(λ) = 0 implies q0(λ) = 0.
(iii) If 0 6= ζ ∈ K with p0(ζ) = 0 and ζk = ζ, then qi(ζ) 6= 0 for some i ∈ {1, . . . , d + 1}.

Moreover, if f has at least two nonzero coefficients, then f0 is non-constant.

Proof. By [AB17AB17, Lemma 6.1]; the final statement requires an inspection of the proof. �
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We also need the following fact, a more general version of which is, for instance, proved
in [AB17AB17, Proposition 8.1].

Lemma 3.2. If f ∈ KJzK is k-Mahler and e is a positive integer, then f is also ke-
Mahler.

3.1.1. Linear Mahler systems. A power series f(z) ∈ KJzK is k-Mahler if and only if
it satisfies a linear k-Mahler system. That is, there exist f1 := f, . . . , fd ∈ KJzK and
A(z) ∈ GLd(K(z)) such that

(3)







f1(z)
...

fd(z)






= A(z)







f1(zk)
...

fd(zk)






.

Indeed, given f satisfying a k-Mahler equation f(z) = r1(z)f(zk) + · · · + rd(z)f(zkd

)
with r1, . . . rd ∈ K(z) and rd 6= 0, the vector

(

f(z), . . . , f(zkd−1

)
)T

satisfies an equation of the form (33) with A(z) a companion matrix. Conversely, iterating

an equation of the form (33), and using the invertibility of A(z), it follows that each fi(z
kj

)
is contained in the finite-dimensional K(z)-vector space spanned by f1(z), . . . , fd(z).

Hence the power series f1(zkj

), j ≥ 0, are linearly dependent over K[z].

3.1.2. Analytic properties. Let us assume that K = Q. If f ∈ QJzK is a k-Mahler
function, then there exists a number field K with f ∈ KJzK. This is so because all
sufficiently high coefficients of f are determined recursively by lower ones (see [Dum93Dum93,
Chapitre 3.2.2] or [AF18AF18]). Let v be a place of K and |·|

v
be an absolute value associated

with v. We let Kv denote the completion of K with respect to the absolute value | · |v.
We also let Cv denote the completion of the algebraic closure of Kv and K the algebraic
closure of K in Cv. Recall that Cv is both algebraically closed and complete. The power
series f is analytic in a neighborhood of 0 in Cv (see, for instance, [Dum93Dum93, Chapitre
3.3]). The Mahler equation then implies that f is meromorphic in the open unit disk
B|·|

v

(0, 1) in Cv.

3.2. Automatic and regular power series. We recall the notion of k-automatic and
k-regular sequences. For more background see Allouche–Shallit [AS03aAS03a] or Berstel–
Reutenauer [BR11BR11, Chapter 5].

A sequence (an)n≥0 is k-automatic if there exists a finite automaton that, given as
input the base k representation of n, reaches an output state labeled by an. Equivalently,
the sequence (an)n≥0 is k-automatic if and only if its k-kernel is a finite set.

Definition 3.3. Let a := (an)n≥0 be a sequence with values in a set S. The k-kernel of
a is

{

(aken+r)n≥0 : e ∈ Z≥0, 0 ≤ r ≤ ke − 1
}

.

Let us now restrict to sequences taking values in the field K. Then a sequence (an)n≥0

is said to be k-regular if its k-kernel is a finitely generated K-vector space. Obviously
k-automatic sequences are k-regular. A k-regular sequence is k-automatic if and only
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if it takes only finitely many values [AS03aAS03a, Theorem 16.1.5]. There are several other
characterizations of k-regular sequences [AS03aAS03a, Theorems 16.1.3 and 16.2.3]. We recall
one that will be essential.

Definition 3.4. A linear representation on the alphabet Σk is a triple (u, µ, v) where
u ∈ K1×d, v ∈ Kd×1, and µ : Σ∗

k → Kd×d is a monoid homomorphism (d ∈ Z≥0). The
linear representation is minimal if the dimension d is minimal amongst all d′ ≥ 0 and
d′-dimensional linear representations (u′, µ′, v′) such that uµ(w)v = u′µ′(w)v′ for all
w ∈ Σ∗

k. Equivalently, uµ(Σ∗
k) spans K1×d and µ(Σ∗

k)v spans Kd×1.

Theorem 3.5. Let (an)n≥0 be a sequence taking values in K. The following statements
are equivalent.

(a) The sequence (an)n≥0 is k-regular.
(b) There exists a (minimal) linear representation (u, µ, v) on the alphabet Σk such that

a[w]k = uµ(w)v for all words w ∈ Σ∗
k.

Proof. The result is proved in [AS03aAS03a, Theorem 16.2.3]. �

A power series f(z) =
∑∞

n=0 anzn ∈ KJzK is said to be k-automatic, respectively
k-regular if the sequence (an)n≥0 is k-automatic, respectively k-regular.

3.3. Becker power series. With the previous definitions, we obtain the following hi-
erarchy:

{k-automatic power series} ( {k-regular power series} ( {k-Mahler power series} .

A connection between k-regular sequences in the sense of Allouche and Shallit and
coefficients of k-Mahler power series was studied by Becker, who proved the second
inclusion [Bec94Bec94, Theorem 1]. He also showed that the converse is false in general: a
k-Mahler power series need not be k-regular [Bec94Bec94, Proposition 1]. However, he did
obtain a partial converse. This motivates the next definition.

Definition 3.6. A power series f ∈ KJzK is a k-Becker function (or, in short, k-Becker)
if there exist a positive integer d and polynomials p1, . . . , pd ∈ K[z], not all zero, such
that

f(z) = p1(z)f(zk) + · · · + pd(z)f(zkd

) .

Theorem 3.7 ([Bec94Bec94, Theorem 2]). If f(z) =
∑∞

n=0 anzn ∈ QJzK is a k-Becker power
series, then it is k-regular.

In view of these results, one may also ask for a precise characterization of k-regular
power series in terms of k-Becker power series. This gives rise to a conjecture of Becker,
recently settled in [BCCD19BCCD19], and discussed in Section 1010. For Mahler functions, there
exists the following useful decomposition due to Dumas.

Theorem 3.8 ([Dum93Dum93, Théorème 31, p.153]). Let f(z) ∈ KJzK be k-Mahler satisfying
an equation

p0(z)f(z) + p1(z)f(zk) + · · · + pdf(zkd

) = 0

with p0, . . . , pd ∈ K[z] and p0(0) = 1. Then

f(z) =
g(z)

∏∞
i=0 p0(zki)

,
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where g ∈ KJzK is a k-Becker power series.

3.4. The Mahler denominator. As is already hinted at by Becker’s result, the poly-
nomial p0 in a Mahler equation (11) will play a prominent role in our arguments. This
prompts the following definition.

Definition 3.9. Let f(z) ∈ KJzK be a k-Mahler power series, and let

I =
{

p(z) ∈ K[z] : p(z)f(z) ∈
∞
∑

i=1

K[z]f(zki

)
}

.

The k-Mahler denominator of f is the unique generator d(z) ∈ K[z] of the ideal I, with
the lowest nonzero coefficient of d being 1.

Since K[z] is a principal ideal domain, there indeed exists such a generator. Observe
that f is k-Becker if and only if d ≡ 1. It is tempting to hope that the k-Mahler
denominator is equal to the polynomial p0 in the minimal k-Mahler equation, that is the
equation

p0(z)f(z) + p1(z)f(zk) + · · · + pdf(zkd

) = 0

with p0pd 6= 0, minimal d, and coprime p0, . . . , pd. While this is often the case, in general
this is not so. See Example 3.103.10 for a counterexample. By definition d divides p0. It is
tempting to hope that, to determine the types of roots of d, it suffices to consider those
of p0. Unfortunately, this hope is also thwarted by the following example.

Example 3.10. The equation

(z − 1/2)f(z) − (z − 1/8)(z3 − 1/2)f(z3) = 0

has only one nonzero solution (up to a scalar) and is minimal with respect to this solution.
However, this solution is k-regular because

f(z) = (z − 1/8)(z2 + 1/2z + 1/4)(z9 − 1/2)f(z9) .

The expected pole at 1/2 disappears after one iteration of the equation.

We will see with Theorems 6.16.1 and 7.17.1 that locating the roots of the k-Mahler denom-
inator provides a characterization of those k-Mahler functions with h(an) ∈ O(log2 n)
and with h(an) ∈ O(log n). However, given a Mahler function with h(an) ∈ O(log n),
its Mahler denominator is irrelevant in determining whether h(an) ∈ O(log log n) or
h(an) ∈ O(1). For instance, all the three following 2-regular functions

∞
∏

n=0

(1 − z2n

) ,
∞
∑

n=0

bnzn ,

(

1

1 − z

)2

,

where we let bn denote the number of 0’s in the binary expansion of n (with b0 = 1),
have a trivial Mahler denominator (i.e., d = 1). However, their coefficients have height
in O(1), O ∩ Ω(log log n), and O ∩ Ω(log n), respectively.
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4. Background about Mahler’s method

Let us consider a linear k-Mahler system:

(4)







f1(z)
...

fd(z)






= A(z)







f1(zk)
...

fd(zk)







where A(z) is a matrix in GLd(Q(z)) and f1, . . . , fd ∈ QJzK. There exists a number field
K such that the fi’s belong to KJzK and A(z) ∈ GLd(K(z)). Let v be a place of K and
|·|

v
be an absolute value associated with v. As before, we let Kv denote the completion

of K with respect to the absolute value |·|
v
. We also let Cv denote the completion of the

algebraic closure of Kv and K the algebraic closure of K in Cv.

Definition 4.1. A point α ∈ Cv is called singular with respect to (44) if there exists
a nonnegative integer n such that αkn

is a pole of one of the coefficients of the matrix
A(z) or of the matrix A−1(z). We say that α is regular otherwise, that is α is regular if
both A(αkn

) and A−1(αkn

) are well-defined for every nonnegative integer n.

We recall that the power series f1(z), . . . , fd(z) are meromorphic in the open unit disc
of Cv and analytic in some neighborhood of the origin. Furthermore, if α is a regular
point such that |α|

v
< 1, then the functions f1(z), . . . , fd(z) are well-defined at α. We

also recall that given a field K, and elements a1, . . . , am in some field extension of K,
the notation tr.degK(a1, . . . , am) stands for the transcendence degree over K of the field
extension K(a1, . . . , am).

Theorem 4.2. Let f1(z), . . . , fd(z) ∈ KJzK be solutions to (44). Let α ∈ K, 0 < |α|
v

< 1
be a regular point with respect to this system. Then

tr. degK(f1(α), . . . , fd(α)) = tr. degK(z)(f1(z), . . . , fd(z)) .

Proof. In the case where |·|
v

is the usual absolute value on C, this classical result is due to
Nishioka [Nis90Nis90]. The proof of Nishioka is based on some techniques from commutative
algebra introduced in the framework of algebraic independence by Nesterenko in the late
Seventies. Recently, Fernandes [Fer18Fer18] observed that Theorem 4.24.2 can also be deduced
from a general algebraic independence criterion due to Philippon [Phi86Phi86, Phi92Phi92]. This
allows her to extend Nishioka’s theorem in the framework of function fields of positive
characteristic. Using the fact that the criteria obtained by Philippon also apply to any
absolute value associated with a place of a number field (see for instance Theorem 2.11
in [Phi86Phi86]), we can argue exactly as in the proof of Theorem 1.3 of [Fer18Fer18] to prove
Theorem 4.24.2. �

Theorem 4.3. Let f1(z), . . . , fd(z) ∈ KJzK be solutions to (44). Let α ∈ K, 0 <
|α|

v
< 1 be a regular point for this system. Then for all homogeneous polynomials

P ∈ K[X1, . . . , Xd] such that

P (f1(α), . . . , fd(α)) = 0 ,

there exists Q ∈ K[z, X1, . . . , Xd], homogeneous in X1, . . . , Xd, such that

Q(z, f1(z), . . . , fd(z)) = 0
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and

Q(α, X1, . . . , Xd) = P (X1, . . . , Xi).

Proof. In the case where |·|
v

is the usual absolute value on C, this result is due to
Adamczewski–Faverjon in [AF17AF17, Theorem 1.4]. It is obtained as a consequence of
the main result of Philippon in [Phi15Phi15], which itself is based on Nishioka’s theorem.
The strategy to deduce this result from Nishioka’s theorem is detailed in [AF17AF17], see
Proposition 3.1. The arguments are based on basic facts from commutative algebra that
also apply to our more general framework. The two main ingredients that we have to
be careful about are the following ones.

(i) A result by Krull saying that if p is a homogeneous ideal in K[z, X0, . . . , Xd] that is
absolutely prime, then for all but finitely many α ∈ K, the ideal evα(p) is a prime
ideal of K[X0, . . . , Xd]. Here, we let evα : K[z] 7→ K denote the evaluation map at
z = α. See [Kru48Kru48].

(ii) The fact that the field extension L := K(z)(f1(z), . . . , fd(z)) is regular, which means
that an element of L is algebraic over K(z) if and only if it belongs to K(z).

We can use (i) in our framework for Krull proved his result for any base field K.
To prove that (ii) also holds true in our framework, we need to know that a k-Mahler
function in KJzK is either rational or transcendental over K(z). There are several proofs
for this result. For instance, Theorem 5.1.7 in [Nis96Nis96] provides a proof in the case where
K is any field of characteristic 0. Then we can argue exactly as in the proof of Lemma
3.2 in [AF17AF17] to deduce that the field extension K(z)(f1(z), . . . , fd(z)) is regular. �

As a corollary of Theorem 4.34.3, we deduce the following result.

Corollary 4.4. 1 Let f1(z), . . . , fd(z) ∈ KJzK be solutions to (44). Let us assume that
f1(z), . . . , fd(z) are linearly independent over K(z). Then there exists 0 < r < 1, such
that for every α ∈ K with 0 < |α|

v
< r, the numbers f1(α), . . . , fd(α) are well-defined

and linearly independent over K.

Proof. We first observe that if r is small enough, then α is a regular point with respect
to (44) and the numbers f1(α), . . . , fd(α) are thus well-defined. Then the result follows
directly from Theorem 4.34.3. �

5. Generic upper bound

To prove (1)(1) of Theorem 1.11.1, giving a general upper bound on h(an) for a Mahler
function f(z) =

∑∞
n=0 anzn ∈ QJzK, we use a classical recursion for the sequence (an)n≥0

that is deduced from the Mahler equation. Since this is somewhat lengthy and the proof
of the upper bound for h(an) in case (2)(2) of Theorem 1.11.1, where we assume h(an) ∈ o(n),
works similarly, we establish both these bounds at the same time.

We need the following lemma. For archimedean absolute values, a more general result
for finitely generated semigroups of matrices can be found in [Bel05Bel05].

Lemma 5.1. Let d be a positive integer. Let |·| be an absolute value on Q, and let ‖·‖
be an operator norm on Q

d×d
with respect to |·|. Let A ∈ Q

d×d
be a matrix such that
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|λ| ≤ 1 for every eigenvalue λ of A. Then

‖An‖ ∈
{

O(nd−1) if |·| is archimedean,

O(1) if |·| is non-archimedean.

Proof. It suffices to show the claim for a Jordan block λ + N ∈ Q
s×s

where s ≤ d, where
|λ| ≤ 1, and where N is the s × s-matrix with ones on the superdiagonal and zeroes
everywhere else. Then N i is the matrix that has ones on the i-th superdiagonal and
zeroes everywhere else, with N i = 0 for i ≥ s. Thus

(λ + N)n =
s−1
∑

i=0

(

n

i

)

λn−iN i for n ≥ s.

Now ‖(λ + N)n‖ ≤ C
∣

∣

( n
s−1

)∣

∣ for some constant C, and the claim follows. �

Proposition 5.2. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler function. Then the
following properties hold.

(1) One has h(an) ∈ O(n).
(2) Suppose in addition that all roots of the k-Mahler denominator of f are contained

in {0} ∪ U . Then h(an) ∈ O(log2 n).

Proof. The set up is the same in both cases. Applying Lemma 3.13.1, we may assume that
f satisfies a k-Mahler equation

p0(z)f(z) = p1(z)f(zk) + · · · + pd(z)f(zkd

)

with p0(0) = 1 and d ≥ 1. Extend the sequence an to rational indices by setting ar = 0
for all r ∈ QrZ≥0. Let s = max{ deg pi : i ∈ 0, . . . , d }. Let p0(z) = αszs + · · · + α1z + 1
and, for i ∈ {1, . . . , d}, let pi(z) =

∑s
j=0 βi,jzj with βi,j ∈ Q. Comparing coefficients in

the Mahler equation, we have

(5) an =
s
∑

j=1

−αjan−j +
d
∑

i=1

s
∑

j=0

βi,ja n−j

ki
for n ≥ s.

We now write this as a matrix equation. For i ∈ {0, . . . , d}, let

ai(n) :=













an/ki

a(n−1)/ki

...
a(n−s)/ki













.

Let A, B1, . . . , Bd ∈ Q
(s+1)×(s+1)

be given by

A =























−α1 −α2 . . . −αs−1 −αs 0
1 0 . . . 0 0 0
0 1 . . . 0 0 0
... 0

. . .
...

...
...

...
... . . . 1 0 0

0 0 . . . 0 1 0























and Bi =











βi,0 βi,1 . . . βi,s

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0











.
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The characteristic polynomial of A is zs+1 + α1zs + · · · + αsz = zs+1p0(1/z) ∈ Q[z].
Now

a0(n) = Aa0(n − 1) +
d
∑

i=1

Biai(n) for n > s.

Let n0 ≥ max{s + 1, 3k}. Recursively substituting for a0(n − j), for n ≥ n0, we get

a0(n) = An−n0a0(n0) +
n−n0−1
∑

j=0

d
∑

i=1

AjBiai(n − j).

The recursion formula for (an)n≥0 implies that there is a number field K containing
all αi, βi,j and an for n ≥ 0. For each place v of K, let |·|

v
be the corresponding

absolute value and let ‖·‖
v

be the induced maximum norm. We also write ‖·‖
v

for the

operator norm on K(s+1)×(s+1). Let εv(n) = n if v is archimedean, and εv(n) = 1 if v is
non-archimedean. Then

(6) ‖a0(n)‖
v

≤ εv(dn) max{‖An−n0‖
v
‖a0(n0)‖

v
, ‖Aj‖

v
‖Bi‖v

‖ai(n − j)‖
v

}
where i ∈ {1, . . . , d} and j ∈ {0, . . . , n − n0 − 1}. Let S be the finite set consisting
of all places v that are archimedean or for which ‖A‖

v
> 1, or |an|

v
> 1 for some

n ∈ {0, . . . , n0}, or ‖Bi‖v
> 1 for some i ∈ {1, . . . , d}. Note that, for v 6∈ S, also

‖An‖
v

≤ ‖A‖n
v

≤ 1 for all n ≥ 1. If v 6∈ S, then, by induction, Eq. (66) implies |an|
v

≤
‖a0(n)‖

v
≤ 1 for all n ≥ n0. Therefore

h(an) = log
∏

v∈S

max{1, |an|
v
}.

To show the claim, it suffices to obtain suitable bounds on |an|
v

for v ∈ S. At this point
we split the proof into the two separate cases.

(1) Let v ∈ S. We show |an|
v

≤ cn for some c ∈ R≥1. Let c ∈ R≥1 be sufficiently large
such that |an|

v
≤ c for all n ∈ {1, . . . , n0} and such that ‖Bi‖v

≤ c for all i ∈ {1, . . . , d}.
Enlarging c further, also suppose ‖A‖

v
≤ c, so that ‖An‖

v
≤ cn. Finally, we also require

dn0 ≤ cn0 . Consequently dn ≤ cn for all n ≥ n0.
We show ‖a0(n)‖

v
≤ c2kn for all n ≥ n0 by induction. For n = n0 this is true by

choice of c. For n > n0, Eq. (66) gives

‖a0(n)‖
v

≤ εv(dn)cn−n0 max{‖a0(n0)‖
v
, ‖Bi‖v

‖ai(n − j)‖
v
},

where i ∈ {1, . . . , d} and j ∈ {0, . . . , n−n0−1}. By induction hypothesis we can estimate
‖ai(n − j)‖

v
≤ c2n, and therefore ‖a0(n)‖

v
≤ dncn−n0cc2n ≤ c2kn. Thus |an|

v
≤ c2kn, as

claimed.
(2) Let v ∈ S. We show |an|

v
≤ nc log n for some c ∈ R≥1. We now choose c ∈ R≥1

sufficiently large such that the following hold. Let |an|
v

≤ c for all n ∈ {1, . . . , n0} and

‖Bi‖v
≤ c for all i ∈ {1, . . . , d}. Let dc2 ≤ nc log k−s−1

0 . Finally, by our assumptions, all
the eigenvalues of A are contained in {0} ∪ U . Thus ‖An‖

v
∈ O(ns) by Lemma 5.15.1, and

we can also assume ‖An‖
v

≤ cns for n ≥ 1.

We show ‖a0(n)‖
v

≤ nc log n for all n ≥ n0 by induction. For n = n0 this is clear since
n0 ≥ 3. Equation (66) gives

‖a0(n)‖
v

≤ εv(dn)cns max{‖a0(n0)‖
v
, ‖Bi‖v

‖ai(n − j)‖
v
},
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where i ∈ {1, . . . , d} and j ∈ {0, . . . , n − n0 − 1}. By induction hypothesis ‖a0(n)‖ ≤
dc2ns+1(n/k)c log(n/k) ≤ nc log n. The result follows. �

We have thus established the general growth bound for the coefficients of a Mahler
function: the height of the nth coefficient is at most linear in n.

6. First gap: characterization of totally analytic Mahler functions

In this section, we characterize k-Mahler functions f(z) =
∑∞

n=0 anzn ∈ QJzK with
h(an) ∈ o(n). Let f ∈ QJzK be an M -function. There exists a number field K such that
f ∈ KJzK, and for every place v of K, we may consider f as a power series over the
algebraic closure Cv of the completion Kv. Then f has a positive radius of convergence,
and it is meromorphic in the open unit disk of Cv. Furthermore, for all but finitely
many places of K, the radius of convergence of f is equal to 1. Hence, an M -function is
globally analytic. We say that f is totally analytic if, for every place v of K, f is analytic
in the open unit disk of Cv.

Theorem 6.1. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler function. The following
statements are equivalent.

(a) We have h(an) ∈ o(n).
(b) Every non-zero root of the k-Mahler denominator of f belongs to U (i.e., is a root

of unity).
(c) The power series f is totally analytic.
(d) We have h(an) ∈ O(log2 n).

The crucial step here lies in showing that all roots of the k-Mahler denominator are
contained in {0} ∪ U . This relies on the deep results on Mahler’s method by Nishioka,
Philippon, Fernandes, and Adamczewski–Faverjon that were recalled in Section 44. But
first we need the following easy lemma.

Lemma 6.2. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a power series that is not a polynomial.
If h(an) ∈ o(n), then f has radius of convergence 1 for every absolute value of Q.

Proof. Fix an absolute value |·| on Q, and let

ρ =
(

lim sup
n→∞

n

√

|an|)−1 ∈ R≥0 ∪ {∞}

be the radius of convergence of f .
We show ρ = 1 by contradiction. Suppose first ρ > 1. Choose ρ′ ∈ R>0 with with

1 < ρ′ < ρ. Since lim supn→∞
n
√

|an| = 1/ρ < 1/ρ′, we have |an| ≤ (1/ρ′)n for all
sufficiently large n. Since f is not a polynomial, there exist infinitely many such n with
an 6= 0, and for these |a−1

n | ≥ (ρ′)n. It follows that h(an) ≥ log|a−1
n | ≥ n log(ρ′), in

contradiction to our assumption.
Suppose now ρ < 1, and choose ρ < ρ′ < 1. Then, for all n0 ≥ 0, there exists an

n ≥ n0 such that |an| ≥ (1/ρ′)n. Hence h(an) ≥ log|an| ≥ n log(1/ρ′) again yields a
contradiction. �

Proposition 6.3. Let f(z) ∈ QJzK be k-Mahler and let d ∈ Q[z] be its k-Mahler denom-
inator. If λ ∈ Q is a root of d, and |·| is an absolute value on Q with 0 < |λ| < 1, then
the radius of convergence of f with respect to this absolute value is strictly less than 1.
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Proof. We continue with the notation of Section 44. In particular, we can assume that
there exists a number field K containing λ and all coefficients of f as well as the coef-
ficients of the polynomials appearing in the k-Mahler equation. Further, |·| on K arises
from a place v of K, and Cv is the algebraic closure of the completion Kv, with K
denoting the algebraic closure of K inside Cv.

Let us first consider the minimal homogeneous equation associated with f :

(7) p0(z)f(z) + p1(z)f(zk) + · · · + pd(z)f(zkd

) = 0 .

By minimal, we mean that p0, . . . pd ∈ K[z] are relatively prime and d is minimal. If
f = 0, then d = 0 and p0 = 1. Thus also d = 1 and the claim is trivially true. We may

assume f 6= 0, so that d ≥ 1. In particular, the functions f(z), . . . , f(zkd−1

) are linearly
independent over K(z). By Corollary 4.44.4, we have that

f(λkn

), f(λkn+1

), . . . , f(λkn+d−1

)

are linearly independent over K, as soon as n is large enough, say n ≥ n0. Now, iterating
Equation (77), we obtain an equation of the form

(8) q0(z)f(z) + q1f(zkn0
) + · · · + qd(z)f(zkn0+d−1

) = 0 ,

where we assume without any loss of generality that q0, . . . , qd ∈ K[z] are relatively
prime. We claim that f has a pole at λ. Let us assume by contradiction that f is
well-defined at λ. Since d(λ) = 0, it follows that q0(λ) = 0 and we get that

q1(λ)f(λkn0
) + · · · + qd(λ)f(λkn0+d−1

) = 0 .

Since f(λkn0 ), . . . , f(λkn0+d−1

) are linearly independent over K, all the qi should vanish
at λ, contradicting the fact that they are relatively prime. Hence, f has a pole at λ and
its radius of convergence is therefore less than 1. �

We now have the ingredients to characterize Mahler functions with h(f(n)) ∈ o(n).

Proof of Theorem 6.16.1. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be k-Mahler.
(a)(a) ⇒ (c)(c) Suppose h(an) ∈ o(n). By Lemma 6.26.2 the series f has radius of convergence

at least 1 with respect to every absolute value |·| on Q.
(c)(c) ⇒ (b)(b) Suppose now f has radius of convergence at least 1 with respect to every

absolute value |·| on Q. Let d ∈ Q[z] be the k-Mahler denominator of f . Suppose there
exists 0 6= λ ∈ Q with d(λ) = 0 such that λ is not a root of unity. By Kronecker’s
Theorem there exists an absolute value |·| on Q for which |λ| < 1. By Proposition 6.36.3,
the series f has radius of convergence strictly less than 1 for this absolute value, a
contradiction.

(b)(b) ⇒ (d)(d) Suppose all roots of the k-Mahler denominator d ∈ Q[z] of f are contained
in {0} ∪ U . Then h(an) ∈ O(log2 n) by (2)(2) of Proposition 5.25.2.

(d)(d) ⇒ (a)(a) Clearly h(an) ∈ O(log2 n) implies h(an) ∈ o(n). �

7. Second gap: characterization of regular Mahler functions

In this section, we characterize Mahler functions f(z) =
∑∞

n=0 anzn ∈ QJzK with
h(an) ∈ o(log2 n). The following result also proves Case (2) of Theorem 1.21.2.
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Theorem 7.1. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler function. The following
statements are equivalent.

(a) We have h(an) ∈ o(log2 n).
(b) Every non-zero root of the k-Mahler denominator of f belongs to Uk.
(c) The power series f is k-regular.
(d) We have h(an) ∈ O(log n).

We already know that, if h(an) ∈ o(log2 n), then every root ζ of the k-Mahler denomi-
nator d of f is contained in {0}∪U . The brunt of the work in this section lies in showing

ζ ∈ {0} ∪ Uk, that is, if ζ 6= 0, then ζkj 6= ζ for all j > 0. This requires a careful analysis
of the asymptotics of f at such a hypothetical root of d to establish a contradiction.

We start with some estimates.

Lemma 7.2. Let f(z) =
∑∞

n=0 anzn ∈ RJzK be a power series with nonnegative coeffi-
cients. Suppose there exists c ∈ R>0 with an ≤ nc log n for all sufficiently large n. Let
c′, ε ∈ R>0 with c′ > 2c. Then there exists t0 ∈ [0, 1) such that

∞
∑

n=⌈m log2 m⌉

antn < ε for all t ∈ [t0, 1) and m ≥ c′

1 − t
·

Proof. By assumption, for large n,

antn ≤ exp(c log2 n + n log t).

We will show that, for sufficiently large m (ensured by choice of t0) and n ≥ m log2 m,

(9) c log2 n + n log t ≤ 1
2n log t.

We first show how to conclude the proof using Eq. (99). Then antn ≤ tn/2 and

∞
∑

n=⌈m log2 m⌉

antn ≤ t⌈m log2 m⌉/2

1 −
√

t
=

(1 +
√

t)t⌈m log2 m⌉/2

1 − t
<

2t⌈m log2 m⌉/2

1 − t
·

We need to bound the right side by a constant. Using m ≥ c′/(1 − t) and t ∈ [0, 1), we
have

(10) log

(

2t⌈m log2 m⌉/2

1 − t

)

≤ log 2 +
c′ log t

2(1 − t)
log2

(

c′

1 − t

)

− log(1 − t).

Recall limt→1 log t/(1 − t) = −1 and log2(c′/(1 − t)) ∼ log2(1 − t) for t → 1−. Hence the
right side of Eq. (1010) tends to −∞ as t → 1−. Choosing t0 ∈ [0, 1) sufficiently close to
1, therefore

∞
∑

n=⌈m log2 m⌉

antn ≤ ε for t ∈ [t0, 1) and m ≥ c′/(1 − t).

It remains to show the bound in Eq. (99). The latter is equivalent to c log2 n+ 1
2n log t ≤

0. Since log t ≤ t − 1 ≤ −c′/m, it suffices to show

(11) c log2 n − n
c′

2m
≤ 0 for n ≥ m log2 m.
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We first show this for n = m log2 m. Now

c log2(m log2 m) − m(log2 m)
c′

2m
∼ (c − c′/2) log2 m

as a function in m for m → ∞, and c − c′/2 is negative by choice of c′. Thus, for

sufficiently large m, we have c log2(m log2 m)−m(log2 m) c′

2m ≤ 0. We can ensure a large
enough m by choosing t0 ∈ [0, 1) sufficiently close to 1.

Now, set g(n) := c log2 n and h(n) := n c′

2m . Then g′(n) = 2c log n
n , and hence

g′(m log2 m) =
2c log m + 2c log(log2 m)

m log2 m
∼ 2c

m log m
·

Thus, choosing m sufficiently large, we may also ensure

g′(m log2 m) ≤ h′(m log2 m) =
c′

2m
·

Since g(n) is concave for n ≥ exp(1), this ensures g(n) ≤ h(n) for n ≥ m log2 m. This
proves Eq. (99) and ends the proof of the lemma. �

Lemma 7.3. Let f(z) =
∑∞

n=0 anzn ∈ RJzK be a power series with nonnegative coeffi-
cients. Let a ∈ R≥0 and b, c ∈ R>0. Assume that there exist a sequence (tj)j≥0 → 1 in
[0, 1) and m0 ∈ Z≥0 such that

f(tj) ≥ (1 − tj)
a exp(c log2 m)tmb

j for all j ≥ 0 and m ≥ m0.

Then there exist c′ ∈ R>0 and infinitely many n ≥ 1 with an > exp(c′ log2 n).

Proof. Without any loss of generality we can assume that there exists a constant c′ > 2c
such that an ≤ exp(c′ log(n)2) for all sufficiently large n. Indeed, otherwise the result
holds trivially. By the previous lemma, for all sufficiently large j and m ≥ 3c′/(1 − tj),
we have

∞
∑

n=⌈m log2 m⌉

antn
j ≤ 1 .

Let mj = ⌈3c′/(1 − tj)⌉ and

Aj = log
(

(1 − tj)a exp(c log2 mj)t
mjb
j

)

= a log(1 − tj) + c log2 mj + mjb log tj .

Then, for sufficiently large j,

⌊mj log2 mj⌋
∑

n=0

antn
j ≥ exp(Aj) − 1 .

Since
( 3c′

(1 − tj)
+ 1

)

b log tj ≤ mjb log tj ≤ 3c′

(1 − tj)
b log tj ,

and ((log tj)/(1−tj))j≥0 → −1, we find (mjb log tj)j≥0 → −3c′b. Since log2(1/(1−tj)) =

log2(1 − tj) and therefore log2 mj ∼ log2(1 − tj), we see that Aj ∼ c log2 mj. Choosing
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j sufficiently large, we may assume

Aj ≥ c

2
log2 mj .

Therefore, again restricting to large enough j for the last inequality,

⌊mj log2 mj⌋
∑

n=0

antn
j ≥ exp(Aj) − 1 ≥ exp

( c

4
log2 mj

)

.

By the pigeonhole principle, there exists 0 ≤ nj ≤ mj log2 mj such that

anj
≥ exp

( c

4
log2 mj

)

/(1 + mj log2 mj) .

Thus
log anj

≥ c

4
log2 mj − log(mj log2 mj + 1) ∼ c

4
log2 mj .

We may assume log anj
≥ c

8 log2 mj. To finish, since nj ≤ mj log2 mj, we have

log2 nj ≤ log2(mj log2 mj) ∼ log2 mj .

We may take log2 nj ≤ 2 log2 mj, so that log anj
≥ c

16 log2 nj. Since log anj
≥ c

16 log2 mj

and (mj)j≥0 → ∞, also (nj)j≥0 → ∞. Thus there are in fact infinitely many distinct
such nj. �

Lemma 7.4. Let ζ ∈ C with ζk = ζ. Let p(z) ∈ C[z] with p(0) = 1 and p(ζ) 6= 0. Then
there exists c ∈ R>0 such that, for all t ∈ [0, 1) with p(ζtkn

) 6= 0 for all n ≥ 0,
∣

∣

∣

∣

(

∞
∏

n=0

p(ζtkn

)

)−1∣
∣

∣

∣

> |1 − t|c .

Proof. The proof is the same as the one of the lower bound in [AB17AB17, Lemma 9.5 and
Proposition 9.2]. Let α1, . . . , αs denote the roots of p(z) (with multiplicity). Then

p(z) = (1 − α−1
1 z) · · · (1 − α−1

s z) .

It suffices to show the claim for 1 − α−1
1 z. Suppose t ∈ [0, 1] is such that ζtkn 6= α1 for

all n ≥ 0. Then the infinite product
∏∞

n=0(1 − α−1
1 tkn

)−1 converges, and
∣

∣

∣

∣

∞
∏

n=0

1

1 − α−1
1 ζtkn

∣

∣

∣

∣

≥
∞
∏

n=0

1

1 + |α1|tkn ≥
∞
∏

n=0

exp(−|α1|tkn

) .

Then, by [AB17AB17, Lemma 9.4],
∞
∏

n=0

exp(−|α1|tkn

) ≥ exp
(

− |α1|(1 − 1/k)−1
∞
∑

n=1

tn

n

)

= (1 − t)
|α1|k

k−1 . �

Let B(λ, r) ⊆ C, respectively B(λ, r) ⊆ C, denote the open, respectively closed, disc
of radius r ∈ R≥0 with center λ ∈ C.

Lemma 7.5 (Special case of [AB17AB17, Lemma 10.2]). Let d ∈ Z>0, let 0 6= ζ ∈ C such that

ζk = ζ, and let A : B(0, 1) → Cd×d be a continuous, matrix-valued function. Assume
that w(z) ∈ CJzKd satisfies the equation

w(λ) = A(λ)w(λk) for all λ ∈ B(0, 1) .
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Assume also that the following properties hold.

(i) The coordinates of w(z) are analytic in B(0, 1).
(ii) The matrix A(ζ) is not nilpotent.

(iii) The set { w(λ) : λ ∈ B(0, 1) } is not contained in a proper vector subspace of Cd.

Then there exist c ∈ R>0 and a sequence (tj)j≥0 → 1 in [0, 1) such that

‖w(tjζ)‖ > |1 − tj |c for all j ≥ 0 .

Proof. This is [AB17AB17, Lemma 10.2] in the special case θ = 0. We do not assume w(z) to

be continuous in B(0, 1), but this assumption is never used in the proof and is therefore
superfluous. �

Lemma 7.6. Let b ∈ Z>0 and a, a′ ∈ R with a′ > a > 0. Then there exists t0 ∈ [0, 1]
such that

(1 − t1/b)a > (1 − t)a′
for all t ∈ [t0, 1].

Proof. For t ∈ [0, 1] we have

1 − t = (1 − t1/b)
b−1
∑

i=0

ti/b ≤ b(1 − t1/b).

Moreover (1 − t)a′−a < 1/ba for t sufficiently close to 1. Then

(1 − t1/b)a ≥ (1 − t)a′

(1 − t)a′−aba
> (1 − t)a′

. �

Armed with these estimates, we can finally prove a further restriction on the roots of
the k-Mahler denominator. This is the key step in the current section. The arguments
are in many aspects very similar to those used by Adamczewski–Bell in [AB17AB17, §11].

Proposition 7.7. Let f(z) =
∑∞

n=0 anzn ∈ CJzK be a k-Mahler series that is analytic

in B(0, 1). Let ζ ∈ U with ζkj
0 = ζ for some j0 ≥ 1, and let l = kj0. Suppose there exists

an l-Mahler equation

p0(z)f(z) = p1(z)f(zl) + · · · + pd(z)f(zld),

with p0, . . . , pd ∈ C[z] coprime, with p0pd 6= 0, and such that p0(ζ) = 0.
Then there exist a, b, c ∈ R>0, m0, n0 ∈ Z≥0, and a sequence (tj)j≥0 → 1 in [0, 1)

such that
∣

∣

∣

∣

∣

∞
∑

n=0

an+n0
(ζtj)

n

∣

∣

∣

∣

∣

≥ (1 − tj)
a exp(b log2 m)tmc

j for all j ≥ 0 and m ≥ m0 .

Proof. Applying Lemma 3.13.1, there exist n0 ≥ 0 and q0, . . . , qd+1 ∈ C[z] such that an0
6= 0

and

f0(z) =
∞
∑

n=0

an+n0
zn

satisfies
q0(z)f0(z) = q1(z)f0(zl) + · · · + qd+1f0(zld+1

) ,

with q0(0) = 1, with q0(ζ) = 0, and with qi(ζ) 6= 0 for some i ∈ {1, . . . , d + 1}. Since f
is not rational, neither is f0.
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Let νi ∈ Z≥0 be the order of vanishing of qi(z) at ζ. Define

r := min
{ νi + (i − 1)ν0

i
: i ∈ 1, . . . , d + 1

}

∈ Q≥0 .

Since ν0 > 0 and νi = 0 for some i ∈ {1, . . . , d + 1}, we have r < ν0. Defining

g(z) := f0(ζz)
∞
∏

n=0

q0(ζzln)

(1 − zln)r

we obtain

g(z) =
d+1
∑

i=1

ri(z)g(zli ) with ri(z) = qi(ζz)
1

(1 − z)r

i−1
∏

n=1

q0(ζzln)

(1 − zln)r
∈ C(z) .

In the expression for ri, the denominator has roots at every ω ∈ C for which ωli−1

= 1.
If ω 6= 1, then r < ν0 guarantees that ri does not actually have a pole at ω. For ω = 1,
this is ensured by ir ≤ νi + (i − 1)ν0. Thus, all ri are in fact polynomials. Moreover, by
choice of r, there exists an i0 ∈ {1, . . . , d + 1} such that ri0

(1) 6= 0.

Claim: There exist a ∈ R>0 and a sequence (tj)j≥0 → 1 in [0, 1) with

|g(tj)| ≥ (1 − tj)a.

Proof of Claim. First we deal with the degenerate case in which g(z) is constant. Then
g(z) = g(0) and from the definition of g we see g(0) 6= 0 since f0(0) 6= 0 and q0(0) = 1.
Choosing a = 1, any sequence (tj)j≥0 → 1 in [0, 1) satisfies |g(tj)| > 1− tj for sufficiently
large j. From now on we may assume that g is not constant.

We are going to apply Lemma 7.57.5. Denote by ‖·‖ the maximum norm with respect

to |·|. Let w(z) =
(

g(z), g(zl), . . . , g(zld )
)T

and

A(z) =























r1(z) r2(z) . . . rd−1(z) rd(z) rd+1(z)
1 0 . . . 0 0 0
0 1 . . . 0 0 0
... 0

. . .
...

...
...

...
... . . . 1 0 0

0 0 . . . 0 1 0























∈ C(z)(d+1)×(d+1) .

Then w(z) = A(z)w(zl). The coordinates of A(z) are polynomials and hence of course
continuous. We verify the conditions of Lemma 7.57.5.
(i)(i) The coordinates of w(z) are analytic in B(0, 1) since g(z) is analytic in B(0, 1).
(ii)(ii) The characteristic polynomial of A(z) is yd+1 − r1(z)yd − · · · − rd+1(z) ∈ C(z)[y].
Since ri0

(1) 6= 0, the matrix A(1) is not nilpotent.
(iii)(iii) Suppose that S = { w(λ) : λ ∈ B(0, 1) } is contained in a proper subspace of Cd.

Then there exist α0, . . . , αd ∈ C, not all zero, such that α0g(λ) + · · · + αdg(λld ) = 0

for all λ ∈ B(0, 1). Since g is analytic in B(0, 1) this forces α0g(z) + · · · + αdg(zld) = 0.
But then g is constant by [AB17AB17, Lemma 7.9], a contradiction. Hence the set S is not
contained in a proper subspace of Cd.
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Applying Lemma 7.57.5, there exist a ∈ R>0 and a sequence (tj)j≥0 → 1 in [0, 1) such
that

‖w(tj)‖ > (1 − tj)
a for all j ≥ 0 .

Restricting to a subsequence and making a substitution, we may assume that there exists

i0 ∈ [1, d] and b = li0 such that |g(tj)| > (1 − t
1/b
j )a for j ≥ 0. Applying Lemma 7.67.6 and

replacing a by a slightly larger constant, we may actually take |g(tj)| > (1 − tj)a for all
j ≥ 0. � (Claim)

By the result of Mahler, see Section 2.0.22.0.2, there exists a constant c ∈ R>0 such that,
for some m0 ≥ 0,

∞
∏

n=0

(1 − tln

j )−1 ≥
∞
∑

n=m0

exp(c log2 n)tn
j .

Thus
∞
∏

n=0

(1 − tln

j )−1 ≥ exp(c log2 m)tm
j for all m ≥ m0 .

The lower bound for g together with the fact that f0 is analytic in B(0, 1) implies
q0(ζtln

j ) 6= 0 for all n ≥ 0. By Lemma 7.47.4, there exists a′ ∈ R>0 such that
∣

∣

∣

∣

∞
∏

n=0

(1 − tln
j )ν0

q0(ζtln
j )

∣

∣

∣

∣

> (1 − tj)a′
for j large enough.

With b = ν0 − r > 0, we conclude, for m ≥ m0, that

|f0(tjζ)| = |g(tj)|
∣

∣

∣

∣

∞
∏

n=0

(1 − tln
j )r

q0(ζtln
j )

∣

∣

∣

∣

> (1 − tj)a+a′
exp(cb log2 m)tmb

j . �

Proposition 7.8. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be k-Mahler and suppose that h(an) ∈
o(log2 n). Then the roots of the k-Mahler denominator of f are contained in {0} ∪ Uk.

Proof. Let d be the k-Mahler denominator of f . Suppose that 0 6= ζ ∈ Q is such that

d(ζ) = 0. Then ζ ∈ U by Theorem 6.16.1. We have to show ζkj 6= ζ for all j ≥ 1.

Suppose to the contrary that ζkj0 = ζ for some j0 ≥ 1. Let l = kj0 . Then f is also
l-Mahler by Lemma 3.23.2. Let p0, . . . , pd ∈ Q[z] be coprime, with p0pd 6= 0, such that

p0(z)f(z) = p1(z)f(zl) + · · · + pd(z)f(zld) .

Since this is also a k-Mahler equation for f , the k-Mahler denominator d divides p0, hence
p0(ζ) = 0. Fix any embedding Q →֒ C, and thereby an archimedean absolute value on
Q. We apply Proposition 7.77.7 to conclude that there exist a, b, c ∈ R>0, m0, n0 ∈ Z≥0,
and a sequence (tj)j≥0 → 1 in [0, 1) such that

|f0(ζtj)| ≥ (1 − tj)
a exp(b log2 m)tmc

j for all j ≥ 0 and m ≥ m0 ,

where f0(z) =
∑∞

n=0 an+n0
zn. Since

∑∞
n=0|an+n0

|tn ≥ |f0(ζt)| for t ∈ [0, 1), the condi-
tions of Lemma 7.37.3 are satisfied for

∑∞
n=0|an+n0

|tn. Thus there exist c ∈ R>0 such that
|an| ≥ exp(c log2 n) infinitely often. Thus h(an) 6∈ o(log2 n); a contradiction. �

Once we know that all roots of the k-Mahler denominator of f are contained in {0}∪Uk

it is not hard to show that f is k-regular. This was shown by Dumas [Dum93Dum93, Théorème
30]; see also [BCCD19BCCD19, Proposition 2]. We recall the proof.
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Proposition 7.9. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler series and suppose that
h(an) ∈ o(log2 n). Then f is a k-regular power series.

Proof. Since every polynomial is k-regular, and sums of k-regular sequences are k-regular,
it suffices to show the claim for

∑∞
n=0 an+n0

zn for some n0 ≥ 0. By Lemma 3.13.1 we may
therefore assume d(0) = 1 for the k-Mahler denominator d of f . By Proposition 7.87.8, all
roots of d are contained in Uk. By Theorem 3.83.8 we can write

f(z) =
g(z)

∏∞
n=0 d(zkn)

with a k-Becker series g. By a theorem of Becker [Bec94Bec94, Theorem 2], the series g is
k-regular. By [AB17AB17, Proposition 7.8]

∞
∏

n=0

(1 − ζ−1zkn

)−1

is also k-regular for ζ ∈ Uk. Products of k-regular series are k-regular, and so f is
k-regular. �

Allouche–Shallit [AS92AS92, Theorem 2.10] show |an| = O(nc) for a C-valued k-regular
sequence. A similar argument bounds the height of the coefficients.

Lemma 7.10. If f(z) =
∑∞

n=0 anzn ∈ QJzK is k-regular, then h(an) ∈ O(log n).

Proof. For n ∈ Z≥0, we recall that 〈n〉k ∈ Σ∗
k is the canonical base-k expansion of n. By

Theorem 3.53.5 there exists a linear representation (u, µ, v) (of some dimension d ∈ Z≥0)
such that an = uµ(〈n〉k)v for all n ∈ Z≥0. Furthermore, using basic properties of the
logarithmic Weil height (see [Wal00Wal00, Chapter 3]), we deduce that h(uµ(w)v) ∈ O(|w|)
for w ∈ Σ∗

k. Noting that |〈n〉k| ∈ O(log n), we obtain h(an) ∈ O(log n). �

At this point, we are ready to prove Theorem 7.17.1.

Proof of Theorem 7.17.1. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler function.
(a)(a) ⇒ (b)(b) Suppose h(an) ∈ o(log2 n). By Proposition 7.87.8 all roots of the k-Mahler

denominator of f are contained in {0} ∪ Uk.
(b)(b) ⇒ (c)(c) Suppose that all roots of the k-Mahler denominator are contained in {0}∪Uk.

Then f is k-regular by Proposition 7.97.9.
(c)(c) ⇒ (d)(d) Suppose f is k-regular. Then h(an) ∈ O(log n) by Lemma 7.107.10.
(d)(d) ⇒ (a)(a) Clearly h(an) ∈ O(log n) implies h(an) ∈ o(log2 n). �

8. Third gap: word-convolution products of automatic sequences

In this section, we characterize Mahler functions f(z) =
∑∞

n=0 anzn ∈ QJzK with
h(an) ∈ o(log(n)). The arguments are similar to the ones used in [Bel05Bel05] and [BCH16BCH16].
As before, we actually prove a more extensive characterization involving a structural
property.

Before stating the main result of this section, we first recall the definition of the
word-convolution product following [BCH16BCH16].
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Definition 8.1. Given two sequences of complex numbers (a(n))n≥0 and (b(n))n≥0,
their word-convolution product is the sequence a ⋆w b defined by

a ⋆w b(n) =
s
∑

j=0

a(〈i1 · · · ij〉k)b(〈ij+1 · · · is〉k) ,

where 〈n〉k = i1i2 · · · is ∈ Σ∗
k.

We also need the notion of tame semi-group of matrices.

Definition 8.2. Let d be a positive integer. A semigroup of matrices S ⊆ Kd×d is tame,
if all eigenvalues of all matrices A ∈ S are contained in {0} ∪ U .

We are now ready to state the main result of this section. We already know that
a k-Mahler function with h(an) ∈ O(log(n)) is k-regular. The sequence of coefficients
(an)n≥0 therefore has a minimal linear representation (u, µ, v) by Theorem 3.53.5.

Theorem 8.3. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler function. The following
statements are equivalent.

(a) We have h(an) ∈ o(log n).
(b) For every minimal linear representation (u, µ, v) of (an)n≥0, the matrix semigroup

µ(Σ∗
k) is tame.

(c) The sequence (an)n≥0 is a Q-linear combination of word-convolution products of
k-automatic sequences.

(d) We have h(an) ∈ O(log log n).

Our first goal is to use the additional restriction h(an) ∈ o(log n) to obtain a restriction
on the possible eigenvalues of the matrices µ(w). The following lemma is similar to
[Bel05Bel05, Lemma 2.3].

Lemma 8.4. Let (an)n≥0 be a k-regular sequence in Q, with a minimal linear represen-
tation (u, µ, v). Suppose h(an) ∈ o(log n). Then the finitely generated matrix semigroup
µ(Σ∗

k) is tame.

Proof. By definition of the linear representation, we have a[w]k = uµ(w)v for all w ∈ Σ∗
k.

Since [w]k ∈ O(k|w|) for all w ∈ Σ∗
k, our assumption on the sequence translates into

h(uµ(w)v) ∈ o(|w|).
Write d for the dimension of (u, µ, v). If d = 0, the claim is trivially true. Let

d > 0. Suppose there exist a word w ∈ Σ∗
k and λ ∈ Q r {0} not a root of unity such

that λ is an eigenvalue of µ(w). Then there exists a nonzero vector v0 ∈ Q
d×1

with
µ(w)v0 = λv0. By minimality of the linear representation, there exist w1, . . . , wd ∈ Σ∗

k

such that µ(w1)v, . . . , µ(wd)v form a basis of Q
d×1

. Let α1, . . . , αd ∈ Q be such that
v0 = α1µ(w1)v + · · ·+αdµ(wd)v. Again by minimality, the set { uµ(w′) : w′ ∈ Σ∗

k } spans

Q1×d. Therefore there exists w′ ∈ Σ∗
k such that uµ(w′)v0 6= 0.

Now
d
∑

i=1

αiuµ(w′wnwi)v = uµ(w′)µ(wn)v0 = λnuµ(w′)v0 6= 0.
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Since λ is not a root of unity, there exists an absolute value |·| on Q with |λ| > 1. We
conclude that there exists an i ∈ {1, . . . d} with

|αiuµ(w′wnwi)v| ≥ |λ|n |uµ(w′)v0|
d

for infinitely many n ≥ 0. Hence there exists c′ ∈ R>0 such that, for these n ≥ 0,

h(uµ(w′wnwi)v) ≥ log|uµ(w′wnwi)v| ≥ nc′.

This is a contradiction. �

Tame semigroups afford a particular block diagonal decomposition.

Lemma 8.5. Let S ⊆ Q
d×d

be a finitely generated tame semigroup. Then there exist

d1, . . ., dr ∈ Z≥0 with d = d1 + · · · + dr, finite semigroups Si ∈ Q
di×di for i ∈ {1, . . . , r},

and a matrix T ∈ GLd(Q) such that

T −1ST ⊆



















S1 Q
d1×d2

Q
d1×d3 . . . Q

d1×dr

0 S2 Q
d2×d3 . . . Q

d2×dr

0 0 S3 . . . Q
d3×dr

...
...

...
. . .

...
0 0 0 . . . Sr



















.

Proof. If S spans Q
d×d

, then µ(Σ∗
k) is finite [BCH16BCH16, Lemma 4] and we are done. Oth-

erwise, we iterate Lemma 5 of [BCH16BCH16] to get a block-upper-triangular decomposition
with finite semigroup diagonals. �

The arguments in the following proof are similar to [Bel05Bel05, Theorem 2.6].

Proof of Theorem 8.38.3. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be k-Mahler.
(a)(a) ⇒ (b)(b) Suppose h(an) ∈ o(log n). Then (an)n≥0 is k-regular by Theorem 7.17.1.

Lemma 8.48.4 implies that µ(Σ∗
k) is tame.

(b)(b) ⇒ (d)(d) Let (u, µ, v) be a minimal linear representation of the k-regular sequence
(an)n≥0. Suppose µ(Σ∗

k) is tame. We have to show h(an) ∈ O(log log n). For this,
it suffices to show h(uµ(w)v) ∈ O(log|w|) for nonempty words w ∈ Σ∗

k. We can apply
Lemma 8.58.5. Thus, there exists a finite semigroup S of block-diagonal matrices such that,
after a change of basis, for every w ∈ Σ∗

k the matrix µ(w) is of the form D + N with
D ∈ S and N strictly upper triangular. We may assume that S contains the identity
matrix. Since Σk is finite, there exists a finite set N of strictly upper triangular matrices
such that µ(Σk) ⊆ S + N .

Let w = a1 · · · al ∈ Σ∗
k with a1, . . . , al ∈ Σk, and let µ(ai) = Di + Ni with Di ∈ S and

Ni ∈ N . For J ⊆ {1, . . . , l} with J = {j1 < j2 < · · · < jr} define

bJ = uD1 · · · Dj1−1Nj1
Dj1+1 · · · Dj2−1Nj2

Dj2+1 · · · Djr−1NjrDjr+1 · · · Dlv .

Then

uµ(w)v = uµ(a1 · · · al)v = u(D1 + N1) · · · (Dl + Nl)v =
∑

J⊆{1,...,l}

bJ .
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Any product that includes d or more of the Ni’s is 0, and hence bJ = 0 whenever #J ≥ d.
Thus, the previous sum reduces to

uµ(w)v =
∑

J⊆{1,...,l}
#J<d

bJ .

This sum has at most
( l

d−1

)

+· · ·+( l
0

) ≤ Cld−1 nonzero terms for some constant C ∈ R>0.
As S is a semigroup, each product Dji+1 · · · Dji+1−1 is again contained in the finite set
S. Hence

#
{

bJ : J ⊆ {1, . . . , l} } ≤ d #Sd #N d−1 < ∞ .

Let K be the number field generated by the finitely many coordinates of u, v, and
µ(a) for a ∈ Σk. Then bJ ∈ K for each J ⊆ {1, . . . , l}. Since there are only finitely
many of these elements, for every place v of K, there exists a constant cv ∈ R>0 such
that |bJ |

v
≤ cv for all J ⊆ {1, . . . , l}, and we can take cv = 1 for all but finitely many

places. For m ∈ Z≥0, let

εv(m) =

{

m if v is archimedean,

1 if v is non-archimedean.

Note
∏

v∈MK
εv(m) = m[K:Q]. With this definition |uµ(w)v|

v
≤ εv(Cld−1)cv and

h(uµ(w)v) = log
∏

v∈MK

max{1, |uµ(w)v|
v
}

≤ log
∏

v∈MK

max{1, εv(Cld−1)cv}

≤ log
(

(Cld)[K:Q])+ log





∏

v∈MK

max{1, cv}


 ∈ O(log l).

Since l = |w| this proves the claim.
(d)(d) ⇒ (a)(a) Clearly h(an) ∈ O(log log n) implies h(an) ∈ o(log n).
(b)(b) ⇔ (c)(c) By (i) ⇔ (ii) of Bell–Coons–Hare [BCH16BCH16, Theorem 13] (which does not

require the sequences to be Z-valued). �

9. Fourth gap: characterization of automatic Mahler functions

In this section, we characterize Mahler functions f(z) =
∑∞

n=0 anzn ∈ QJzK with
h(an) ∈ o(log log n), extending [BCH14BCH14, Theorem 1.1].

Theorem 9.1. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler function. The following
statements are equivalent.

(a) We have h(an) ∈ o(log log n).
(b) For every minimal linear representation of (an)n≥0, the matrix semigroup µ(Σ∗

k) is
finite.

(c) The power series f is k-automatic.
(d) We have h(an) ∈ O(1). Equivalently, the set { an : n ≥ 0 } is finite.

The following lemma closely follows [BCH14BCH14, Lemma 2.1]
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Lemma 9.2. Let (an)n≥0 be a k-regular sequence in Q, with a minimal linear represen-
tation (u, µ, v). If h(an) ∈ o(log log n), then the semigroup µ(Σ∗

k) is finite.

Proof. Again a[w]k = uµ(w)v for all w ∈ Σ∗
k. By our assumption

h(uµ(w)v) ∈ o(log|w|) .

Now suppose to the contrary that µ(Σ∗
k) is infinite. A theorem of McNaughton–

Zalcstein [MZ75MZ75] gives a positive answer to the strong Burnside problem for semigroups
of matrices over a field. Since µ(Σ∗

k) is a finitely generated semigroup of matrices, but
not finite, this theorem implies that there exists w ∈ Σ∗

k such that µ(wm) 6= µ(wn) for
all m, n ∈ Z≥0 with m 6= n. Fix such a word w.

Set A := µ(w). By Lemma 8.48.4 every eigenvalue of A is either 0 or a root of unity. Our
choice of w ensures that there exists at least one nonzero eigenvalue ζ with a non-trivial

Jordan block. Let T ∈ Q
d×d

be an invertible matrix such that T −1AT is in Jordan
normal form. Without restriction we may assume

T −1AT =

















ζ 1 0 . . . 0
0 ζ ∗ . . . 0
0 0 ∗ . . . 0
...

...
...

. . .
...

0 0 . . . . . . ∗

















.

The (1, 2) entry of T −1AnT is nζn−1. Hence h(eT
1 T −1AnT e2) = h(nζn−1) ≥ log n.

Using the minimality of the linear representation, we can write eT
1 =

∑d
i=1 λiuµ(wi)

and e2 =
∑d

i=1 τiµ(w′
i)v with suitable λi, τi ∈ Q and wi, w′

i ∈ Σ∗
k. It follows that

h
(

d
∑

i,j=1

λiτjuµ(wiw
nw′

j)v
)

≥ log n .

Hence there exist i, j ∈ {1, . . . , d} and c ∈ R>0 such that

h(uµ(wiw
nw′

j)v) > c log n for infinitely many n.

This is a contradiction to h(uµ(wiw
nw′

j)v) ∈ o(log n). �

Proof of Theorem 9.19.1. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler function.
(a)(a) ⇒ (b)(b) Let h(an) ∈ o(log log n). Then (an)n≥0 is k-regular by Theorem 7.17.1, with a

minimal linear representation (u, µ, v). By Lemma 9.29.2 the semigroup µ(Σ∗
k) is finite.

(b)(b) ⇒ (c)(c) Let (u, µ, v) be a minimal linear representation of the regular sequence
(an)n≥0. Suppose µ(Σ∗

k) is finite. Then (an)n≥0 takes only finitely many values, and
k-regular sequences taking finitely many values are automatic ([AS03aAS03a, Theorem 16.1.5]
or [BR11BR11, Proposition 5.3.3]).

(c)(c) ⇒ (d)(d) Let (an)n≥0 be k-automatic. Then the sequence only takes finitely many
values by definition.

(d)(d) ⇒ (a)(a) Clearly, if { an : n ≥ 0 } is finite, then h(an) ∈ o(log log n). �
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10. Comments on Becker’s conjecture

Every k-regular power series is k-Mahler, and as a partial converse Becker showed that
a k-Becker power series is regular. He also conjectured a full description of k-regular
power series in terms of k-Becker power series. This conjecture was recently proven
by Bell, Chyzak, Coons, and Dumas, as the main result in [BCCD19BCCD19]. The proof in
[BCCD19BCCD19] is stated for K = C, but the same arguments apply equally well to arbitrary
fields of characteristic zero.

Theorem 10.1 ([BCCD19BCCD19, Theorem 1]). Let K be a field of characteristic 0. If f(z) ∈
KJzK is k-regular, there exist a polynomial q ∈ K[z] with q(0) = 1 such that 1/q is
k-regular and a nonnegative integer γ such f(z)/zγq(z) is a k-Becker Laurent series.

By a k-Becker Laurent series, we of course mean a Laurent series satisfying a func-
tional equation as in Definition 3.63.6. We stress that it is not always possible to obtain
a k-Becker power series of the form f(z)r(z) with r(z) a rational function [BCCD19BCCD19,
Theorem 14].

The proof of Bell–Chyzak–Coons–Dumas breaks down into two steps:

(I) First they show that a k-regular power series f(z) ∈ KJzK satisfies a k-Mahler
equation

p0(z)f(z) + p1(z)f(zk) + · · · + pd(z)f(zkd

) = 0 ,

where all roots of p0 belong to {0} ∪ Uk. Equivalently, the k-denominator d of f has
all its roots in {0} ∪ Uk.

(II) They show that any such series has the required decomposition.

We now give alternative arguments for both of these steps using our results. In
particular, for K = Q, step I is immediate from Theorem 7.17.1 and our argument for step
II is somewhat shorter. We also recover Proposition 2 and Corollary 3 of [BCCD19BCCD19]
(Corollary 3 follows as in the proof of Proposition 7.97.9).

10.1. Step I. For K = Q, Theorem 7.17.1 immediately establishes step I. We now show
how to extend the relevant part of Theorem 7.17.1 to arbitrary fields of characteristic 0.

Let K be a field of characteristic 0 and let f(z) =
∑∞

n=0 anzn ∈ KJzK be k-regular.
Let d(z) denote the Mahler denominator of f(z) over K. We also have that the k-kernel
of f(z) is finitely generated as a K-vector space. In particular, there is some fixed M > 0
such that for every j ∈ {0, 1, . . . , kM − 1}, we have

akM n+j =
∑

e<M

ke−1
∑

i=0

cj,i,eaken+i for n ≥ 0.

We have that for some s ≥ 0, the power series f(z), f(zk), . . . , f(zks

) satisfy a Mahler
system of the form Eq. (33) with some invertible matrix A(z) with entries in K(z). Let
R be a finitely generated Z-algebra that contains:

(1) f(0), . . . , f(kM − 1);
(2) the roots of d(z) and the reciprocals of all nonzero roots of d(z);
(3) the structure constants ci,j,e.
(4) the nonzero coefficients and their inverses of each polynomial appearing in either

the numerator or denominator of an entry of A(z).
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Then by construction, f(z) ∈ RJzK. If p is a prime ideal of R and g(z) ∈ RJzK, then we
let g|p(z) denote the power series in R/pJzK obtained by reducing the coefficients of g(z)
modulo p. Then by construction, f|p(z) is a regular power series in (Rp/pp)JzK.

Lemma 10.2. Let λ ∈ R be a nonzero root of d(z). Then λ is a root of unity.

Proof. Suppose that λ is not root of unity. Then, since the coefficients of A(z) have only
finitely many poles, there is some n such that λkn

is a regular point with respect to this
Mahler system. We now take a k-Mahler equation

(12) q0(z)f(z) =
L
∑

i=1

qi(z)f(zki

), q0, q1, . . . , qL ∈ K[z],

with q0(z) 6= 0 and L minimal. Iterating Eq. (1212) we find an equation

(13) r0(z)f(z) =
L+n−1
∑

i=n

ri(z)f(zki

),

where we may assume that the polynomials r0(z), rn(z), . . . , rL+n+1(z) ∈ K[z] are co-
prime. The Mahler denominator d(z) divides r0(z) and so r0(λ) = 0. By coprimality of
the coefficients, in particular there is some i0 such that ri0

(λ) 6= 0. Now we adjoin the
coefficients of r0 and rn, . . . , rn+L−1 to R.

By Noether normalization, there is a positive integer N and x1, . . . , xd ∈ R such that
x1, . . . , xd are algebraically independent over Q and such that R[1/N ] is a finite integral
extension of Z[1/N ][x1, . . . , xd]. Let S denote the set of prime ideals p of R[1/N ] with
the property that p∩Z[1/N ][x1, . . . , xd] = (x1 − b1, . . . , xd − bd) with b1, . . . , bd integers.
By integrality, there is at least one such prime for each d-tuple (b1, . . . , bd) of integers.
Furthermore, R/p is a finite extension of Z[1/N ], generated by at most κ elements for
some κ that is independent of p (indeed, we may take κ to be the cardinality of the set
of generators of R[1/N ] as a Z[1/N ][x1, . . . , xd]-module). Hence Rp/pp is a number field
of degree at most κ for each p ∈ S.

Moreover, the intersection of the prime ideals in S is (0). For p ∈ S, we let λp =
λ + p ∈ R/p. Then we reduce Eq. (1313) modulo p and plug in z = λp to obtain

(14) 0 =
L+n−1
∑

i=n

ri|p(λp)f|p(λ
ki

p ),

where the left side follows from the fact that d(z) divides r0(z). It is straightfor-
ward to see that λkn

p ∈ (R/p)p is a regular point of the reduced Mahler system for

f|p(z), f|p(z
k), . . . , f|p(z

kL−1

) for p in a Zariski dense subset T of S. Furthermore, there
is a Zariski dense subset T ′ of T such that ri0|p(λp) 6= 0 for p ∈ T ′. We remark that
there is a Zariski dense subset T ′′ such that λp is not a root of unity. To see this, observe
that if p ∈ T ′ is such that λp is a root of unity, then Q(λp) is an extension of degree at
most κ and hence there is some fixed M = M(κ) such that λM

p = 1. Since T ′ is Zariski
dense, this gives that λ is a root of unity, which is a contradiction.
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Now for p ∈ T ′′, we have λp ∈ Kp := (R/p)p. Then there is some place v on the
number field Kp such that |λp|v < 1. Equation (1414) combined with Theorem 4.34.3 yields

0 =
L+n−1
∑

i=n

ri|p(z)f|p(z
ki

).

By Zariski density of T ′′, also 0 =
∑L+n−1

i=n ri(z)f(zki

) ∈ RJzK ∩ KJzK, in contradiction
to the minimality of L. The result follows. �

By looking at the asymptotic behavior on the unit circle we may once again strengthen
the previous lemma.

Lemma 10.3. Let λ ∈ R be a nonzero root of d(z). Then λ ∈ Uk.

Proof. Let 0 6= λ be a root of d(z). By the previous lemma λ ∈ U . Therefore it suffices

to show λkj 6= λ for all j ≥ 1.

Suppose to the contrary that λkj

= λ for some j ≥ 1. Since R is finitely generated, it
embeds into C. Let |·| denote the induced absolute value on R. We may now conclude
as in the proof of Proposition 7.87.8: from Proposition 7.77.7 we obtain log|an| ≥ c log2 n
infinitely often. However, using the linear representation of a k-regular sequence, we
easily obtain log|an| ∈ O(log n) as in Lemma 7.107.10 (or [AS92AS92, Theorem 2.10]), a contra-
diction. �

We thus have the following theorem, extending a part of Theorem 7.17.1 to fields of
characteristic 0 and also generalizing [BCCD19BCCD19, Proposition 2].

Theorem 10.4. Let K be a field of characteristic 0, let f(z) ∈ KJzK be k-Mahler, and
let d be the Mahler denominator of f . Then f is k-regular if and only if every non-zero
root of d (in the algebraic closure K) is a root of unity with order not coprime to k.

Proof. If f is k-regular, the claim follows from the previous lemma. The converse direc-
tion follows exactly as in the proof of Proposition 7.97.9. �

10.2. Step II. We now provide a somewhat shorter argument for the second step of
[BCCD19BCCD19]. First recall the following easy lemma.

Lemma 10.5. Let K be a field and let f(z) ∈ KJzK be a k-Mahler power series solution
to the equation

(15) p0(z)f(z) + p1(z)f(zk) + · · · + pd(z)f(zkd

) = 0 .

If there exists a polynomial q(z) such that p0(z)q(z) divides q(zkj

) for all j, 1 ≤ j ≤ d,
then f(z)/q(z) ∈ K((z)) is a k-Becker Laurent series.

Proof. Set g(z) := f(z)/q(z), then (1515) gives

p0(z)q(z)g(z) + p1(z)q(zk)g(zk) + · · · + pd(z)q(zkd

)g(zkd

) = 0 .

Thus, g(z) = −∑d
i=1 ri(z)g(zki

), where ri(z) = pi(z)q(zki

)/(p0(z)q(z)) ∈ K[z]. �
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Proof of Becker’s conjecture (Theorem 10.110.1). Since f(z) is k-regular, we know, by the
first step, that f satisfies an equation of the form

p0(z)f(z) + a1(z)f(zk) + · · · ad(z)f(zkd

) = 0 ,

where all roots of p0(z) belong to {0} ∪ Uk. Thus, every nonzero root is a primitive
ℓ-roots of unity for some ℓ not coprime with k. For such a natural number ℓ, there exist
a positive integer r and a nonnegative integer s such that gcd(ℓ, kj) = r for all j > s.
Let s be minimal with this property. Let A denote the set of nonzero roots of p0, and,
for ξ ∈ A, set a(ξ) := ℓ(ξ)/r(ξ). Let φn(z) denote the nth cyclotomic polynomial. Then

φℓ(ξ)(z)φa(ξ)(z
ks

) divides φa(ξ)(z
ks+j

) for all j ≥ 1. In particular, (z−ξ)φa(ξ)(z
ks

) divides

φa(ξ)(z
ks+j

) for all j, 1 ≤ j ≤ m. Setting

q(z) :=
∏

ξ∈A

φa(ξ)(z
ks

) ,

and applying Lemma 10.510.5, we obtain that f(z)/zγq(z) is a k-Becker Laurent series,
where γ is the valuation of p0(z). Furthermore, 1/q(z) is a k-Becker power series for

q(z)−1 =
q(zk)

q(z)
· q(zk)−1

and by construction q(z) divides q(zk). In particular, 1/q(z) is k-regular. �

11. Automatic Mahler power series over arbitrary fields

We first show how to extend our characterization of k-automatic Mahler functions to
arbitrary ground fields of characteristic zero.

Theorem 11.1. Let K be a field of characteristic 0 and let f(z) =
∑∞

n=0 anzn ∈ KJzK
be a k-Mahler power series. Then (an)n≥0 is k-automatic if and only if { an : n ≥ 0 } is
finite.

In order to prove Theorem 11.111.1, we use a standard specialization argument.

Lemma 11.2. Let K be a field of characteristic zero containing Q, and let u1, . . . , ud ∈
K. Then there exists a ring homomorphism ϕ : Q[u1, . . . , ud] → Q leaving Q invariant.

Proof. This is an easy consequence of the weak Nullstellensatz. A proof can be found in
[EG15EG15, Lemma 6.3.3]. �

Proof of Theorem 11.111.1. Let f(z) =
∑∞

n=0 anzn ∈ KJzK be a k-Mahler power series with
finite set of coefficients. Replacing K by its algebraic closure, we may assume Q ⊆ K.
Let p0, . . . , pd ∈ K[z] be such that

p0(z)f(z) + p1(z)f(zk) + · · · + pd(z)f(zkd

) = 0 .

Let C be the finite set consisting of all coefficients of f and p0, . . . , pd. We apply
Lemma 11.211.2 with the set {u1, . . . , ud} consisting of all c ∈ C, all c − d with c, d ∈ C, as
well as the inverses of all these elements that are nonzero. Thus ϕ(c) 6= 0 for c 6= 0 and
ϕ(c) 6= ϕ(d) for c 6= d. The resulting homomorphism extends to ϕ : Q[u1, . . . , um]JzK →
QJzK, and

ϕ(p0)ϕ(f)(z) + ϕ(p1)ϕ(f)(zk) + · · · + ϕ(pd)ϕ(f)(zkd

) = 0



A HEIGHT GAP THEOREM FOR COEFFICIENTS OF MAHLER FUNCTIONS 33

is a k-Mahler equation for ϕ(f). Thus Theorem 9.19.1 implies that the sequence (ϕ(an))n≥0

is k-automatic. Since ϕ : C → Q is injective, the same is true for (an)n≥0. �

11.1. The case of a base field of positive characteristic. Theorem 11.111.1 strongly
depends on the characteristic of the field being zero. If K is a field of characteristic
p > 0, we still have a similar result for p-Mahler power series (see Proposition 11.311.3), but
if k is coprime to p this is no longer true. Indeed, the series

∞
∏

i=0

(1 − zki

)−1 ∈ KJzK

is not k-automatic by [Bec94Bec94, Proposition 1], despite being k-Mahler with coefficients
taking only finitely many values (because they belong to the prime field).

Proposition 11.3. Let K be a field of characteristic p and let f(z) =
∑∞

n=0 anzn ∈ KJzK
be a k-Mahler power series where k is a power of p. Then the sequence (an)n≥0 is k-
automatic if and only if { an : n ≥ 0 } is finite.

Proof. Let f(z) =
∑∞

n=0 anzn ∈ KJzK be pm-Mahler for some positive integer m. Let us
assume that { an : n ≥ 0 } is finite. Let us consider a non-trivial equation

p0(z)f(z) + p1(z)f(zpm

) + · · · + pd(z)f(zpmd

) = 0 .

We let R denote the finitely generated Fp-algebra generated by the coefficients an, the
inverses of all nonzero differences ai − aj , and the coefficients of the polynomials pi, as
well as the inverses of their nonzero coefficients.

Let M be some maximal ideal of R. Then R/M = Fq with q a power of p, say

q = pℓ. Let f|M(z) :=
∑∞

n=0(an mod M)zn denote the reduction of f modulo M. Then

f|M is pm-Mahler and hence it is also pmℓ-Mahler by Lemma 3.23.2. Thus, we deduce
that f|M is algebraic over Fq(z). By Christol’s theorem (see [AS03aAS03a, Chapter 12]),
the sequence (an mod M)n≥0 is p-automatic. But by definition of R, if ai 6= aj then
ai mod M 6= aj mod M. Thus the sequence (an)n≥0 is also p-automatic, and hence
pm-automatic. �

12. Decidability

A k-Mahler function can be uniquely specified by the finite data consisting of a k-
Mahler equation it satisfies and sufficiently many initial coefficients of the power series.
Therefore it is reasonable to ask whether, for a given k-Mahler function, it can be decided
which of the five cases of Theorem 1.11.1 it falls into. However, we neither try to describe
an efficient algorithm to perform this task, nor do we provide an upper bound for the
complexity of the algorithm that could be extracted from what follows.

Theorem 12.1. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be a k-Mahler function (specified by a
k-Mahler equation and sufficiently many initial coefficients). Then it is decidable which
of the five growth classes in Theorem 1.11.1 the function f falls into.

Let f(z) =
∑∞

n=0 anzn ∈ QJzK be k-Mahler. As Theorems 6.16.1 and 7.17.1 show, the
minimal denominator d ∈ Q[z] of f plays a crucial role in determining the growth class
that f falls into: the growth depends on whether d has roots outside {0}∪U , respectively
outside {0} ∪ Uk. This raises the question whether there is an effective way of deciding
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which of the three cases occurs. Along similar lines, if f is k-regular, the question arises
whether it is decidable into which of the three cases (k-regular, Q-linear combination of
word-convolution products of k-automatic sequences, and k-automatic) the coefficients
of f falls. In this section, we establish that all these properties are decidable.

Suppose f is specified by a k-Mahler equation and sufficiently many initial coefficients
to determine the solution uniquely. Then we can compute any finite number of initial
coefficients by recursion. By work of Adamczewski–Faverjon [AF18AF18] it is possible to find
a minimal (homogeneous) k-Mahler equation, that is, polynomials p0, p1, . . . , pd ∈ K[z],
where K is a number field,

(16) p0(z)f(z) + p1(z)f(zk) + · · · + pd(z)f(zkd

) = 0 ,

where d is minimal and p0, . . . , pd are coprime.
By definition d divides p0. It is tempting to hope that, to determine the types of roots

of d, it suffices to consider those of p0. Unfortunately, this hope is thwarted by Example
3.103.10. We can however still determine the types of roots of d.

Proposition 12.2. There exists an algorithm to determine whether the k-Mahler de-
nominator d of a k-Mahler function f has a root outside {0} ∪ U .

Moreover, if all roots of d are contained in {0} ∪ U , then we can find an explicit
k-Mahler equation

q0(z)f(z) = q1(z)f(zkn0
) + · · · + qd(z)f(zkn0+d−1

)

with n0 ≥ 1, with q0, . . . , qd ∈ Q[z] and all roots of q0 contained in {0} ∪ U .

Proof. Let us consider the minimal equation (1616). By [AF18AF18], this equation can be
explicitly determined (this is a variation of Algorithm 1.3 in [AF18AF18]). We may assume
that the number field K contains all coefficients and roots of p0, . . . , pd. Set

S := { λ : p0(λ)pd(λ) = 0 }
and

ρ = min
v∈MK

{ min{ |λ|v : p0(λ)pd(λ) = 0 } } .

Now, let n0 be the minimal positive integer such that |λkn0 |v < ρ for all λ in S and all
places v such that |λ|v < 1 (there are only a finite number of such places). The integer
n0 can be explicitly determined. By repeated substitution, we can explicitly determine
an equation

(17) q0(z)f(z) = q1(z)f(zkn0
) + · · · + qd(z)f(zkn0+d−1

) ,

for f . Suppose first that q0 does not have a root 0 6= λ that is not a root of unity. Then
neither does d, because d divides q0.

Suppose now q0 has a root 0 6= λ that is not a root of unity. By Kronecker’s theorem,
there exists a place v such that 0 < |λ|

v
< 1. Arguing exactly as in the proof of

Proposition 6.36.3, we see that λ is a pole of f . Thus f has a radius of convergence strictly
less than 1 with respect to |·|

v
. By Theorem 6.16.1 also d must have a nonzero root that is

not a root of unity. �

Assuming d does not have a root outside of {0} ∪ U , we now want to determine if it
has a root in U r Uk.
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Lemma 12.3. Let d ∈ Z>0, let 0 6= ζ ∈ C such that ζk = ζ, and let A ∈ Q(z)d×d.
Assume that w(z) ∈ CJzKd satisfies the equation

w(z) = A(z)w(zk) .

Assume also that the following properties hold.

(i) The coordinates of A have no poles at ζ and no poles in B(0, 1).
(ii) The coordinates of w(z) are continuous in B(0, 1).

Then, there exists c ∈ R>0 such that

‖w(tζ)‖ < |1 − t|−c for all t ∈ (0, 1).

Proof. Since the map [0, 1] → Cd×d, t 7→ A(tζ) is continuous, there exists c0 ≥ 1 such
that ‖A(tζ)‖ ≤ c0 for all t ∈ [0, 1]. Let ε ∈ (0, 1) and c1 = max{ ‖w(tζ)‖ : t ∈ [0, ε] }.

Let t ∈ [0, 1), and let n ∈ Z≥0 be minimal such that tkn ≤ ε. We can obtain an upper
bound on n as follows. The inequality tkn ≤ ε is equivalent to kn log t ≤ log ε, which
is equivalent to kn(− log t) ≥ − log ε. In turn, this is equivalent to n + logk(− log t) ≥
logk(− log ε). So

n = ⌈logk(− log ε) − logk(− log t)⌉ .

Thus

n ≤ c2 − logk(− log t) with c2 = 1 + logk(− log ε) .

Now

kn ≤ kc2k− logk(− log t) ≤ kc2
1

− log t
≤ kc2

1

1 − t
,

where we used log t ≤ t − 1 for the last inequality. We have

w(tζ) = A(tζ)A(tkζ) · · · A(tkn−1

ζ)w(tkn

ζ) ,

and thus ‖w(tζ)‖ ≤ cn
0 c1. Now

cn
0 c1 = c1kn logk c0 ≤ c1kc2 logk c0(1 − t)− logk c0.

The constant may be absorbed by replacing the exponent by a bigger one. �

Proposition 12.4. Let f(z) ∈ QJzK be k-Mahler with k-Mahler denominator d. Suppose
all roots of d are contained in {0} ∪ U . There exists an algorithm to decide whether d

has a root in U r Uk.
Moreover, if all roots of d are contained in {0} ∪ Uk, then we can find an explicit

k-Mahler equation

s0(z)f(z) = s1(z)f(zk) + · · · + sd(z)f(zkd

)

with s0, . . . , sd ∈ Q[z] and all roots of s0 contained in {0} ∪ Uk.

Proof. Let d(z)f(z) = p1(z)f(zk) + · · · + pd(z)f(zkd

) with p1, . . . , pd ∈ Q[z]. Using the
condition on d together with the fact that f converges in a neighborhood of 0, this
equation implies that f is analytic in B|·|(0, 1) for every absolute value |·| on Q.

Now let q0(z)f(z) = q1(z)f(zk)+ · · · + qd(z)f(zkd

) with q0, . . . , qd ∈ Q[z] and q0qd 6= 0
be an explicit k-Mahler equation for f . Since d divides q0, we only have to check if any
of the finitely many roots of q0 in U r Uk are roots of d.
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Suppose ζ is such a root of q0. Then there exists an, explicitly determinable, integer

j0 ≥ 1 such that ζkj0 = ζ. Let ℓ = kj0. Again using [AF18AF18] we can find an ℓ-Mahler
equation for f , say

(18) r0(z)f(z) = r1(z)f(zℓ) + · · · + re(z)f(zℓe

)

with r0, . . . , re ∈ Q[z] coprime and r0re 6= 0. If r0(ζ) 6= 0, then d(ζ) 6= 0.
Suppose now r0(ζ) = 0. We will show d(ζ) = 0. Fix any embedding Q →֒ C, and

thereby an archimedean absolute value |·| on Q. Proposition 7.77.7 implies that there exist
a, b, c ∈ R>0, m0, n0 ∈ Z≥0, and a sequence (tj)j≥0 → 1 in [0, 1) such that

∣

∣

∞
∑

n=0

an+n0
(ζtj)

n
∣

∣ ≥ (1 − tj)
a exp(b log2 m)tmc

j for all j ≥ 0 and m ≥ m0.

Define f0(z) =
∑∞

n=0 an+n0
zn and mj = ⌈1/(1 − tj)⌉. Then

log|f0(ζtj)| ≥ a log(1 − tj) + b log2⌈1/(1 − tj)⌉ + ⌈1/(1 − tj)⌉c log tj .

As in the proof of Lemma 7.37.3 we see that the right side is asymptotically equivalent
to b log2(1 − tj). Now, if we had d(ζ) 6= 0, then Lemma 12.312.3 would give log|f0(ζtj)| ≤
−c log(1 − tj) for some c ∈ R>0, a contradiction.

To explicitly find an equation with s0 as desired, note that for each ζ ∈ U r Uk that
is a root of q0, we have found some k-Mahler equation, Eq. (1818), for f with r0(ζ) 6= 0.
Taking the greatest common divisor of q0 and all these r0 as ζ varies over the roots, we
obtain the desired equation. �

We have now shown that it is possible to decide algorithmically which of Cases (1)(1)
and (2)(2) of Theorem 1.11.1 a given Mahler function f(z) =

∑∞
n=0 anzn ∈ QJzK falls into.

Suppose now that f is k-regular. In this case, we wish to also decide whether f belongs
to class (3)(3), (4)(4), or (5)(5) of Theorem 1.11.1.

12.1. From k-Mahler equations to linear representations. We have represented
an arbitrary k-Mahler function f by a k-Mahler equation and sufficiently many initial
coefficients. If f is k-regular, it is more natural to represent the sequence of coefficients
by a linear representation. We show that such a linear representation is computable
from a k-Mahler equation satisfied by f .

Definition 12.5. For every r ∈ Σk, we define a Cartier operator ∆r : QJzK → QJzK by

∆r

(

∞
∑

n=0

anzn
)

=
∞
∑

n=0

akn+rzn .

Note that, if p(z) ∈ Q[z], then deg(∆r(p(z))) ≤ (deg p)/k. Moreover, if j ≥ 1, then a

short computation yields ∆r(p(z)f(zkj

)) = ∆r(p(z))f(zkj−1

).

Lemma 12.6. Let f1, . . . , fd ∈ QJzK with fi(z) =
∑∞

n=0 ai,nzn. Suppose that, for every

r ∈ Σk and every 1 ≤ i ≤ d, there are explicitly known coefficients λr,1, . . . , λr,d ∈ Q

such that

∆r(fi) = λr,i,1f1 + · · · + λr,i,dfd .

Then we get an explicit linear representation for the k-regular sequence (a1,n)n≥0.
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Proof. Let µ : Σ∗
k → Q

d×d
be defined by

µ(r) :=







λr,1,1 . . . λr,1,d
...

. . .
...

λr,d,1 . . . λr,d,d






and let a(n) :=







a1,n
...

ad,n






.

Since ∆r(fi) =
∑∞

n=0 ai,kn+rzn, we obtain a(kn + r) = µ(r)a(n) for r ∈ Σk. Finally

let e1 = (1, 0, . . . , 0) ∈ K1×d. Then a1,[w]k = e1a([w]k) = e1µ(w)a(0) for all words
w ∈ Σ∗

k. �

Lemma 12.7. Let p1, . . . , pd ∈ Q[z] with e = max{deg p1, . . . , deg pd}. If f(z) =
∑∞

n=0 anzn ∈ QJzK satisfies the k-Becker equation

f(z) = p1(z)f(zk) + · · · + pd(z)f(zkd

) ,

then a linear representation for the k-regular sequence (an)n≥0 is computable from a0

and p1, . . . , pd.

Proof. Following Becker [Bec94Bec94, Theorem 2], we see that the Q-vector space V spanned

by { zif(zkj

) : 0 ≤ i ≤ e, 0 ≤ j ≤ d } is closed under all Cartier operators. Explicitly, if
r ∈ Σk, 0 ≤ i ≤ e, and j ≥ 1, then

∆r(zif(zkj

)) = ∆r(zi)f(zkj−1

) ∈ V,

since ∆r(zi) = z(i−r)/k if i ≡ r mod k and ∆r(zi) = 0 otherwise. If j = 0, then
deg(∆r(zipj(z))) ≤ 2e/k ≤ e, and thus

∆r(zif(z)) = ∆r

(

d
∑

j=1

zipj(z)f(zkj

)
)

=
d
∑

j=1

∆r(zipj(z))f(zkj−1

) ∈ V .

Since ∆r(zipj(z)) can be explicitly computed, we may apply Lemma 12.612.6 to find a linear

representation of (an)n≥0. Since 0if(0kj

) ∈ {0, a0}, the resulting linear representation
only depends on p1, . . . , pd and a0. �

It is rather non-trivial that the convolution product of k-regular sequences is again
k-regular. The standard way to show this uses the module-theoretic characterization of k-
regularity; see [AS03aAS03a, Theorem 16.4.1] or [BR11BR11, Proposition 5.2.7]. To see that a linear
representation of the convolution product is computable from linear representations, we
need to revisit this proof.

Remark 12.8. Using the growth-based characterization of k-regular sequences in The-
orem 6.16.1, it is easy to show that the convolution product of k-regular sequences is
k-regular. However, since this characterization already makes use of this fact that con-
volution products of k-regular sequences are k-regular (in Proposition 7.97.9), this does not
actually give a new, independent proof.

Lemma 12.9. Let (a(n))n≥0 and (b(n))n≥0 be two k-regular sequences in Q, each being
given by a linear representation. Then a linear representation of the convolution product
(a ⋆ b(n))n≥0 is computable.

Let us recall that by definition a ⋆ b(n) =
∑n

i=0 a(i)b(n − i).
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Proof. For r ∈ Σk, let (∆r(a)(n))n≥0 be the sequence defined by ∆r(a)(n) := a(kn + r).
The key step in the proof of Allouche–Shallit [AS03aAS03a, Theorem 16.4.1] is the reduction
(with r ∈ Σk)

(19) ∆r(a ⋆ b)(n) =
∑

0≤s≤r

∆s(a) ⋆ ∆r−s(b)(n) +
∑

r<s≤k−1

∆s(a) ⋆ ∆k+r−s(b)(n − 1) .

We will adapt this proof to the case where a and b are given by linear representations.
Without restriction we can assume that the linear representations of a and b both have
the same dimension d ≥ 0. After a change of basis, we may take the linear representation
of a to be (e1, κ, a(0)), where a(0) = (a1(0), . . . , ad(0))T with a1(0) = a(0), where

e1 = (1, 0, . . . , 0), and where κ : Σ∗
k → Q

d×d
is a monoid homomorphism. Define a(n) :=

κ(〈n〉k)a(0), where 〈n〉k ∈ Σ∗
k is the canonical base-k expansion of n. Then, in particular,







a1(kn + r)
...

ad(kn + r)






= κ(r)







a1(n)
...

ad(n)






for r ∈ Σk.

For b we have a linear representation (e1, λ, b(0)) with analogous definitions.
We construct a linear representation for a ⋆ b of dimension 2d2. For this, we index

the first set of d2 coordinates by (i, j) in lexicographic order, and the second by (i′, j′),
where 1 ≤ i, j ≤ d. That is, the coordinates are indexed by (1, 1), (1, 2), . . . , (d, d),
(1′, 1′), (1′, 2′), . . . , (d′, d′). For 1 ≤ i, j ≤ d and r, s ∈ Σk, we get

∆r(ai) ⋆ ∆s(bj) =
(

d
∑

ℓ=1

κ(r)i,ℓaℓ

)

⋆
(

d
∑

m=1

λ(s)j,mbm

)

=
d
∑

ℓ,m=1

κ(r)i,ℓλ(s)j,m(aℓ ⋆ bm) .

Using Eq. (1919),

∆r(ai ⋆ bj)(n) =
∑

0≤s≤r

d
∑

ℓ,m=1

κ(s)i,ℓλ(r − s)j,m (aℓ ⋆ bm)(n)

+
∑

r<s≤k−1

d
∑

ℓ,m=1

κ(s)i,ℓλ(k + r − s)j,m (aℓ ⋆ bm)(n − 1)

=
d
∑

ℓ,m=1

(

∑

0≤s≤r

κ(s)i,ℓλ(r − s)j,m

)

(aℓ ⋆ bm)(n)

+
d
∑

ℓ,m=1

(

∑

r<s≤k−1

κ(s)i,ℓλ(k + r − s)j,m

)

(aℓ ⋆ bm)(n − 1) .

Further note if r ≥ 1, then ai ⋆ bj(kn + r − 1) = ∆r−1(ai ⋆ bj)(n). For r = 0 we have
ai ⋆bj(kn−1) = ai ⋆bj(k(n−1)+(k−1)) = ∆k−1(ai ⋆bj)(n−1). In this case, in Eq. (1919),
the second sum vanishes, and we again obtain ai ⋆ bj(kn − 1) as a linear combination of
the aℓ ⋆ bm(n − 1), namely,

∆k−1(ai ⋆ bj)(n − 1) =
d
∑

ℓ,m

(

∑

0≤s≤k−1

κ(s)i,ℓλ(k − 1 − s)j,m
)

(aℓ ⋆ bm)(n − 1).
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For two d × d-matrices A, B, the Kronecker product A ⊗ B is the d2 × d2-matrix
defined by (A ⊗ B)(i,j),(ℓ,m) = Ai,ℓBj,m. For 0 6= r ∈ Σk, we define the 2d2 × 2d2-matrix
µ(r) by the block structure

µ(r) :=

( ∑

0≤s≤r κ(s) ⊗ λ(r − s)
∑

r<s≤k−1 κ(s) ⊗ λ(k + r − s)
∑

0≤s≤r κ(s) ⊗ λ(r − 1 − s)
∑

r<s≤k−1 κ(s) ⊗ λ(k + r − 1 − s)

)

.

Similarly

µ(0) :=

(

κ(0) ⊗ λ(0)
∑k−1

s=1 κ(s) ⊗ λ(k − s)

0
∑k−1

s=0 κ(s) ⊗ λ(k − 1 − s)

)

.

Define for each n ≥ 0 the 2d2 vector v(n) by v(n)(ℓ,m) = aℓ ⋆ bm(n) and v(n)(ℓ′,m′) =
aℓ ⋆ bm(n − 1). Then

v(kn + r) = µ(r)v(n).

Now v(1,1)(n) = a1 ⋆ b1(n) = a ⋆ b(n). Thus, the triple (e(1,1), µ, v(0)), where e(1,1) is

the 2d2 row vector with 1 in the coordinate (1, 1) and zeroes everywhere else, is a linear
representation for a ⋆ b. �

Proposition 12.10. Let f(z) =
∑∞

n=0 anzn ∈ QJzK be k-regular, given by a k-Mahler
equation, the minimal n0 ≥ 0 with an0

6= 0, and the value an0
. Then a linear represen-

tation for the k-regular sequence (an)n≥0 is computable.

Proof. From a linear representation of (an)n≥n0
it is easy to find one for (an)n≥0. We

may therefore without restriction assume n0 = 0. (An explicit k-Mahler equation for
this power series can be found using [AB17AB17, Lemma 6.1].)

Using Propositions 12.212.2 and 12.412.4, we can further find a k-Mahler equation

p0(z)f(z) = p1(z)f(zk) + · · · + pdf(zkd

) ,

with p0, . . . pd ∈ Q[z], with p0 and pd coprime, and with the property that all roots of
p0 are contained in Uk. In particular, we may assume p0(0) = 1.

Now Theorem 3.83.8 gives a decomposition

f(z) = g(z)
(

∞
∏

i=0

p0(zki

)
)−1

,

where g is k-Becker, and a k-Becker equation for g can be computed. Lemma 12.712.7
yields a linear representation for the coefficient series of g. Factoring p0 into linear

factors of the form 1 − zζ−1 with ζ ∈ Uk, we recall that
∏∞

i=0(1 − zki

ζ−1)−1 is k-regular.
Indeed, by [AB17AB17, Proposition 7.8], this infinite product factors as a polynomial and a
k-Becker function (both computable). Using Lemma 12.912.9 we find a linear representation

for
∏∞

i=0(1 − zki

ζ−1)−1. Finally, Lemma 12.912.9 allows us to find a linear representation
for f itself. �

12.2. Tame and finite semigroups. From a linear representation, a minimal linear
representation is computable, and we may now assume that the k-regular sequence
(an)n≥0 is given by such a minimal linear representation (u, µ, v). To decide which of
Cases (3)(3)–(5)(5) of Theorem 1.11.1 the sequence belongs to, it now suffices to decide whether
or not the finitely generated matrix semigroup µ(Σ∗

k) is finite, respectively, tame.
For this, we first need the following two lemmas.
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Lemma 12.11. Let A1, . . . , At ∈ Q
d×d

. It is possible to decide whether or not the
matrices A1, . . . , At have a proper nonzero common invariant subspace, and if so, to
compute one.

Proof. This can be done using exterior powers and Gröbner bases, see Arapura–Peterson
[AP04AP04]. A model-theoretic approach is given by Pastuszak in [Pas17Pas17]. Both papers
discuss the history of this problem. �

Lemma 12.12. Let K be a number field and d ≥ 0. For every r ≥ 0, there exists a
computable n = n(r, K) with the following property: if S ⊆ Kd×d is a finite semigroup
generated by r matrices, then #S ≤ n.

Proof. By a result of Mandel–Simon [MS78MS78, Theorem 1.2] there exists such a bound
n(r, K, g), that however also depends on the maximal size g of a subgroup of S. Over a
number field, Schur [Sch05Sch05] proved that there exists an explicit bound on the size of a
finite subgroup of GLd(K), so we can bound g independently of S. (See also the, largely
expository, article [GL06GL06] for this and later results.) �

Proposition 12.13. Let S ⊆ Q
d×d

be a finitely generated matrix semigroup, given by a
finite set of generators. It is decidable whether or not S is

(1) finite,
(2) tame.

Proof. Let A1, . . . , Al be the given set of generators for S, and let K be the number
field generated by all the coefficients of the matrices Ai. Then S ⊆ Kd×d and it suffices
to consider the problem over the field K.

(1) With the bound from Lemma 12.1212.12, one can decide whether or not S is finite.
(2) This problem can be reduced to the finiteness problem using Lemma 8.58.5. Indeed,

by iterated application of Lemma 12.1112.11, we may decompose Kd×1 = V1 ⊕ · · · ⊕ Vs with
each Vi a S-invariant subspace that contains no proper, nonzero S-invariant subspace.
Then Lemma 8.58.5 implies that S is tame if and only if S|Vi

is finite for each 1 ≤ i ≤ s.
This can be decided using (1). �
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