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Abstract. We study the asymptotic growth of coefficients of Mahler power series with algebraic
coefficients, as measured by their logarithmic Weil height. We show that there are five different
growth behaviors, all of which being reached. Thus, there are gaps in the possible growths. In
proving this height gap theorem, we find that a k-Mahler function is k-regular if and only if its
coefficients have height in O.log n/. Moreover, we deduce that, over an arbitrary ground field of
characteristic 0, a k-Mahler function is k-automatic if and only if its coefficients belong to a finite
set. As a by-product of our results, we also recover a conjecture of Becker which was recently
settled by Bell, Chyzak, Coons, and Dumas.
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1. Introduction

The study of power series solutions to linear differential equations with coefficients
in QŒz� provides a deep interplay between various fields of mathematics and physics,
including combinatorics and number theory. For instance, the study of generating series
in enumerative combinatorics benefits from the useful dictionary between asymptotics of
coefficients of D-finite power series and the type of singularities of the corresponding
differential equation (see [27]). More surprisingly, prescribing some kind of arithmetic
behavior for coefficients gives rise to powerful number-theoretical consequences, as
first perceived by Siegel [44] when introducing E- and G-functions, and pursued more
recently by André [11, 12] in his study of arithmetic Gevrey series.

This paper deals with the arithmetic behavior of coefficients of Mahler functions,
or M -functions, which are power series of a very different kind. Unless it is rational,
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an M -function never satisfies a linear or even an algebraic differential equation [3].
Instead,M -functions are solutions to linear difference equations with coefficients in QŒz�
associated with the Mahler operator z 7! zk , where k � 2 is a natural number. Precisely,
a power series f .z/ 2QJzK is a k-Mahler function, or for short is k-Mahler, if it satisfies
an equation of the form

p0.z/f .z/C � � � C pd .z/f .z
kd / D 0 (1.1)

with p0.z/; : : : ; pd .z/ 2QŒz� and p0.z/pd .z/¤ 0. A power series is anM -function if it
is a k-Mahler function for some k. The study ofM -functions and their values was initiated
at the end of the 1920s by Mahler [31–33], who developed a new direction in transcenden-
tal number theory, nowadays known as Mahler’s method. In fact, Mahler only considered
order one equations, but possibly inhomogeneous and also non-linear ones. The inter-
est for M -functions of arbitrary order really took on a new significance at the beginning
of the 1980s after Mendès France popularized among number theorists a result of Cob-
ham [22] stating that automatic power series areM -functions. After recent results [5,42],
the transcendence theory of M -functions mirrors exactly the one of E-functions. Beyond
Mahler’s method and automata theory, it is worth mentioning that M -functions naturally
occur as generating functions in various other topics such as combinatorics of partitions,
numeration, and analysis of algorithms. In particular, the regular power series introduced
by Allouche and Shallit [9] form a distinguished class of M -functions. There is also a
mysterious interplay between G-functions andM -functions that deserves more attention.
Indeed, for some G-functions

P1
nD0 anz

n 2 QJzK, the power series
P1
nD0 vp.an/zn,

where vp.an/ is the p-adic valuation of an, turns out to be p-Mahler. This is likely
related to the fact that Picard–Fuchs differential equations have a strong Frobenius struc-
ture for almost all primes. In recent years, there is renewed interest in M -functions, as
evidenced by the flourishing literature on this topic. The latter includes discussions on
various perspectives such as transcendence and algebraic independence, combinatorics
and theoretical computer science, the study of Mahler’s equations and associated Galois
theories, and computational aspects. A number of references can be found in the sur-
vey [1]. See also [3, 4, 7, 16] for more recent ones.

1.1. The Height Gap Theorem

Let us first recall that the coefficients of a k-Mahler function
P1
nD0 anz

n 2 QJzK satisfy
some recurrence relation of the form

an D

sX
jD1

� j̨an�j C

dX
iD1

sX
jD0

ˇi;jan�j
ki

;

where j̨ and ˇi;j are algebraic numbers, and n is large enough (see (5.1) and Lemma 3.1).
It follows that the field extension of Q generated by all coefficients an is a number field.
In what follows, we will measure the coefficients of an M -function by their logarithmic
Weil height.
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1.1.1. The logarithmic Weil height. For a number field, we normalize the non-trivial
absolute values as in [20]. Thus, for Q and p a prime we let jpjp D 1=p; for the
archimedean place of Q we use the usual absolute value. For K a number field and a
place w of K extending a place v of Q, let

j˛jw WD jNKw=Qv.˛/j
1=ŒKWQ�
v :

Then the set MK of places on K satisfies the product formula. For ˛ 2 Q the logarithmic
absolute Weil height is defined by

h.˛/ D log
Y

v2MK

max ¹1; j˛jvº;

where K is any number field containing ˛. The value h.˛/ in this definition does not
depend on the choice of such a number fieldK. For a=b 2QX ¹0º with a, b 2 Z, b ¤ 0,
and gcd.a; b/ D 1,

h.a=b/ D log max ¹jaj; jbjº:

For more properties of the logarithmic Weil height, as well as for comparison with other
notions of height, we refer the reader to [45, Chapter 3].

1.1.2. Landau notation. Let .an/n�0 be a sequence of non-negative real numbers and
.bn/n�0 be a sequence of eventually positive real numbers. As usual, the notation an 2
O.bn/means that there exists a positive number c such that an <cbn for every sufficiently
large positive integer n, while the notation an 2 o.bn/ means that an=bn tends to zero as
n tends to infinity. Moreover, sticking to the usual practice in number theory, we write
an 2 �.bn/ when an 62 o.bn/, that is, when there exists a positive number c such that
an > cbn for infinitely many positive integers n. We also write an 2 O \ �.bn/ when
both an 2 O.bn/ and an 2 �.bn/.

We are now ready to state our first main result.

Theorem 1.1 (Height Gap Theorem). Let f .z/D
P1
nD0 anz

n 2QJzK be anM -function.
Then one of the following properties holds.

(1) h.an/ 2 O \�.n/.

(2) h.an/ 2 O \�.log2 n/.

(3) h.an/ 2 O \�.logn/.

(4) h.an/ 2 O \�.log logn/.

(5) h.an/ 2 O.1/.

Theorem 1.1 implies that the coefficients of an M -function can only exhibit certain
specific growth behaviors. For instance, as h.an/ 2 o.n/ forces h.an/ 2 O.log2 n/, there
cannot be such a power series with h.an/ � log3 n. Thus, there are gaps in the possible
growths. Let us make a few comments on Theorem 1.1.

� In Section 2, we provide the reader with examples for each of the five growth classes,
thereby showing that all of them occur.
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� There is no chance in general of replacing lower bounds of the type� by stronger ones.
For instance, the 2-Mahler function

P1
nD0 2

nz2
n

belongs to class (3), but most of its
coefficients vanish.

� An M -function f .z/ can be uniquely specified by the finite data consisting of a k-
Mahler equation it satisfies and sufficiently many initial coefficients of the power series.
Assuming the knowledge of such data, we will show that it is decidable which of the
five growth classes in Theorem 1.1 the function f .z/ falls into. This is Theorem 12.1.

1.2. Height and structural properties of M -functions

We already alluded to the fact that inside the ring of k-Mahler functions two subsets are
usually distinguished, leading to the following hierarchy:

¹k-automatic functionsº ¨ ¹k-regular functionsº ¨ ¹k-Mahler functionsº:

We refer the reader to [8] and Section 3 for precise definitions and more details about
automatic and regular power series. The following result shows that each of these two
subsets can be characterized within the k-Mahler functions by their coefficient growth,
using the refined hierarchy provided by Theorem 1.1.

Theorem 1.2. Let f .z/ D
P1
nD0 anz

n 2QJzK be a k-Mahler function. Then the follow-
ing two properties hold.

(a) f .z/ is k-automatic if and only if h.an/ 2 O.1/, that is, if and only if the sequence
an takes values in a finite set.

(b) f .z/ is k-regular if and only if h.an/ 2 O.logn/.

Case (a) of Theorem 1.2 extends to arbitrary ground fields of characteristic 0 (see
Theorem 11.1). This generalizes the well-known fact that k-regular sequences taking only
finitely many values are k-automatic [8, Theorem 16.1.5].

In fact, in proving Theorem 1.1, we will show that each of the five growth classes
corresponds to natural structural properties of the k-Mahler equation, respectively, the
coefficient series. The corresponding results are stated in Theorems 6.1, 7.1, 8.3, and 9.1.
Theorem 1.2 above provides only a sample. In order to get such structural results, we
reinforce the importance of measuring the size of coefficients by their height and not only
by their modulus. For instance, all the three Mahler functions

1Y
nD0

.1 � z2
n

/;

1X
nD0

2�nz2
n

;
1

1 � z=2
�

1Y
nD0

.1 � z2
n

/

have bounded rational coefficients, so we cannot distinguish them through the growth
of their coefficients. This is a deficiency, for the first one is automatic, the second one
is regular but not automatic, and the third one is not regular. However, their coefficients
have different height growth behaviors and they can be distinguished by Theorem 1.1.
They belong respectively to classes (1), (3), and (5).
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The decidability of growth properties of k-regular sequences with respect to the usual
(archimedean) absolute value has recently been considered by Krenn and Shallit [29]. In
contrast to our results, many of these properties become undecidable. For instance, it is
undecidable whether the sequence of coefficients is bounded [29, Theorem D].

Outline

This article is organized as follows. Section 2 provides the reader with a collection of
examples, showing that each of the five growth classes in the height gap theorem actually
occurs. In Sections 3 and 4, we give some background about Mahler equations, automatic
and regular power series, and Mahler’s method. Sections 5 to 9 are then devoted to the
proof of Theorem 1.1. In fact, we prove the much more precise Theorems 6.1, 7.1, 8.3,
and 9.1. In Section 10, we discuss how our main results imply Becker’s conjecture. In
Section 11, we characterize those k-Mahler functions which are automatic over an arbi-
trary ground field of characteristic 0. In the final Section 12, we deal with the question of
decidability in Theorem 1.1.

Notation

Throughout the paper, we use the following notation. We let k � 2 be a natural number.
We let†k denote the alphabet ¹0; 1; : : : ; k � 1º and†�

k
denote the free monoid generated

by †k , with neutral element ". Given a positive integer n, we set hnik WD wrwr�1 � � �w0
for the canonical base-k expansion of n (written from most to least significant digit),
which means that n D

Pr
iD0 wik

i with wi 2 †k and wr 6D 0. Note that by convention
h0ik WD ". Conversely, if w WD w0 � � �wr is a finite word over the alphabet †k , we set
Œw�k WD

Pr
iD0wr�ik

i . We let U � Q denote the set of all roots of unity. For � 2 Q with
� ¤ 0, observe that there exists j > 0 with �k

j
D � if and only if � 2 U and � has order

coprime to k. We let Uk �U denote the set of roots of unity whose order is not coprime
to k.

2. Witnessing examples

In this section, we provide examples of Mahler functions f .z/D
P1
nD0 anz

n 2QJzK for
each of the five growth classes occurring in the Height Gap Theorem. We recall that a
rational power series is k-Mahler for all k � 2.

Examples in O \�.n/

The upper bound h.an/ 2 O.n/ holds for every Mahler function, by Theorem 1.1. To
give examples of Mahler functions whose coefficient sequence has growth in O \�.n/,
it therefore suffices to find examples whose coefficient series has growth in �.n/.
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(a) The coefficients of the rational function

1

1 � 2z
D

1X
nD0

2nzn

have linear growth since h.2n/ D n log 2.

(b) Let a, k � 2 be integers and consider the transcendental infinite product

1Y
nD0

1

1 � azk
n D

1X
nD0

anz
n:

This power series is k-Mahler and an is at least as large as the coefficient of zn in
1=.1 � az/, that is, an � an. Hence h.an/ � n log a.

(c) The previous example has poles at a�1=k
n

for all n � 1, but it can be refined to one
that is analytic in the open unit disk of C. Let a, k � 2 be integers and let us consider
the infinite product

1Y
nD0

1

1 � a�1zk
n D

1X
nD0

anz
n
2 QJzK:

A partition of n into k-powers is an expression nD j1kn1C � � �C jrknr with r 2Z�0,
0 � n1 < � � � < nr , and j1; : : : ; jr 2 Z�0. Expanding the factors in the definition of
the infinite product as geometric series, we see that

an D
X

nDj1k
n1C���Cjrknr

a�.j1C���Cjr /;

where the sum is over partitions of n into k-powers. The partition n D 1C � � � C 1 D
n � k0 gives a summand a�n, and for all other summands j1 C � � � C jr < n. Let p be
a prime divisor of a. Then janjp � pn, and therefore h.an/ � n logp.

Examples in O \�.log2 n/

The following example is typical of the Mahler functions in the class O \�.log2 n/. It
will play a prominent role in Section 7.

(d) Let k � 2 be an integer and consider the infinite product of cyclotomic polynomials

1Y
nD0

1

1 � zk
n D

1X
nD0

anz
n:

As in (c) above, we see that the integer an is equal to the number of partitions of n
into k-powers. The asymptotics of the coefficient sequence an were first studied by
Mahler [34], who proved that

log an �
log2 n
2 log k

�
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These results of Mahler have been refined and generalized by de Bruijn [21] and most
recently by Dumas and Flajolet [24].

(e) Multiplying the infinite product in (d) by any non-zero k-regular power series with
positive coefficients provides a transcendental k-Mahler function with the required
growth behavior. In fact, Theorem 3.8 shows that examples in the classO \�.log2 n/
are essentially all of that type.

Examples in O \�.logn/

For every regular sequence .an/n�0, the generating series
P1
nD0 anz

n is an M -function,
and examples for which h.an/ 2O \�.logn/ abound. We give some examples and refer
the reader to [8, Chapter 16.5] and [9, 10] for more.

(f) The rational power series
z

.1 � z/2
D

1X
nD0

nzn;

falls into this class, since h.n/ D log n. More generally, if p.z/ is a non-constant
polynomial with integer coefficients, then

P1
nD0 p.n/z

n is a rational function with
the required growth behavior.

(g) Let vp.n/ denote the p-adic valuation of the natural number n, where p is a prime
number. The power series

1X
nD0

vp.nŠ/z
n;

is p-regular [9, Example 8]. Moreover, by Legendre’s formula vp.nŠ/ � n=.p � 1/.

(h) Let `n denote the number of positive integers at most equal to n that can be written
as a sum of three squares. The power series

P1
nD0 `nz

n is 2-regular [8, Example
16.5.2]. Since every integer not of the form 4a.8b C 7/ can be written as a sum of
three squares, the sequence has the required growth behavior.

(i) Any linear representation .u; �; v/ on the alphabet †k gives rise to a k-regular
sequence (see Definition 3.4). From our results, we will see that whenever there exists
a wordw 2†�

k
such that the matrix �.w/ has an eigenvalue that is neither 0 nor a root

of unity, then the sequence associated with this linear representation has the required
growth behavior.

Examples in O \�.log logn/

M -functions whose coefficients have growth in O \�.log log n/ can again be found by
looking at generating functions of suitable k-regular sequences.

(j) The power series
1X
nD1

.1C blog2 nc/z
n

is 2-regular [9, Example 11], and clearly has the required growth behavior.
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(k) Let sn denote the sum of digits in the base-k expansion of n. Then clearly .sn/n�0
is k-regular, and so the power series

P1
nD0 snz

n is k-Mahler. Since sn 2 O.log n/,
we see that h.sn/ 2 O.log logn/. Moreover, for e � 0 and n D ke � 1 we have sn D
.k � 1/e � .k � 1/ logk n. Hence sn has the required growth behavior.

Examples in O.1/

By Theorem 1.2, this class of M -functions corresponds exactly to generating series of
automatic sequences. We refer the reader to the monograph [8] for numerous examples,
including the generating series of the Thue–Morse sequence, the Rudin–Shapiro sequence,
the Baum–Sweet sequence, and the paperfolding sequence, to name a few.

3. Preliminaries

Throughout this section, we let K be a field. We will later restrict ourselves to K D Q.
We recall k-Mahler, k-automatic, k-regular, and k-Becker power series and their relation
to each other.

3.1. Mahler functions, equations, and systems

Let us recall that a power series f .z/ 2 KJzK is a k-Mahler function if it satisfies an
equation of the form (1.1), that is, if there exist a non-negative integer d and polynomials
p0.z/; : : : ; pd .z/ 2 KŒz�, not all zero, such that

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0:

It can be shown that every Mahler function satisfies such a functional equation with
p0.z/pd .z/ ¤ 0 and p0.z/; : : : ; pd .z/ coprime [2, Lemma 4.1]. As we will only be
interested in the asymptotic behavior of the coefficients, the following lemma allows a
further simplification of the Mahler equation.

Lemma 3.1. Suppose f .z/ D
P1
nD0 anz

n 2 KJzK satisfies a Mahler equation

p0.z/f .z/ D p1.z/f .z
k/C � � � C pd .z/f .z

kd / (3.1)

with p0.z/pd .z/ ¤ 0 and p0.z/; : : : ; pd .z/ coprime. Then there exists n0 � 0 such that
an0 ¤ 0 and f0.z/ WD

P1
nD0 anCn0z

n satisfies a k-Mahler equation

q0.z/f0.z/ D q1.z/f0.z
k/C � � � C qdC1.z/f0.z

kdC1/

with polynomials q0.z/; : : : ; qdC1.z/ satisfying the following conditions.

(i) q0.0/ D 1.

(ii) If � 2 K X ¹0º, then p0.�/ D 0 implies q0.�/ D 0.

(iii) If � 2K X ¹0ºwith p0.�/D 0 and �k D �, then qi .�/¤ 0 for some i 2 ¹1; : : : ;d C 1º.

Moreover, if f .z/ has at least two non-zero coefficients, then f0.z/ is non-constant.
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Proof. By [2, Lemma 6.1]; the final statement requires an inspection of the proof.

We also need the following fact, a more general version of which is, for instance,
proved in [2, Proposition 8.1].

Lemma 3.2. If f .z/ 2 KJzK is k-Mahler and e is a positive integer, then f .z/ is also
ke-Mahler.

3.1.1. Linear Mahler systems. A power series f .z/ 2 KJzK is k-Mahler if and only if it
satisfies a linear k-Mahler system. That is, there exist f1.z/ WD f .z/; : : : ; fd .z/ 2 KJzK
and A.z/ 2 GLd .K.z// such that0B@f1.z/:::

fd .z/

1CA D A.z/
0B@f1.z

k/
:::

fd .z
k/

1CA : (3.2)

Indeed, given f .z/ satisfying a k-Mahler equation f .z/ D r1.z/f .z
k/ C � � � C

rd .z/f .z
kd / with r1.z/; : : : ; rd .z/ 2 K.z/ and rd .z/ ¤ 0, the vector�

f .z/; : : : ; f .zk
d�1

/
�T

satisfies an equation of the form (3.2) with A.z/ a companion matrix. Conversely, iter-
ating an equation of the form (3.2), and using the invertibility of A.z/, it follows
that each fi .z

kj / is contained in the finite-dimensional K.z/-vector space spanned
by f1.z/; : : : ; fd .z/. Hence the power series f1.zk

j
/, j � 0, are linearly dependent

over KŒz�.

3.1.2. Analytic properties. Let us assume that K D Q. If f .z/ 2 QJzK is a k-Mahler
function, then there exists a number field K with f .z/ 2 KJzK. This is so because all
sufficiently high coefficients of f .z/ are determined recursively by lower ones (see [23,
Chapitre 3.2.2] or [6]). Let v be a place ofK and j�jv be an absolute value associated with v.
We let Kv denote the completion of K with respect to the absolute value j � jv. We also let
Cv denote the completion of the algebraic closure ofKv andK the algebraic closure ofK
in Cv. Recall that Cv is both algebraically closed and complete. The power series f .z/ is
analytic in a neighborhood of 0 in Cv (see, for instance, [23, Chapitre 3.3]). The Mahler
equation then implies that f .z/ is meromorphic in the open unit disk Bj�jv.0; 1/ in Cv.

3.2. Automatic and regular power series

We recall the notion of k-automatic and k-regular sequences. For more background see
Allouche and Shallit [8] or Berstel and Reutenauer [19, Chapter 5].

A sequence .an/n�0 is k-automatic if there exists a finite automaton that, given as
input the base-k representation of n, reaches an output state labeled by an. Equivalently,
the sequence .an/n�0 is k-automatic if and only if its k-kernel is a finite set.
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Definition 3.3. Let a WD .an/n�0 be a sequence with values in a set S . The k-kernel of a
is

¹.akenCr /n�0 W e 2 Z�0; 0 � r � k
e
� 1º:

Let us now restrict to sequences taking values in the fieldK. Then a sequence .an/n�0
is said to be k-regular if its k-kernel is contained in a finite-dimensional vector sub-
space of theK-vector space of allK-valued sequences. Obviously k-automatic sequences
are k-regular. A k-regular sequence is k-automatic if and only if it takes only finitely
many values [8, Theorem 16.1.5]. There are several other characterizations of k-regular
sequences [8, Theorems 16.1.3 and 16.2.3]. We recall one characterization that is relevant
for our purpose.

Definition 3.4. A linear representation on the alphabet †k is a triple .u; �; v/ where
u 2 K1�d , v 2 Kd�1, and �W†�

k
! Kd�d is a monoid homomorphism (d 2 Z�0). The

linear representation is minimal if the dimension d is minimal amongst all d 0 � 0 and
d 0-dimensional linear representations .u0; �0; v0/ such that u�.w/v D u0�0.w/v0 for all
w 2 †�

k
. Equivalently, u�.†�

k
/ spans K1�d and �.†�

k
/v spans Kd�1.

Theorem 3.5. Let .an/n�0 be a sequence taking values in K. The following statements
are equivalent.

(a) The sequence .an/n�0 is k-regular.

(b) There exists a (minimal) linear representation .u; �; v/ on the alphabet †k such that
aŒw�k D u�.w/v for all words w 2 †�

k
.

Proof. The result is proved in [8, Theorem 16.2.3].

A power series f .z/ D
P1
nD0 anz

n 2 KJzK is said to be k-automatic, respectively
k-regular, if the sequence .an/n�0 is k-automatic, respectively k-regular.

3.3. Becker power series

The connection between k-regular sequences in the sense of Allouche and Shallit and
coefficients of k-Mahler power series was studied by Becker, who proved that k-regular
power series are k-Mahler [14, Theorem 1]. He also showed that the converse is false in
general: a k-Mahler power series need not be k-regular [14, Proposition 1]. However, he
did obtain a partial converse. This motivates the next definition.

Definition 3.6. A power series f .z/ 2 KJzK is a k-Becker function (or, in short, is
k-Becker) if there exist a positive integer d and polynomials p1.z/; : : : ; pd .z/ 2 KŒz�
such that

f .z/ D p1.z/f .z
k/C � � � C pd .z/f .z

kd /:

Theorem 3.7 ([14, Theorem 2]). If f .z/ D
P1
nD0 anz

n 2 QJzK is a k-Becker power
series, then it is k-regular.
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In view of these results, one may also ask for a precise characterization of k-regular
power series in terms of k-Becker power series. This gives rise to a conjecture of Becker,
recently settled in [16], and discussed in Section 10. For Mahler functions, there exists
the following useful decomposition due to Dumas.

Theorem 3.8 ([23, Théorème 31, p. 153]). Let f .z/ 2 KJzK be k-Mahler satisfying an
equation

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0

with p0.z/; : : : ; pd .z/ 2 KŒz� and p0.0/ D 1. Then

f .z/ D
g.z/Q1

iD0 p0.z
ki /
;

where g.z/ 2 KJzK is a k-Becker power series.

3.4. The Mahler denominator

As is already hinted at by Becker’s result, the polynomial p0.z/ in a Mahler equation
(1.1) will play a prominent role in our arguments. This prompts the following definition.

Definition 3.9. Let f .z/ 2 KJzK be a k-Mahler power series, and let

I D
°
p.z/ 2 KŒz� W p.z/f .z/ 2

1X
iD1

KŒz�f .zk
i

/
±
:

The k-Mahler denominator of f .z/ is the unique generator d.z/ 2 KŒz� of the ideal I ,
with the lowest non-zero coefficient of d.z/ being 1.

Since KŒz� is a principal ideal domain, there indeed exists such a generator. Observe
that f .z/ is k-Becker if and only if d.z/ � 1. It is tempting to hope that the k-Mahler
denominator is equal to the polynomial p0.z/ in the minimal k-Mahler equation, that is,
the equation

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0

with p0.z/pd .z/ ¤ 0, minimal d , and coprime p0.z/; : : : ; pd .z/. While this is often
the case, in general this is not so. See Example 3.10 for a counterexample. By definition
d.z/ divides p0.z/. It is tempting to hope that, to determine the types of roots of d.z/,
it suffices to consider those of p0.z/. Unfortunately, this hope is also thwarted by the
following example.

Example 3.10. The equation

.z � 1=2/f .z/ � .z � 1=8/.z3 � 1=2/f .z3/ D 0

has only one non-zero solution (up to a scalar) and is minimal with respect to this solution.
However, this solution is k-regular because

f .z/ D .z � 1=8/.z2 C 1=2z C 1=4/.z9 � 1=2/f .z9/:

The expected pole at 1=2 disappears after one iteration of the equation.
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We will see with Theorems 6.1 and 7.1 that locating the roots of the k-Mahler denom-
inator provides a characterization of those k-Mahler functions with h.an/ 2 O.log2 n/
and with h.an/ 2 O.log n/. However, given a Mahler function with h.an/ 2 O.log n/,
its Mahler denominator is irrelevant in determining whether h.an/ 2 O.log log n/ or
h.an/ 2 O.1/. For instance, all the three 2-regular functions

1Y
nD0

.1 � z2
n

/;

1X
nD0

bnz
n;

�
1

1 � z

�2
;

where we let bn denote the number of 0’s in the binary expansion of n (with b0 D 1), have
a trivial Mahler denominator (i.e., d.z/ D 1). However, their coefficients have height in
O.1/, O \�.log logn/, and O \�.logn/, respectively.

4. Background about Mahler’s method

Let us consider a linear k-Mahler system0B@f1.z/:::
fd .z/

1CA D A.z/
0B@f1.z

k/
:::

fd .z
k/

1CA ; (4.1)

where A.z/ is a matrix in GLd .Q.z// and f1.z/; : : : ; fd .z/ 2 QJzK. There exists a num-
ber fieldK such that the fi .z/’s belong toKJzK and A.z/ 2 GLd .K.z//. Let v be a place
ofK and j�jv be an absolute value associated with v. As before, we letKv denote the com-
pletion of K with respect to the absolute value j�jv. We also let Cv denote the completion
of the algebraic closure of Kv, and K the algebraic closure of K in Cv.

Definition 4.1. A point ˛ 2 Cv is called singular with respect to (4.1) if there exists a
non-negative integer n such that ˛k

n
is a pole of one of the coefficients of the matrix A.z/

or of the matrix A�1.z/. We say that ˛ is regular otherwise, that is, ˛ is regular if both
A.˛k

n
/ and A�1.˛k

n
/ are well-defined for every non-negative integer n.

We recall that the power series f1.z/; : : : ; fd .z/ are meromorphic in the open unit
disc of Cv and analytic in some neighborhood of the origin. Moreover, if ˛ is a regular
point such that j˛jv < 1, then the functions f1.z/; : : : ; fd .z/ are well-defined at ˛. We
also recall that given a field K, and elements a1; : : : ; am in some field extension of K,
the notation tr:degK.a1; : : : ; am/ stands for the transcendence degree over K of the field
extension K.a1; : : : ; am/.

Theorem 4.2. Let f1.z/; : : : ; fd .z/ 2 KJzK be related by a Mahler system of the
form (4.1). Let ˛ 2 K with 0 < j˛jv < 1 be a regular point with respect to this system.
Then

tr:degK.f1.˛/; : : : ; fd .˛// D tr:degK.z/.f1.z/; : : : ; fd .z//:
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In the case where j�jv is the usual absolute value on C, this classical result is due to
Nishioka [37]. The proof of Nishioka is based on some techniques from commutative
algebra introduced in the framework of algebraic independence by Nesterenko in the late
seventies. Recently, Fernandes [26] observed that Theorem 4.2 can also be deduced from
a general algebraic independence criterion due to Philippon [40, 41]. This allows her to
extend Nishioka’s theorem to the framework of function fields of positive characteristic.
Using the fact that the criteria obtained by Philippon also apply to any absolute value
associated with a place of a number field (see for instance [40, Theorem 2.11]), we can
argue exactly as in [26, proof of Theorem 1.3] to prove Theorem 4.2.

Theorem 4.3. Let f1.z/; : : : ; fd .z/ 2 KJzK be related by a Mahler system of the
form (4.1). Let ˛ 2 K with 0 < j˛jv < 1 be a regular point for this system. Then for
all homogeneous polynomials P.X1; : : : ; Xd / 2 KŒX1; : : : ; Xd � such that

P.f1.˛/; : : : ; fd .˛// D 0;

there exists Q.z; X1; : : : ; Xd / 2 KŒz; X1; : : : ; Xd �, homogeneous in X1; : : : ; Xd , such
that

Q.z; f1.z/; : : : ; fd .z// D 0

and
Q.˛;X1; : : : ; Xd / D P.X1; : : : ; Xd /:

Proof. In the case where j�jv is the usual absolute value on C, this result is due to Adam-
czewski and Faverjon [5, Theorem 1.4]. It is obtained as a consequence of the main result
of Philippon [42], which itself is based on Nishioka’s theorem. The strategy to deduce
this result from Nishioka’s theorem is detailed in [5, Proposition 3.1]. The arguments
are based on basic facts from commutative algebra that also apply to our more general
framework. The main two ingredients that we have to be careful about are the following
ones.

(i) A result by Krull saying that if p is a homogeneous ideal in KŒz; X0; : : : ; Xd � that
is absolutely prime, then for all but finitely many ˛ 2 K, the ideal ev˛.p/ is a prime
ideal of KŒX0; : : : ; Xd �. Here, we let ev˛WKŒz�! K denote the evaluation map at
z D ˛. See [30].

(ii) The fact that the field extensionL WDK.z/.f1.z/; : : : ;fd .z// is regular, which means
that an element of L is algebraic over K.z/ if and only if it belongs to K.z/.

We can use (i) in our framework, for Krull proved his result for any base field K. To
prove that (ii) also holds true in our framework, we need to know that a k-Mahler function
in KJzK is either rational or transcendental over K.z/. There are several proofs for this
result. For instance, [38, Theorem 5.1.7] provides a proof in the case whereK is any field
of characteristic 0. Then we can argue exactly as in [5, proof of Lemma 3.2] to deduce
that the field extension K.z/.f1.z/; : : : ; fd .z// is regular.

As a corollary of Theorem 4.3, we deduce the following result.
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Corollary 4.4. Let f1.z/; : : : ; fd .z/ 2 KJzK be related by a Mahler system of the
form (4.1). Assume that f1.z/; : : : ; fd .z/ are linearly independent overK.z/. Then there
exists a real number r , 0 < r < 1, such that for every ˛ 2K with 0 < j˛jv < r , the numbers
f1.˛/; : : : ; fd .˛/ are well-defined and linearly independent over K.

Proof. We first observe that if r is small enough, then ˛ is a regular point with respect
to (4.1) and the numbers f1.˛/; : : : ; fd .˛/ are thus well-defined. Then the result follows
directly from Theorem 4.3.

5. Generic upper bound

To prove (1) of Theorem 1.1, giving a general upper bound on h.an/ for a Mahler function
f .z/ D

P1
nD0 anz

n 2 QJzK, we use a classical recursion for the sequence .an/n�0 that
is deduced from the Mahler equation. Since this is somewhat lengthy and the proof of the
upper bound for h.an/ in case (2) of Theorem 1.1, where we assume h.an/ 2 o.n/, works
similarly, we establish both these bounds at the same time.

We need the following lemma. For archimedean absolute values, a more general result
for finitely generated semigroups of matrices can be found in [15].

Lemma 5.1. Let d be a positive integer. Let j�j be an absolute value on Q, and let k�k

be an operator norm on Q
d�d

with respect to j�j. Let A 2 Q
d�d

be a matrix such that
j�j � 1 for every eigenvalue � of A. Then

kAnk 2

´
O.nd�1/ if j�j is archimedean,

O.1/ if j�j is non-archimedean.

Proof. It suffices to show the claim for a Jordan block � � I C N 2 Q
s�s

where s � d ,
where j�j � 1, and whereN is the s � s matrix with ones on the superdiagonal and zeroes
everywhere else. Then N i is the matrix that has ones on the i th superdiagonal and zeroes
everywhere else, with N i D 0 for i � s. Thus

.� � I CN/n D

s�1X
iD0

�
n

i

�
�n�iN i for n � s.

Now

k.� � I CN/nk � C max
�
1;

ˇ̌̌̌�
n

s � 1

�ˇ̌̌̌�
for some constant C , and the claim follows.

Proposition 5.2. Let f .z/ D
P1
nD0 anz

n 2 QJzK be a k-Mahler function. Then the fol-
lowing properties hold.

(1) h.an/ 2 O.n/.

(2) Suppose in addition that all roots of the k-Mahler denominator of f .z/ are contained
in ¹0º [U. Then h.an/ 2 O.log2 n/.
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Proof. We may assume f .z/ ¤ 0. The series f .z/ satisfies a k-Mahler equation

p0.z/f .z/ D p1.z/f .z
k/C � � � C pd .z/f .z

kd /

with p0.z/ D d.z/ the k-Mahler denominator and d � 1. Extend the sequence an
to rational indices by setting ar D 0 for all r 2 Q X Z�0. Let s D max ¹deg pi .z/ W
i 2 0; : : : ; dº. Let p0.z/ D zm.1 C ˛1z C � � � C ˛s�mz

s�m/ with ˛1; : : : ; ˛s�m 2 Q,
and, for i 2 ¹1; : : : ; dº, let pi .z/ D

Ps
jD0 ˇi;j z

j with ˇi;j 2 Q. Comparing coefficients
in the Mahler equation, we have

an�m C

s�mX
jD1

j̨an�m�j D

dX
iD1

sX
jD0

ˇi;jan�j
ki

for n 2 Z.

Shifting the indices by m, we obtain

an D

s�mX
jD1

� j̨an�j C

dX
iD1

sX
jD0

ˇi;janCm�j
ki

for n 2 Z. (5.1)

If n > m, then n > .nCm/=2 � .nCm� j /=ki for i � 1 and j � 0. Thus, (5.1) allows
the recursive computation of an for n >m from a0; : : : ; am. We now write this as a matrix
equation. For i 2 ¹0; : : : ; dº, let

ai .n/ WD

0BBB@
an=ki

a.n�1/=ki
:::

a.n�s/=ki

1CCCA : (5.2)

Let A, B1, : : : , Bd 2 Q
.sC1/�.sC1/

be given by

Bi D

0BBB@
ˇi;0 ˇi;1 : : : ˇi;s
0 0 : : : 0
:::

:::
: : :

:::

0 0 : : : 0

1CCCA and A D

�
�˛ 0

Is�s 0s�1

�
;

where ˛ D .˛1; : : : ; ˛s�m; 0; : : : ; 0/ 2 Q
1�s

, Is�s is the s � s identity matrix, and 0s�1
is the s � 1 matrix of zeroes. The characteristic polynomial of A is zsC1 C ˛1zs C � � � C
˛s�mz

mC1 D zmCsC1p0.1=z/ 2 QŒz�.
Now

a0.n/ D Aa0.n � 1/C
dX
iD1

Biai .nCm/ for n > m:

Fix n0 > m. Recursively substituting for a0.n � j /, for n � n0 we get

a0.n/ D An�n0a0.n0/C
n�n0�1X
jD0

dX
iD1

AjBiai .nCm � j /:
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The recursion formula for .an/n�0 implies that there is a number field K containing
all ˛i , ˇi;j and an for n � 0. For each place v of K, let j�jv be the corresponding absolute
value and let k�kv be the induced maximum norm. We also write k�kv for the operator norm
onK.sC1/�.sC1/. Let "v.n/D n if v is archimedean, and "v.n/D 1 if v is non-archimedean.
Then

ka0.n/kv � "v.dn/ �max ¹kAn�n0kv � ka0.n0/kv; kA
j
kv � kBikv � kai .nCm � j /kvº;

(5.3)

where i 2 ¹1; : : : ; dº and j 2 ¹0; : : : ; n� n0 � 1º. Let S be the finite set consisting of all
places v that are archimedean or for which kAkv >1, or janjv >1 for some n2 ¹0; : : : ;n0º,
or kBikv > 1 for some i 2 ¹1; : : : ; dº. Note that, for v 62 S , also kAnkv � kAk

n
v � 1 for

all n � 1. If v 62 S , then, by induction, the bound in (5.3) implies janjv � ka0.n/kv � 1

for all n � n0. Therefore

h.an/ D log
Y
v2S

max ¹1; janjvº:

To show the claims, it suffices to obtain suitable bounds on janjv for v 2 S . We first prove
the bound in (1).

Let v 2 S . We show janjv � cn for some c 2 R�1 and all n � 1. First enlarge n0 > m
and pick c0 2 R�1 so that dnc1Cm=2 � cn=6 for all c 2 R�c0 and n � n0. Let c 2 R�c0
be sufficiently large so that janjv � c for all n 2 ¹1; : : : ; n0º and so that kBikv � c for all
i 2 ¹1; : : : ; dº. Enlarging c further, also suppose kAkv � c

1=3, so that kAnkv � c
n=3.

We proceed by induction on n. For 1 � n � n0 the claim is true by choice of c. For
n > n0, the inequality (5.3) gives

ka0.n/kv � "v.dn/ � c
.n�n0/=3 �max ¹ka0.n0/kv; kBikv � kai .nCm � j /kvº;

where i 2 ¹1; : : : ; dº and j 2 ¹0; : : : ; n � n0 � 1º. By induction hypothesis, we can use
(5.2) to estimate kai .nCm � j /kv � c

.nCm/=k � c.nCm/=2, and therefore

ka0.n/kv � dn � c
.n�n0/=3 � c � c.nCm/=2 D dnc1Cm=2 � c�n0=3 � c5n=6 � cn:

Thus janjv � cn, as claimed.
To show (2), we now assume in addition that all roots of p0.z/ are contained in

¹0º [U. Let v 2 S . We show that there exists c 2R�1 such that janjv � nc logn for all suf-
ficiently large n. To this end, first note that we may choose c0 2 R�1 and enlarge n0 > m
so that dc3nsC1 � nc log.n/ for all n � n0 and c � c0. Now let c 2 R�c0 be sufficiently
large so that janjv � c for all n 2 ¹1; : : : ; n0º and kBikv � c for all i 2 ¹1; : : : ; dº. By
our assumption on the roots of p0.z/, all the eigenvalues of A are contained in ¹0º [U.
Thus kAnkv 2 O.n

s/ by Lemma 5.1, and we can also assume kAnkv � cn
s for n � 1,

enlarging c if necessary.
Since k � 2 > 1Cm=n0, enlarging c further, we may also assume

c.log k � log.1Cm=n0// > s C 1
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and even dc2 � nc.logk�log.1Cm=n0//�.sC1/
0 . Then dc2 � nc.logk�log.1Cm=n//�.sC1/ for all

n � n0.
We show ka0.n/kv � n

c logn for all n � n0 by induction. Let n � n0. The bound (5.3)
gives

ka0.n/kv � "v.dn/cn
s
�max ¹ka0.n0/kv; kBikv � kai .nCm � j /kvº;

where i 2 ¹1; : : : ; dº and j 2 ¹0; : : : ; n � n0 � 1º. By induction hypothesis, we can use
(5.2) to estimate

kai .nCm � j /kv � max
²
c;

�
nCm

k

�c log.nCm
k

/³
:

With the latter bound of the maximum,

ka0.n/kv � dcn
sC1
� c �

�
nCm

k

�c log.nCm
k

/

� dc2n
sC1Cc log. nCm

k
/

� dc2nsC1Cc lognCc log.1Cm=n/�c logk
� nc logn

I

in case kai .nCm � j /kv � c we have

ka0.n/kv � dc
3nsC1 � nc logn:

We have thus established the general growth bound for the coefficients of a Mahler
function: the height of the nth coefficient is at most linear in n.

6. First gap: characterization of totally analytic Mahler functions

In this section, we characterize k-Mahler functions f .z/ D
P1
nD0 anz

n 2 QJzK with
h.an/ 2 o.n/. Let f .z/ 2 QJzK be an M -function. There exists a number field K such
that f .z/ 2 KJzK, and for every place v of K, we may consider f .z/ as a power series
over the algebraic closure Cv of the completion Kv. Then f .z/ has a positive radius of
convergence, and it is meromorphic in the open unit disk of Cv. Moreover, for all but
finitely many places of K, the radius of convergence of f .z/ is equal to 1. Hence, an
M -function is globally analytic. We say that f .z/ is totally analytic if, for every place v
of K, f .z/ is analytic in the open unit disk of Cv.

Theorem 6.1. Let f .z/ D
P1
nD0 anz

n 2 QJzK be a k-Mahler function. The following
statements are equivalent.

(a) h.an/ 2 o.n/.

(b) Every non-zero root of the k-Mahler denominator of f .z/ belongs to U .i.e., is a root
of unity/.

(c) The power series f .z/ is totally analytic.

(d) h.an/ 2 O.log2 n/.
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The crucial step here lies in showing that all roots of the k-Mahler denominator are
contained in ¹0º [U. This relies on the deep results on Mahler’s method by Nishioka,
Philippon, Fernandes, as well as by Adamczewski and Faverjon that were recalled in
Section 4. But first we need the following easy lemma.

Lemma 6.2. Let f .z/ D
P1
nD0 anz

n 2QJzK be a power series that is not a polynomial.
If h.an/ 2 o.n/, then f .z/ has radius of convergence 1 for every absolute value of Q.

Proof. Fix an absolute value j�j on Q, and let

� D
�

lim sup
n!1

n
p
janj

��1
2 R�0 [ ¹1º

be the radius of convergence of f .z/.
We show � D 1 by contradiction. Suppose first � > 1. Choose �0 2 R>0 with 1 <

�0 <�. Since lim supn!1
n
p
janj D 1=� < 1=�

0, we have janj � .1=�0/n for all sufficiently
large n. Since f is not a polynomial, there exist infinitely many such n with an ¤ 0, and
for these ja�1n j � .�

0/n. One has h.an/D h.a�1n / as a consequence of the product formula.
It follows that h.an/D h.a�1n / � log ja�1n j � n log�0, in contradiction to our assumption.

Suppose now � < 1, and choose � < �0 < 1. Then, for all n0 � 0, there exists an
n � n0 such that janj � .1=�0/n. Hence h.an/ � log janj � n log.1=�0/ again yields a
contradiction.

We also require the notion of Cartier operators in the next proof.

Definition 6.3. For every r 2 †k , we define a Cartier operator �r WQJzK! QJzK by

�r

� 1X
nD0

anz
n
�
D

1X
nD0

aknCrz
n:

Note that if p.z/ 2 QŒz�, then deg.�r .p.z/// � .degp/=k. Moreover, if j � 1, then
a short computation yields

�r
�
p.z/f .zk

j

/
�
D �r .p.z// � f .z

kj�1/:

Proposition 6.4. Let f .z/ 2 QJzK be k-Mahler and let d.z/ 2 QŒz� be its k-Mahler
denominator. If � 2Q is a root of d.z/, and j�j is an absolute value on Q with 0 < j�j< 1,
then the radius of convergence of f .z/ with respect to this absolute value is strictly less
than 1.

Proof. Let us first consider a minimal homogeneous equation associated with f .z/:

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0: (6.1)

By minimal, we mean that p0.z/pd .z/¤ 0, that d is minimal, and that p0.z/; : : : ; pd .z/
2 QŒz� are relatively prime. If f .z/ D 0, then we can take d D 0 and p0.z/ D 1. Thus
also d.z/ D 1 and the claim is trivially true. We may assume f .z/ ¤ 0, so that d � 1.
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As in Section 4, we can assume that there exists a number field K containing � and
all coefficients of f .z/ as well as the coefficients of the polynomials p0.z/; : : : ; pd .z/.
Further, j�j on K arises from a place v of K, and Cv is the algebraic closure of the com-
pletion Kv, with K denoting the algebraic closure of K inside Cv.

We claim that f .z/; : : : ;f .zk
d�1

/ are linearly independent overK.z/. By way of con-
tradiction, suppose that this is not the case. Then there exist q0.z/; : : : ; qd�1.z/ 2 KŒz�,
not all zero, such that

q0.z/f .z/C � � � C qd�1.z/f .z
kd�1/ D 0:

Since the coefficients of q0.z/; : : : ; qd .z/ are all algebraic over Q, we can assume
q0.z/; : : : ; qd .z/ 2 QŒz�. Let t 2 ¹0; : : : ; d � 1º be minimal with qt .z/ ¤ 0, say qt .z/ DPM
jDm bj z

j with bm, bM ¤ 0. LetmD
P1
�D0 k

�m� withm� 2 †k be the base-k expan-
sion of m (with all but finitely many m� being zero). Setting � D �mt ı � � � ı�m0 , we
see �.qt .z// ¤ 0. Then

�.qt .z//f .z/C � � � C�.qd�1.z//f .z
kd�1�t / D 0

is a k-Mahler equation for f .z/, contradicting the minimality of d . Therefore
f .z/; : : : ; f .zk

d�1
/ must be linearly independent over K.z/, as claimed.

Now 0B@ f .z/
:::

f .zk
d�1

/

1CA D A.z/
0B@ f .z

k/
:::

f .zk
d
/

1CA
with

A.z/ D

0BBBBBBB@

�
p1.z/
p0.z/

�
p2.z/
p0.z/

� � � �
pd�1.z/
p0.z/

�
pd .z/
p0.z/

1 0 � � � 0 0

0 1
: : :

:::
:::

:::
: : :

: : : 0
:::

0 � � � 0 1 0

1CCCCCCCA 2 GLd .K.z//:

By Corollary 4.4, we see that

f .�k
n

/; f .�k
nC1

/; : : : ; f .�k
nCd�1

/

are linearly independent over K, as long as n is large enough, say n � n0.
Now, iterating (6.1), we obtain an equation of the form

r0.z/f .z/C r1.z/f .z
kn0 /C � � � C rd .z/f .z

kn0Cd�1/ D 0; (6.2)

where we assume without any loss of generality that r0.z/; : : : ; rd .z/ 2KŒz� are relatively
prime. We claim that f .z/ has a pole at �. Let us assume by contradiction that f .z/ is
well-defined at �. Since d.�/ D 0, it follows that r0.�/ D 0 and we get

r1.�/f .�
kn0 /C � � � C rd .�/f .�

kn0Cd�1/ D 0:
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Since f .�k
n0 /; : : : ; f .�k

n0Cd�1/ are linearly independent over K, all the ri .z/ should
vanish at �, contradicting the fact that they are relatively prime. Hence, f .z/ has a pole
at � and its radius of convergence is therefore less than 1.

We now have the ingredients to characterize Mahler functions with h.an/ 2 o.n/.

Proof of Theorem 6.1. Let f .z/ D
P1
nD0 anz

n 2 QJzK be k-Mahler.
(a))(c) Suppose h.an/ 2 o.n/. By Lemma 6.2 the series f .z/ has radius of conver-

gence at least 1 with respect to every absolute value j�j on Q.
(c))(b) Suppose now f .z/ has radius of convergence at least 1 with respect to every

absolute value j�j on Q. Let d.z/ 2 QŒz� be the k-Mahler denominator of f .z/. Suppose
there exists � 2 Q X ¹0º with d.�/ D 0 such that � is not a root of unity. By Kronecker’s
Theorem there exists an absolute value j�j on Q for which j�j < 1. By Proposition 6.4,
the series f .z/ has radius of convergence strictly less than 1 for this absolute value, a
contradiction.

(b))(d) Suppose all roots of the k-Mahler denominator d.z/ 2 QŒz� of f .z/ are
contained in ¹0º [U. Then h.an/ 2 O.log2 n/ by Proposition 5.2 (2).

(d))(a) Clearly h.an/ 2 O.log2 n/ implies h.an/ 2 o.n/.

7. Second gap: characterization of regular Mahler functions

In this section, we characterize Mahler functions f .z/D
P1
nD0 anz

n 2QJzK with h.an/
2 o.log2 n/. The following result also proves case (b) of Theorem 1.2.

Theorem 7.1. Let f .z/ D
P1
nD0 anz

n 2 QJzK be a k-Mahler function. The following
statements are equivalent.

(a) h.an/ 2 o.log2 n/.

(b) Every non-zero root of the k-Mahler denominator of f .z/ belongs to Uk .

(c) The power series f .z/ is k-regular.

(d) h.an/ 2 O.logn/.

We already know that if h.an/ 2 o.log2 n/, then every root � of the k-Mahler denom-
inator d.z/ of f .z/ is in ¹0º [U. The brunt of the work in this section lies in showing
� 2 ¹0º [Uk , that is, if � ¤ 0, then �k

j
¤ � for all j > 0. This requires a careful analysis

of the asymptotics of f .z/ at such a hypothetical root of d.z/ to establish a contradiction.
We start with some estimates.

Lemma 7.2. Let f .z/ D
P1
nD0 anz

n 2 RJzK be a power series with non-negative coef-
ficients. Suppose there exists c 2 R>0 with an � nc logn for all sufficiently large n. Let
c0; " 2 R>0 with c0 > 2c. Then there exists t0 2 Œ0; 1/ such that

1X
nDdm log2me

ant
n < " for all t 2 Œt0; 1/ and m � c0=.1 � t / �
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Proof. By assumption, for large n,

ant
n
� exp.c log2 nC n log t /:

We will show that, for sufficiently large m (ensured by choice of t0) and n � m log2m,

c log2 nC n log t � 1
2
n log t: (7.1)

We first show how to conclude the proof using (7.1). We have antn � tn=2 and

1X
nDdm log2me

ant
n
�
tdm log2me=2

1 �
p
t
D
.1C

p
t /tdm log2me=2

1 � t
<
2tdm log2me=2

1 � t
�

We need to bound the right side by a constant. Using m � c0=.1 � t / and t 2 Œ0; 1/, we
have

log
�
2tdm log2me=2

1 � t

�
� log 2C

c0 log t
2.1 � t /

log2
�

c0

1 � t

�
� log.1 � t /: (7.2)

Recall limt!1 log t=.1� t / D �1 and log2.c0=.1� t // � log2.1� t / for t ! 1�. Hence
the right side of (7.2) tends to �1 as t ! 1�. Choosing t0 2 Œ0; 1/ sufficiently close to 1,
we get

1X
nDdm log2me

ant
n
� " for t 2 Œt0; 1/ and m � c0=.1 � t /.

It remains to show the bound in (7.1). The latter is equivalent to c log2 nC 1
2
n log t � 0.

Since log t � t � 1 � �c0=m, it suffices to show

c log2 n � n
c0

2m
� 0 for n � m log2m: (7.3)

We first show this for n D m log2m. Now

c log2.m log2m/ �m.log2m/
c0

2m
� .c � c0=2/ log2m

as a function in m for m!1, and c � c0=2 is negative by choice of c0. Thus, for suf-
ficiently large m, we have c log2.m log2m/ �m.log2m/ c

0

2m
� 0. We can ensure a large

enough m by choosing t0 2 Œ0; 1/ sufficiently close to 1.
Now, set g.n/ WD c log2 n and h.n/ WD n c0

2m
. Then g0.n/ D 2c logn

n
, and hence

g0.m log2m/ D
2c logmC 2c log.log2m/

m log2m
�

2c

m logm
�

Thus, choosing m sufficiently large, we may also ensure

g0.m log2m/ � h0.m log2m/ D
c0

2m
�

Since g.n/ is concave for n � exp.1/, this ensures g.n/ � h.n/ for n � m log2m. This
proves (7.1) and ends the proof of the lemma.
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Lemma 7.3. Let f .z/ D
P1
nD0 anz

n 2 RJzK be a power series with non-negative coef-
ficients. Let a 2 R�0 and b; c 2 R>0. Assume that there exist a sequence .tj /j�0 ! 1 in
Œ0; 1/ and m0 2 Z�0 such that

f .tj / � .1 � tj /
a exp.c log2m/tmbj for all j � 0 and m � m0.

Then there exist c0 2 R>0 and infinitely many n � 1 with an > exp.c0 log2 n/.

Proof. Without any loss of generality we can assume that there exists a constant c0 > 2c
such that an � exp.c0 log2 n/ for all sufficiently large n. Indeed, otherwise the result holds
trivially. By the previous lemma, for all sufficiently large j andm� 3c0=.1� tj /, we have

1X
nDdm log2me

ant
n
j � 1:

Let mj D d3c0=.1 � tj /e and

Aj D log
�
.1 � tj /

a exp.c log2mj /t
mj b

j

�
D a log.1 � tj /C c log2mj Cmj b log tj :

Then, for sufficiently large j ,

bmj log2mj cX
nD0

ant
n
j � exp.Aj / � 1:

Since �
3c0

1 � tj
C 1

�
b log tj � mj b log tj �

3c0

1 � tj
b log tj ;

and ..log tj /=.1 � tj //j�0 ! �1, we find .mj b log tj /j�0 ! �3c0b. Since we have
log2.1=.1 � tj // D log2.1 � tj / and therefore log2mj � log2.1 � tj /, we see that Aj �
c log2mj . Choosing j sufficiently large, we may assume

Aj �
c

2
log2mj :

Therefore, again restricting to large enough j for the last inequality,

bmj log2mj cX
nD0

ant
n
j � expAj � 1 � exp

�
c

4
log2mj

�
:

By the pigeonhole principle, there exists 0 � nj � mj log2mj such that

anj � exp
�
c

4
log2mj

�
=.1Cmj log2mj /:

Thus
log anj �

c

4
log2mj � log.mj log2mj C 1/ �

c

4
log2mj :
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We may assume log anj �
c
8

log2mj . To finish, since nj � mj log2mj , we have

log2 nj � log2.mj log2mj / � log2mj :

We may take log2 nj � 2 log2mj , so that loganj �
c
16

log2 nj . Since loganj �
c
8

log2mj
and .mj /j�0 ! 1, also .nj /j�0 ! 1. Thus there are in fact infinitely many distinct
such nj .

Lemma 7.4. Let � 2 C with �k D �. Let p.z/ 2 CŒz� with p.0/ D 1 and p.�/ ¤ 0. Then
there exists c 2 R>0 such that, for all t 2 Œ0; 1/ with p.�tk

n
/ ¤ 0 for all n � 0,ˇ̌̌� 1Y

nD0

p.�tk
n

/
��1 ˇ̌̌

> j1 � t jc :

Proof. The proof is the same as the one of the lower bound in [2, Lemma 9.5 and Propo-
sition 9.2]. Let ˛1; : : : ; ˛s denote the roots of p.z/ (with multiplicity). Then

p.z/ D .1 � ˛�11 z/ � � � .1 � ˛�1s z/:

It suffices to show the claim for 1 � ˛�11 z. Suppose t 2 Œ0; 1� is such that �tk
n
¤ ˛1 for

all n � 0. Then the infinite product
Q1
nD0.1 � ˛

�1
1 tk

n
/�1 converges, andˇ̌̌̌ 1Y

nD0

1

1 � ˛�11 �tk
n

ˇ̌̌̌
�

1Y
nD0

1

1C j˛�11 jt
kn
�

1Y
nD0

exp.�j˛�11 jt
kn/:

Then, by [2, Lemma 9.4],

1Y
nD0

exp.�j˛�11 jt
kn/ � exp

�
�j˛�11 j.1 � 1=k/

�1

1X
nD1

tn

n

�
D .1 � t /

j˛�1
1
jk

k�1 :

Let B.�; r/�C, respectively B.�; r/�C, denote the open, respectively closed, disc
of radius r 2 R�0 with center � 2 C.

Lemma 7.5 (Special case of [2, Lemma 10.2]). Let d 2 Z>0, let � 2 C X ¹0º be such
that �k D �, and let AWB.0; 1/!Cd�d be a continuous, matrix-valued function. Assume
that w.z/ 2 CJzKd satisfies the equation

w.�/ D A.�/w.�k/ for all � 2 B.0; 1/.

Assume also that the following properties hold.

(i) The coordinates of w.z/ are analytic in B.0; 1/.

(ii) The matrix A.�/ is not nilpotent.

(iii) The set ¹w.�/ W � 2 B.0; 1/º is not contained in a proper vector subspace of Cd .

Then there exist c 2 R>0 and a sequence .tj /j�0 ! 1 in Œ0; 1/ such that

kw.tj �/k > j1 � tj j
c for all j � 0:
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Proof. This is [2, Lemma 10.2] in the special case � D 0. We do not assume w.z/ to
be continuous in B.0; 1/, but this assumption is never used in the proof and is therefore
superfluous.

Lemma 7.6. Let b 2 Z>0 and a, a0 2 R with a0 > a > 0. Then there exists t0 2 Œ0; 1/
such that

.1 � t1=b/a > .1 � t /a
0

for all t 2 Œt0; 1/.

Proof. For t 2 Œ0; 1/ we have

1 � t D .1 � t1=b/

b�1X
iD0

t i=b � b.1 � t1=b/:

Moreover, .1 � t /a
0�a < 1=ba for t sufficiently close to 1. Then

.1 � t1=b/a �
.1 � t /a

0

.1 � t /a
0�aba

> .1 � t /a
0

:

Armed with these estimates, we can finally prove a further restriction on the roots of
the k-Mahler denominator. This is the key step in the current section. The arguments are
in many aspects very similar to those used by Adamczewski and Bell [2, §11].

Proposition 7.7. Let f .z/D
P1
nD0 anz

n 2 CJzK be a k-Mahler series that is analytic in
B.0; 1/. Let � 2 U with �k

j0
D � for some j0 � 1, and let l D kj0 . Suppose there exists

an l-Mahler equation

p0.z/f .z/ D p1.z/f .z
l /C � � � C pd .z/f .z

ld /;

with p0.z/; : : : ; pd .z/ 2 CŒz� coprime, with p0.z/pd .z/ ¤ 0, and such that p0.�/ D 0.
Then there exist a; b; c 2 R>0, m0, n0 2 Z�0, and a sequence .tj /j�0 ! 1 in Œ0; 1/

such thatˇ̌̌ 1X
nD0

anCn0.�tj /
n
ˇ̌̌
� .1 � tj /

a exp.b log2m/tmcj for all j � 0 and m � m0.

Proof. Applying Lemma 3.1, there exist n0 � 0 and q0.z/; : : : ; qdC1.z/ 2 CŒz� such that
an0 ¤ 0 and

f0.z/ D

1X
nD0

anCn0z
n

satisfies
q0.z/f0.z/ D q1.z/f0.z

l /C � � � C qdC1f0.z
ldC1/;

with q0.0/ D 1, q0.�/ D 0, and qi .�/ ¤ 0 for some i 2 ¹1; : : : ; d C 1º.
Let �i 2 Z�0 be the order of vanishing of qi .z/ at �. Define

r WD min
²
�i C .i � 1/�0

i
W i 2 1; : : : ; d C 1

³
2 Q�0:
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Since �0 > 0 and �i D 0 for some i 2 ¹1; : : : ; d C 1º, we have r < �0. Defining

g.z/ WD f0.�z/

1Y
nD0

q0.�z
ln/

.1 � zl
n
/r

we obtain

g.z/ D

dC1X
iD1

ri .z/g.z
li / with ri .z/ D qi .�z/

1

.1 � z/r

i�1Y
nD1

q0.�z
ln/

.1 � zl
n
/r
2 C.z/:

In the expression for ri .z/, the denominator has roots at every ! 2C for which !l
i�1
D 1.

If ! ¤ 1, then r < �0 guarantees that ri .z/ does not actually have a pole at !. For ! D 1,
this is ensured by ir � �i C .i � 1/�0. Thus, all ri .z/ are in fact polynomials. Moreover,
by choice of r , there exists an i0 2 ¹1; : : : ; d C 1º such that ri0.1/ ¤ 0.

Claim. There exist a 2 R>0 and a sequence .tj /j�0 ! 1 in Œ0; 1/ with

jg.tj /j � .1 � tj /
a:

Proof of Claim. First we deal with the degenerate case in which g.z/ is constant. Then
g.z/D g.0/ and from the definition of g we see g.0/¤ 0 since f0.0/¤ 0 and q0.0/D 1.
Choosing a D 1, any sequence .tj /j�0 ! 1 in Œ0; 1/ satisfies jg.tj /j > 1 � tj for suffi-
ciently large j . From now on we may assume that g.z/ is not constant.

We are going to apply Lemma 7.5. Denote by k�k the maximum norm with respect
to j�j. Let w.z/ D .g.z/; g.zl /; : : : ; g.zl

d
//T and

A.z/ D

0BBBBBBBBB@

r1.z/ r2.z/ : : : rd�1.z/ rd .z/ rdC1.z/

1 0 : : : 0 0 0

0 1 : : : 0 0 0
::: 0

: : :
:::

:::
:::

:::
::: : : : 1 0 0

0 0 : : : 0 1 0

1CCCCCCCCCA
2 C.z/.dC1/�.dC1/:

Then w.z/ D A.z/w.zl /. The coordinates of A.z/ are polynomials and hence of course
continuous. We verify the conditions of Lemma 7.5.

(i) The coordinates of w.z/ are analytic in B.0; 1/ since g.z/ is analytic in B.0; 1/.
(ii) The characteristic polynomial of A.z/ is

ydC1 � r1.z/y
d
� � � � � rdC1.z/ 2 C.z/Œy�:

Since ri0.1/ ¤ 0, the matrix A.1/ is not nilpotent.
(iii) Suppose that S D ¹w.�/ W � 2 B.0; 1/º is contained in a proper subspace of Cd .

Then there exist ˛0; : : : ; ˛d 2 C, not all zero, such that ˛0g.�/C � � � C ˛dg.�l
d
/D 0 for

all � 2B.0;1/. Since g.z/ is analytic inB.0;1/ this forces ˛0g.z/C � � � C ˛dg.zl
d
/D 0.

But then g.z/ is constant by [2, Lemma 7.9], a contradiction. Hence the set S is not
contained in a proper subspace of Cd .
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Applying Lemma 7.5, there exist a 2 R>0 and a sequence .tj /j�0 ! 1 in Œ0; 1/ such
that

kw.tj /k > .1 � tj /
a for all j � 0:

Restricting to a subsequence and making a substitution, we may assume that there exists
i 2 Œ0; d � and b D l i such that jg.tj /j > .1� t

1=b
j /a for j � 0. Applying Lemma 7.6 and

replacing a by a slightly larger constant, we may actually take jg.tj /j > .1 � tj /a for all
j � 0. (Claim)

By the result of Mahler (see Example (d) in Section 2), there exists a constant c 2R>0
such that, for some m0 � 0,

1Y
nD0

.1 � t l
n

j /
�1
�

1X
nDm0

exp.c log2 n/tnj :

Thus
1Y
nD0

.1 � t l
n

j /
�1
� exp.c log2m/tmj for all m � m0.

The lower bound for g.z/ together with the fact that f0.z/ is analytic in B.0; 1/
implies q0.�t l

n

j / ¤ 0 for all n � 0. By Lemma 7.4, there exists a0 2 R>0 such thatˇ̌̌̌ 1Y
nD0

.1 � t l
n

j /
�0

q0.�t
ln

j /

ˇ̌̌̌
> .1 � tj /

a0 for j large enough.

With b D �0 � r > 0, we conclude, for m � m0, that

jf0.tj �/j D jg.tj /j �

ˇ̌̌̌ 1Y
nD0

.1 � t l
n

j /
r

q0.�t
ln

j /

ˇ̌̌̌
> .1 � tj /

aCa0 exp.cb log2m/tmbj :

Proposition 7.8. Let f .z/D
P1
nD0 anz

n 2QJzK be k-Mahler and suppose that h.an/ 2
o.log2 n/. Then the roots of the k-Mahler denominator of f .z/ are contained in ¹0º [Uk .

Proof. Let d.z/ be the k-Mahler denominator of f .z/. Suppose that � 2 Q X ¹0º is such
that d.�/ D 0. Then � 2 U by Theorem 6.1. We have to show �k

j
¤ � for all j � 1.

Suppose to the contrary that �k
j0
D � for some j0 � 1. Let l D kj0 . Then f .z/ is also

l-Mahler by Lemma 3.2. Let p0.z/; : : : ; pd .z/ 2QŒz� be coprime, with p0.z/pd .z/¤ 0,
such that

p0.z/f .z/ D p1.z/f .z
l /C � � � C pd .z/f .z

ld /:

Since this is also a k-Mahler equation for f .z/, the k-Mahler denominator d.z/ divides
p0.z/, hence p0.�/ D 0. Fix any embedding Q ,! C, and thereby an archimedean abso-
lute value on Q. We apply Proposition 7.7 to conclude that there exist a; b; c 2 R>0,
m0; n0 2 Z�0, and a sequence .tj /j�0 ! 1 in Œ0; 1/ such that

jf0.�tj /j � .1 � tj /
a exp.b log2m/tmcj for all j � 0 and m � m0,
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where f0.z/ D
P1
nD0 anCn0z

n. Since
P1
nD0janCn0 jt

n � jf0.�t/j for t 2 Œ0; 1/, the con-
ditions of Lemma 7.3 are satisfied for

P1
nD0janCn0 jz

n. Thus there exist c0 2 R>0 such
that janj � exp.c0 log2 n/ infinitely often. Thus h.an/ 62 o.log2 n/; a contradiction.

Once we know that all roots of the k-Mahler denominator of f .z/ are contained in
¹0º [Uk it is not hard to show that f .z/ is k-regular. This was shown by Dumas [23,
Théorème 30]; see also [16, Proposition 2]. We recall the proof.

Keep in mind that Uk consists of all roots of unity � for which �k
j
¤ � for all j � 1.

In particular, 1 62 Uk . By [2, Proposition 7.8], the infinite product

1Y
nD0

.1 � ��1zk
n

/�1

is k-regular for � 2 Uk .

Proposition 7.9. Let f .z/D
P1
nD0 anz

n 2QJzK be a k-Mahler series and suppose that
h.an/ 2 o.log2 n/. Then f .z/ is a k-regular power series.

Proof. Since every polynomial is k-regular, and sums of k-regular sequences are k-
regular, it suffices to show the claim for

P1
nD0 anCn0z

n for some n0 � 0. By Lemma 3.1
we may therefore assume d.0/D 1 for the k-Mahler denominator d.z/ of f .z/. By Propo-
sition 7.8, all roots of d.z/ are contained in Uk . By Theorem 3.8 we can write

f .z/ D
g.z/Q1

nD0 d.zk
n
/

with a k-Becker series g.z/. By Theorem 3.7, the series g.z/ is k-regular. Because

1Y
nD0

.1 � ��1zk
n

/�1

is k-regular for � 2 Uk , and products of k-regular series are k-regular, also f .z/ is
k-regular.

Allouche and Shallit [9, Theorem 2.10] show janj 2 O.nc/ for a C-valued k-regular
sequence. A similar argument bounds the height of the coefficients.

Lemma 7.10. If f .z/ D
P1
nD0 anz

n 2 QJzK is k-regular, then h.an/ 2 O.logn/.

Proof. For n 2 Z�0, we recall that hnik 2 †�k is the canonical base-k expansion of n. By
Theorem 3.5 there exists a linear representation .u; �; v/ (of some dimension d 2 Z�0)
such that an D u�.hnik/v for all n 2 Z�0. Moreover, using basic properties of the loga-
rithmic Weil height (see [45, Chapter 3]), we deduce that

h.u�.w/v/ 2 O.jwj/ for w 2 †�k .

Noting that jhnikj 2 O.logn/, we obtain h.an/ 2 O.logn/.

At this point, we are ready to prove Theorem 7.1.
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Proof of Theorem 7.1. Let f .z/ D
P1
nD0 anz

n 2 QJzK be a k-Mahler function.
(a))(b) Suppose h.an/ 2 o.log2 n/. By Proposition 7.8 all roots of the k-Mahler

denominator of f .z/ are contained in ¹0º [Uk .
(b))(c) Suppose that all roots of the k-Mahler denominator are contained in

¹0º [Uk . Then f .z/ is k-regular by Proposition 7.9.
(c))(d) Suppose f .z/ is k-regular. Then h.an/ 2 O.logn/ by Lemma 7.10.
(d))(a) Clearly h.an/ 2 O.logn/ implies h.an/ 2 o.log2 n/.

8. Third gap: word-convolution products of automatic sequences

In this section, we characterize Mahler functions f .z/D
P1
nD0 anz

n 2QJzK with h.an/
2 o.logn/. The arguments are similar to the ones used in [15,18]. As before, we actually
prove a more extensive characterization involving a structural property.

Before stating the main result of this section, we first recall the definition of the word-
convolution product following [18].

Definition 8.1. Given two sequences of complex numbers .a.n//n�0 and .b.n//n�0, their
word-convolution product is the sequence a ?w b defined by

a ?w b.n/ D

sX
jD0

a.Œi1 � � � ij �k/b.ŒijC1 � � � is�k/;

where hnik D i1 � � � is 2 †�k .

We also need the notion of tame semigroup of matrices.

Definition 8.2. Let d be a positive integer. A semigroup � � Kd�d of matrices is tame
if all eigenvalues of all matrices A 2 � are contained in ¹0º [U.

We are now ready to state the main result of this section. We already know that a k-
Mahler function with h.an/ 2O.logn/ is k-regular. The sequence .an/n�0 of coefficients
therefore has a minimal linear representation .u; �; v/ by Theorem 3.5.

Theorem 8.3. Let f .z/ D
P1
nD0 anz

n 2 QJzK be a k-Mahler function. The following
statements are equivalent.

(a) h.an/ 2 o.logn/.

(b) For every minimal linear representation .u; �; v/ of .an/n�0, the matrix semigroup
�.†�

k
/ is tame.

(c) The sequence .an/n�0 is a Q-linear combination of word-convolution products of
k-automatic sequences.

(d) h.an/ 2 O.log logn/.

Our first goal is to use the additional restriction h.an/ 2 o.logn/ to obtain a restriction
on the possible eigenvalues of the matrices �.w/. The following lemma is similar to
[15, Lemma 2.3].
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Lemma 8.4. Let .an/n�0 be a k-regular sequence in Q, with a minimal linear represen-
tation .u; �; v/. Suppose h.an/ 2 o.log n/. Then the finitely generated matrix semigroup
�.†�

k
/ is tame.

Proof. By definition of the linear representation, we have aŒw�k D u�.w/v for allw 2†�
k

.
Since Œw�k 2 O.kjwj/ for all w 2 †�

k
, our assumption on the sequence translates into

h.u�.w/v/ 2 o.jwj/.
Write d for the dimension of .u; �; v/. If d D 0, the claim is trivially true. Let

d > 0. Suppose there exist a word w 2 †�
k

and � 2 Q X ¹0º not a root of unity such
that � is an eigenvalue of �.w/. Then there exists a non-zero vector v0 2 Q

d�1
with

�.w/v0 D �v0. By minimality of the linear representation, there exist w1; : : : ; wd 2 †�k
such that �.w1/v; : : : ; �.wd /v form a basis of Q

d�1
. Let ˛1; : : : ; ˛d 2 Q be such that

v0 D ˛1�.w1/v C � � � C ˛d�.wd /v. Again by minimality, the set ¹u�.w0/ W w0 2 †�
k
º

spans Q
1�d

. Therefore there exists w0 2 †�
k

such that u�.w0/v0 ¤ 0.
Now

dX
iD1

˛iu�.w
0wnwi /v D u�.w

0/�.wn/v0 D �
nu�.w0/v0 ¤ 0:

Since � is not a root of unity, there exists an absolute value j�j on Q with j�j > 1. We
conclude that there exists an i 2 ¹1; : : : dº with

j˛iu�.w
0wnwi /vj � j�j

n
�
ju�.w0/v0j

d

for infinitely many n � 0. Hence there exists c0 2 R>0 such that, for these n � 0,

h.u�.w0wnwi /v/ � log ju�.w0wnwi /vj � nc0:

This is a contradiction.

Tame semigroups afford a particular block diagonal decomposition.

Lemma 8.5. Let � � Q
d�d

be a finitely generated tame semigroup. Then there exist
d1; : : : ;dr 2Z�0 with d D d1C � � � C dr , finite semigroups �i 2Q

di�di for i 2 ¹1; : : : ; rº,
and a matrix T 2 GLd .Q/ such that

T �1�T �

0BBBBBBB@
�1 Q

d1�d2 Q
d1�d3

: : : Q
d1�dr

0 �2 Q
d2�d3

: : : Q
d2�dr

0 0 �3 : : : Q
d3�dr

:::
:::

:::
: : :

:::

0 0 0 : : : �r

1CCCCCCCA :

Proof. If � spans Q
d�d

, then �.†�
k
/ is finite [18, Lemma 4] and we are done. Other-

wise, we iterate [18, Lemma 5] to get a block-upper-triangular decomposition with finite
semigroup diagonals.

The arguments in the following proof are similar to [15, Theorem 2.6].
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Proof of Theorem 8.3. Let f .z/ D
P1
nD0 anz

n 2 QJzK be k-Mahler.
(a))(b) Suppose h.an/ 2 o.log n/. Then .an/n�0 is k-regular by Theorem 7.1.

Lemma 8.4 implies that �.†�
k
/ is tame.

(b))(d) Let .u; �; v/ be a minimal linear representation of the k-regular sequence
.an/n�0. Suppose �.†�

k
/ is tame. We have to show h.an/ 2 O.log log n/. For this, it

suffices to show h.u�.w/v/ 2 O.log jwj/ for non-empty words w 2 †�
k

. We can apply
Lemma 8.5. Thus, there exists a finite semigroup � of block-diagonal matrices such that,
after a change of basis, for every w 2 †�

k
the matrix �.w/ is of the form D C N with

D 2 � andN strictly upper triangular. We may assume that � contains the identity matrix.
Since†k is finite, there exists a finite set N of strictly upper triangular matrices such that
�.†k/ � � CN .

Let w D a1 � � �al 2 †�k with a1; : : : ; al 2 †k , and let �.ai / D Di CNi with Di 2 �

and Ni 2 N . For J � ¹1; : : : ; lº with J D ¹j1 < � � � < jrº define

bJ D uD1 � � �Dj1�1Nj1Dj1C1 � � �Dj2�1Nj2Dj2C1 � � �Djr�1NjrDjrC1 � � �Dlv:

Then

u�.w/v D u�.a1 � � � al /v D u.D1 CN1/ � � � .Dl CNl /v D
X

J�¹1;:::;lº

bJ :

Any product that includes d or more of theNi ’s is 0, and hence bJ D 0whenever #J � d .
Thus, the previous sum reduces to

u�.w/v D
X

J�¹1;:::;lº
#J<d

bJ :

This sum has at most
�
l

d�1

�
C � � � C

�
l
0

�
� Cld�1 non-zero terms for some constant

C 2 R>1. As � is a semigroup, each product DjiC1 � � �DjiC1�1 is again contained in
the finite set � . Hence

#
®
bJ W J � ¹1; : : : ; lº

¯
� d #�d #N d�1 <1:

Let K be the number field generated by the finitely many coordinates of u, v, and
�.a/ for a 2 †k . Then bJ 2 K for each J � ¹1; : : : ; lº. Since there are only finitely
many of these elements, for every place v of K there exists a constant cv 2 R>0 such that
jbJ jv � cv for all J � ¹1; : : : ; lº, and we can take cv D 1 for all but finitely many places.
For m 2 Z�0, let

"v.m/ D

²
m if v is archimedean,
1 if v is non-archimedean.

Note
Q

v2MK
"v.m/ � m

ŒKWQ�. With this definition ju�.w/vjv � "v.C l
d�1/cv and

h.u�.w/v/ D log
Y

v2MK

max ¹1; ju�.w/vjvº � log
Y

v2MK

max ¹1; "v.C l
d�1/cvº

� log
�
.C ld�1/ŒKWQ�

�
C log

� Y
v2MK

max ¹1; cvº

�
2 O.log l/:

Since l D jwj this proves the claim.
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(d))(a) Clearly h.an/ 2 O.log logn/ implies h.an/ 2 o.logn/.
Finally, the equivalence (b),(c) is precisely the equivalence proved by Bell, Coons,

and Hare [18, Theorem 13 (i),(ii)] (which does not require the sequences to be
Z-valued).

9. Fourth gap: characterization of automatic Mahler functions

In this section, we characterize Mahler functions f .z/D
P1
nD0 anz

n 2QJzK with h.an/
2 o.log logn/, extending [17, Theorem 1.1].

Theorem 9.1. Let f .z/ D
P1
nD0 anz

n 2 QJzK be a k-Mahler function. The following
statements are equivalent.

(a) h.an/ 2 o.log logn/.

(b) For every minimal linear representation of .an/n�0, the matrix semigroup �.†�
k
/ is

finite.

(c) The power series f .z/ is k-automatic.

(d) h.an/ 2 O.1/. Equivalently, the set ¹an W n � 0º is finite.

The following lemma closely follows [17, Lemma 2.1]

Lemma 9.2. Let .an/n�0 be a k-regular sequence in Q with a minimal linear represen-
tation .u; �; v/. If h.an/ 2 o.log logn/, then the semigroup �.†�

k
/ is finite.

Proof. Again aŒw�k D u�.w/v for all w 2 †�
k

. By our assumption

h.u�.w/v/ 2 o.log jwj/:

Now suppose to the contrary that �.†�
k
/ is infinite. A theorem of McNaughton and

Zalcstein [36] gives a positive answer to the strong Burnside problem for semigroups of
matrices over a field. Since �.†�

k
/ is a finitely generated semigroup of matrices, but not

finite, this theorem implies that there exists w 2 †�
k

such that �.wm/ ¤ �.wn/ for all
m; n 2 Z�0 with m ¤ n. Fix such a word w.

SetA WD �.w/. By Lemma 8.4 every eigenvalue of A is either 0 or a root of unity. Our
choice of w ensures that there exists at least one non-zero eigenvalue � with a non-trivial
Jordan block. LetB 2Q

d�d
be an invertible matrix such thatB�1AB is in Jordan normal

form. Without restriction we may assume

B�1AB D

0BBBBB@
� 1 0 : : : 0

0 � � : : : 0

0 0 � : : : 0
:::

:::
:::

: : :
:::

0 0 : : : : : : �

1CCCCCA :

The .1; 2/ entry of B�1AnB is n�n�1. Hence h.eT1 B
�1AnBe2/ D h.n�

n�1/ � logn.
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Using the minimality of the linear representation, we can write eT1 B
�1 DPd

iD1 �iu�.wi / and Be2 D
Pd
iD1 �i�.w

0
i /v with suitable �i ; �i 2 Q and wi ; w0i 2 †

�
k

.
It follows that

h
� dX
i;jD1

�i�ju�.wiw
nw0j /v

�
� logn:

Hence there exist i; j 2 ¹1; : : : ; dº and c 2 R>0 such that

h.u�.wiw
nw0j /v/ > c logn for infinitely many n.

This contradicts h.u�.wiwnw0j /v/ 2 o.logn/.

Proof of Theorem 9.1. Let f .z/ D
P1
nD0 anz

n 2 QJzK be a k-Mahler function.
(a))(b) Let h.an/ 2 o.log logn/. Then .an/n�0 is k-regular by Theorem 7.1, with a

minimal linear representation .u; �; v/. By Lemma 9.2 the semigroup �.†�
k
/ is finite.

(b))(c) Let .u; �; v/ be a minimal linear representation of the regular sequence
.an/n�0. Suppose �.†�

k
/ is finite. Then .an/n�0 takes only finitely many values, and

k-regular sequences taking finitely many values are automatic ([8, Theorem 16.1.5] or
[19, Proposition 5.3.3]).

(c))(d) Let .an/n�0 be k-automatic. Then the sequence only takes finitely many
values by definition.

(d))(a) Clearly, if ¹an W n � 0º is finite, then h.an/ 2 o.log logn/.

10. Comments on Becker’s conjecture

Every k-regular power series is k-Mahler, and as a partial converse Becker showed that
a k-Becker power series is k-regular. He also conjectured a full description of k-regular
power series in terms of k-Becker power series. This conjecture was recently proven by
Bell, Chyzak, Coons, and Dumas [16]. The proof in [16] is stated for K D C, but the
same arguments apply equally well to arbitrary fields of characteristic 0.

Theorem 10.1 ([16, Theorem 1]). Let K be a field of characteristic 0. If f .z/ 2 KJzK is
k-regular, then there exist q.z/ 2 KŒz� with q.0/ D 1 such that 1=q.z/ is k-regular and a
non-negative integer  such f .z/=zq.z/ is a k-Becker Laurent series.

By a k-Becker Laurent series, we of course mean a Laurent series satisfying a func-
tional equation as in Definition 3.6. We stress that it is not always possible to obtain a
k-Becker power series of the form f .z/r.z/ with r.z/ a rational function [16, Theo-
rem 14].

The proof of Bell, Chyzak, Coons, and Dumas breaks down into two steps:

(I) First they show that a k-regular f .z/ 2 KJzK satisfies a k-Mahler equation

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0;
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where all roots of p0.z/ belong to ¹0º [Uk . Equivalently, the k-denominator d.z/

of f .z/ has all its roots in ¹0º [Uk .

(II) They show that any such series has the required decomposition.

We now give alternative arguments for both of these steps using our results. In par-
ticular, for K D Q, step I is immediate from Theorem 7.1 and our argument for step II
is somewhat shorter. We also recover [16, Proposition 2 and Corollary 3] (Corollary 3
follows as in the proof of Proposition 7.9).

10.1. Step (I)

For K D Q, Theorem 7.1 immediately establishes Step (I). We now show how to extend
the relevant part of Theorem 7.1 to arbitrary fields of characteristic 0.

Let K be a field of characteristic 0 and let f .z/ D
P1
nD0 anz

n 2 KJzK be k-regular.
Let d.z/ denote the Mahler denominator of f .z/ over K. We also know that the k-kernel
of f .z/ generates a finite-dimensional K-vector space. In particular, there is some fixed
M > 0 such that for every j 2 ¹0; 1; : : : ; kM � 1º, we have

akMnCj D
X
e<M

ke�1X
iD0

cj;i;eakenCi for n � 0.

For some s � 0, the power series f .z/; f .zk/; : : : ; f .zk
s
/ satisfy a Mahler system of

the form (3.2) with some invertible matrix A.z/ with entries in K.z/. Let R be a finitely
generated Z-algebra that contains:

(1) a0; : : : ; akM�1;

(2) the roots of d.z/ and the reciprocals of non-zero roots of d.z/;

(3) the structure constants ci;j;e .

(4) the non-zero coefficients and their inverses of each polynomial appearing in either the
numerator or denominator of an entry of A.z/.

Then by construction, f .z/ 2 RJzK. If p is a prime ideal of R and g.z/ 2 RJzK, then we
let gjp.z/ denote the power series inR=pJzK obtained by reducing the coefficients of g.z/
modulo p. Then by construction, fjp.z/ is a regular power series in .Rp=pp/JzK.

Lemma 10.2. Let � 2 R be a non-zero root of d.z/. Then � is a root of unity.

Proof. Suppose that � is not a root of unity. Then, since the coefficients ofA.z/ have only
finitely many poles, there is some n such that �k

n
is a regular point with respect to this

Mahler system. We now take a k-Mahler equation

q0.z/f .z/ D

LX
iD1

qi .z/f .z
ki /; q0.z/; q1.z/; : : : ; qL.z/ 2 KŒz�; (10.1)
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with q0.z/ ¤ 0 and L minimal. Iterating (10.1) we find an equation

r0.z/f .z/ D

LCn�1X
iDn

ri .z/f .z
ki /; (10.2)

where we may assume that the polynomials r0.z/; rn.z/; : : : ; rLCnC1.z/ 2 KŒz� are
coprime. The Mahler denominator d.z/ divides r0.z/ and so r0.�/ D 0. By coprimal-
ity of the coefficients, in particular there is some i0 such that ri0.�/ ¤ 0. Now we adjoin
the coefficients of r0.z/ and rn.z/; : : : ; rnCL�1.z/ to R.

By Noether normalization, there is a positive integer N and x1; : : : ; xd 2 R such that
x1; : : : ; xd are algebraically independent over Q and such that RŒ1=N � is a finite integral
extension of ZŒ1=N �Œx1; : : : ; xd �. Let � denote the set of prime ideals p of RŒ1=N � with
the property that p \ ZŒ1=N �Œx1; : : : ; xd � D .x1 � b1; : : : ; xd � bd / with b1; : : : ; bd
integers. By integrality, there is at least one such prime for each d -tuple .b1; : : : ; bd / of
integers. Moreover, R=p is a finite extension of ZŒ1=N �, generated by at most � elements
for some � that is independent of p (indeed, we may take � to be the cardinality of the set
of generators of RŒ1=N � as a ZŒ1=N �Œx1; : : : ; xd �-module). Hence Rp=pp is a number
field of degree at most � for each p 2 � .

Moreover, the intersection of the prime ideals in � is .0/. For p 2 � , we let �p D

�C p 2 R=p. Then we reduce (10.2) modulo p and plug in z D �p to obtain

0 D

LCn�1X
iDn

ri jp.�p/fjp.�
ki

p /; (10.3)

where the left side follows from the fact that d.z/ divides r0.z/. It is straightfor-
ward to see that �k

n

p 2 .R=p/p is a regular point of the reduced Mahler system for

fjp.z/; fjp.z
k/; : : : ; fjp.z

kL�1/ for p in a Zariski dense subset T of � . Moreover, there is
a Zariski dense subset T 0 of T such that ri0jp.�p/ ¤ 0 for p 2 T 0. We remark that there
is a Zariski dense subset T 00 such that �p is not a root of unity. To see this, observe that if
p 2 T 0 is such that �p is a root of unity, then Q.�p/ is an extension of degree at most �
and hence there is some fixed M D M.�/ such that �Mp D 1. Since T 0 is Zariski dense,
this gives that � is a root of unity, which is a contradiction.

Now for p 2 T 00, we have �p 2 Kp WD .R=p/p. Then there is some place v on the
number field Kp such that j�pjv < 1. Equation (10.3) combined with Theorem 4.3 yields

0 D

LCn�1X
iDn

ri jp.z/fjp.z
ki /:

By Zariski density of T 00, also 0D
PLCn�1
iDn ri .z/f .z

ki / 2RJzK\KJzK, in contradiction
to the minimality of L. The result follows.

By looking at the asymptotic behavior on the unit circle we may once again strengthen
the previous lemma.
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Lemma 10.3. Let � 2 R be a non-zero root of d.z/. Then � 2 Uk .

Proof. Let � be a non-zero root of d.z/. By the previous lemma � 2 U. Therefore it
suffices to show �k

j
¤ � for all j � 1.

Suppose to the contrary that �k
j
D � for some j � 1. Since R is finitely generated, it

embeds into C. Let j�j denote the induced absolute value onR. We may now conclude as in
the proof of Proposition 7.8: from Proposition 7.7 we obtain log janj � c log2 n infinitely
often. However, using the linear representation of a k-regular sequence, we easily obtain
log janj 2 O.logn/ as in Lemma 7.10 (or [9, Theorem 2.10]), a contradiction.

We thus have the following theorem, extending a part of Theorem 7.1 to fields of
characteristic 0 and also generalizing [16, Proposition 2].

Theorem 10.4. LetK be a field of characteristic 0, let f .z/ 2KJzK be k-Mahler, and let
d.z/ be the Mahler denominator of f .z/. Then f .z/ is k-regular if and only if every non-
zero root of d.z/ (in the algebraic closure K) is a root of unity with order not coprime
to k.

Proof. If f .z/ is k-regular, the claim follows from the previous lemma. The converse
direction follows exactly as in the proof of Proposition 7.9.

10.2. Step (II)

We now provide a somewhat shorter argument for the second step of [16]. First recall the
following easy lemma.

Lemma 10.5. LetK be a field and let f .z/ 2 KJzK be a k-Mahler power series solution
to the equation

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0: (10.4)

If there exists a polynomial q.z/ such that p0.z/q.z/ divides q.zk
j
/ for all j , 1 � j � d ,

then f .z/=q.z/ 2 K..z// is a k-Becker Laurent series.

Proof. Set g.z/ WD f .z/=q.z/. Then (10.4) gives

p0.z/q.z/g.z/C p1.z/q.z
k/g.zk/C � � � C pd .z/q.z

kd /g.zk
d

/ D 0:

Thus, g.z/ D �
Pd
iD1 ri .z/g.z

ki /, where ri .z/ D pi .z/q.zk
i
/=.p0.z/q.z// 2 KŒz�.

Proof of Becker’s conjecture (Theorem 10.1). Since f .z/ is k-regular, we know, by the
first step, that f .z/ satisfies an equation of the form

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0;

where all roots of p0.z/ belong to ¹0º [Uk . Thus, every non-zero root is a primitive
`-root of unity for some ` not coprime to k. For such a natural number `, there exist a
positive integer r and a non-negative integer s such that gcd.`; kj / D r for all j > s. Let
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s be minimal with this property. Let A denote the set of non-zero roots of p0.z/, and,
for � 2 A, set a.�/ WD `.�/=r.�/. Let �n.z/ denote the nth cyclotomic polynomial. Then
�`.�/.z/�a.�/.z

ks / divides �a.�/.zk
sCj

/ for all j � 1. In particular, .z � �/�a.�/.zk
s
/

divides �a.�/.zk
sCj

/ for all j , 1 � j � m. Setting

q.z/ WD
Y
�2A

�a.�/.z
ks /;

and applying Lemma 10.5, we find that f .z/=zq.z/ is a k-Becker Laurent series, where
 is the valuation of p0.z/. Moreover, 1=q.z/ is a k-Becker power series for

q.z/�1 D
q.zk/

q.z/
� q.zk/�1

and by construction q.z/ divides q.zk/. In particular, 1=q.z/ is k-regular.

11. Automatic Mahler power series over arbitrary fields

We first show how to extend our characterization of k-automatic Mahler functions to
arbitrary ground fields of characteristic 0.

Theorem 11.1. Let K be a field of characteristic 0 and let f .z/ D
P1
nD0 anz

n 2 KJzK
be a k-Mahler power series. Then .an/n�0 is k-automatic if and only if ¹an W n � 0º is
finite.

In order to prove Theorem 11.1, we use a standard specialization argument.

Lemma 11.2. Let K be a field of characteristic 0 containing Q, and let u1; : : : ; ud 2 K.
Then there exists a ring homomorphism 'WQŒu1; : : : ; ud �! Q leaving Q invariant.

Proof. This is an easy consequence of the weak Nullstellensatz. A proof can be found in
[25, Lemma 6.3.3].

Proof of Theorem 11.1. Let f .z/D
P1
nD0 anz

n 2KJzK be a k-Mahler power series with
finite set of coefficients. Replacing K by its algebraic closure, we may assume Q � K.
Let p0.z/; : : : ; pd .z/ 2 KŒz� be such that

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0:

Let C be the finite set consisting of all coefficients of f .z/ and p0.z/; : : : ; pd .z/.
We apply Lemma 11.2 with the set ¹u1; : : : ; ud º consisting of all c 2 C , all c � d
with c; d 2 C , as well as the inverses of all these elements that are non-zero. Thus
'.c/ ¤ 0 for c ¤ 0 and '.c/ ¤ '.d/ for c ¤ d . The resulting homomorphism extends to
'WQŒu1; : : : ; um�JzK! QJzK, and

'.p0/.z/ � '.f /.z/C '.p1/.z/ � '.f /.z
k/C � � � C '.pd /.z/ � '.f /.z

kd / D 0

is a k-Mahler equation for '.f /.z/. Thus Theorem 9.1 implies that the sequence
.'.an//n�0 is k-automatic. Since 'WC !Q is injective, the same is true for .an/n�0.
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11.1. The case of a base field of positive characteristic

Theorem 11.1 strongly depends on the characteristic of the field being 0. If K is a field
of characteristic p > 0, we still have a similar result for p-Mahler power series (see
Proposition 11.3), but if k is coprime to p this is no longer true. Indeed, the series

1Y
iD0

.1 � zk
i

/�1 2 KJzK

is not k-automatic by [14, Proposition 1], despite being k-Mahler with coefficients taking
only finitely many values (because they belong to the prime field).

Proposition 11.3. LetK be a field of characteristic p and let f .z/D
P1
nD0 anz

n 2KJzK
be a k-Mahler power series where k is a power of p. Then the sequence .an/n�0 is
k-automatic if and only if ¹an W n � 0º is finite.

Proof. Let f .z/ D
P1
nD0 anz

n 2 KJzK be pm-Mahler for some positive integer m. Let
us assume that ¹an W n � 0º is finite. Let us consider a non-trivial equation

p0.z/f .z/C p1.z/f .z
pm/C � � � C pd .z/f .z

pmd / D 0:

We let R denote the finitely generated Fp-algebra generated by the coefficients an, the
inverses of all non-zero differences ai � aj , and the coefficients of the polynomials pi .z/,
as well as the inverses of their non-zero coefficients.

Let M be some maximal ideal of R. Then R=M D Fq with q a power of p, say
q D p`. Let fjM.z/ WD

P1
nD0.an mod M/zn denote the reduction of f .z/ modulo M.

Then fjM.z/ is pm-Mahler and hence it is also pm`-Mahler by Lemma 3.2. Thus, we
deduce that fjM.z/ is algebraic over Fq.z/. By Christol’s theorem (see [8, Chapter 12]),
the sequence .an mod M/n�0 is p-automatic. But by definition of R, if ai 6D aj then
ai mod M 6D aj mod M. Thus the sequence .an/n�0 is also p-automatic, and hence pm-
automatic.

12. Decidability

A k-Mahler function can be uniquely specified by the finite data consisting of a k-Mahler
equation it satisfies and sufficiently many initial coefficients of the power series. Therefore
it is reasonable to ask whether, for a given k-Mahler function, it can be decided which of
the five cases of Theorem 1.1 it falls into. However, we neither try to describe an efficient
algorithm to perform this task, nor do we provide an upper bound for the complexity of
the algorithm that could be extracted from what follows.

Theorem 12.1. Let f .z/ D
P1
nD0 anz

n 2 QJzK be a k-Mahler function (specified by a
k-Mahler equation and sufficiently many initial coefficients). Then it is decidable which
of the five growth classes in Theorem 1.1 the function f falls into.



B. Adamczewski, J. Bell, Daniel Smertnig 38

Let f .z/ D
P1
nD0 anz

n 2 QJzK be k-Mahler. As Theorems 6.1 and 7.1 show, the
minimal denominator d.z/ 2 QŒz� of f .z/ plays a crucial role in determining the growth
class that f .z/ falls into: the growth depends on whether d.z/ has roots outside ¹0º [U,
respectively outside ¹0º [Uk . This raises the question whether there is an effective way
of deciding which of the three cases occurs. Along similar lines, if f .z/ is k-regular, the
question arises whether it is decidable into which of the three cases (k-regular, Q-linear
combination of word-convolution products of k-automatic sequences, and k-automatic)
the coefficients of f .z/ fall. In this section, we establish that all these properties are
decidable.

Suppose f .z/ is specified by a k-Mahler equation and sufficiently many initial
coefficients to determine the solution uniquely. Then we can compute any finite num-
ber of initial coefficients by recursion. By work of Adamczewski and Faverjon [6] it
is possible to find a minimal (homogeneous) k-Mahler equation, that is, polynomials
p0.z/; p1.z/; : : : ; pd .z/ 2 KŒz�, where K is a number field,

p0.z/f .z/C p1.z/f .z
k/C � � � C pd .z/f .z

kd / D 0; (12.1)

where d is minimal and p0.z/; : : : ; pd .z/ are coprime.
By definition d.z/ divides p0.z/. It is tempting to hope that, to determine the types of

roots of d.z/, it suffices to consider those of p0.z/. Unfortunately, this hope is thwarted
by Example 3.10. We can however still determine the types of roots of d.z/.

Proposition 12.2. There exists an algorithm to determine whether the k-Mahler denom-
inator d.z/ of a k-Mahler function f .z/ has a root outside ¹0º [U.

Moreover, if all roots of d.z/ are contained in ¹0º [U, then we can find an explicit
k-Mahler equation

q0.z/f .z/ D q1.z/f .z
kn0 /C � � � C qd .z/f .z

kn0Cd�1/

with n0 � 1, with q0.z/; : : : ; qd .z/ 2 QŒz� and all roots of q0.z/ contained in ¹0º [U.

Proof. Let us consider the minimal equation (12.1). By [6], this equation can be explicitly
determined (this is a variation of [6, Algorithme 1.3]). We may assume that the number
field K contains all coefficients and roots of p0.z/; : : : ; pd .z/. Set

� WD ¹� W p0.�/pd .�/ D 0º

and
� D min

v2MK

®
min ¹j�jv W p0.�/pd .�/ D 0º

¯
:

Now, let n0 be the minimal positive integer such that j�k
n0
jv < � for all � in � and all

places v such that j�jv < 1 (there are only a finite number of such places). The integer n0
can be explicitly determined. By repeated substitution, we can explicitly determine an
equation

q0.z/f .z/ D q1.z/f .z
kn0 /C � � � C qd .z/f .z

kn0Cd�1/ (12.2)
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for f .z/. Suppose first that q0.z/ does not have a non-zero root � that is not a root of
unity. Then neither does d.z/, because d.z/ divides q0.z/.

Suppose now q0.z/ has a non-zero root � that is not a root of unity. By Kronecker’s
theorem, there exists a place v such that 0 < j�jv < 1. Arguing exactly as in the proof of
Proposition 6.4, we see that � is a pole of f .z/. Thus f .z/ has a radius of convergence
strictly less than 1 with respect to j�jv. By Theorem 6.1 also d.z/ must have a non-zero
root that is not a root of unity.

Assuming d.z/ does not have a root outside of ¹0º [U, we now want to determine if
it has a root in U XUk .

Lemma 12.3. Let d 2Z>0, let � 2C X ¹0º be such that �k D �, and letA.z/ 2Q.z/d�d .
Assume that w.z/ 2 CJzKd satisfies the equation

w.z/ D A.z/w.zk/:

Assume also that the following properties hold.

(i) The coordinates of A.z/ have no poles at � and no poles in B.0; 1/.

(ii) The coordinates of w.z/ are continuous in B.0; 1/.

Then there exists c 2 R>0 such that

kw.t�/k < j1 � t j�c for all t 2 .0; 1/:

Proof. Since the map Œ0; 1�! Cd�d , t 7! A.t�/, is continuous, there exists c0 � 1 such
that kA.t�/k � c0 for all t 2 Œ0; 1�. Let " 2 .0; 1/ and c1 D max ¹kw.t�/k W t 2 Œ0; "�º.

Let t 2 Œ0; 1/, and let n 2 Z�0 be minimal such that tk
n
� ". We can obtain an upper

bound on n as follows. The inequality tk
n
� " is equivalent to kn log t � log ", which

is equivalent to kn.� log t / � � log ". In turn, this is equivalent to nC logk.� log t / �
logk.� log "/. So

n D dlogk.� log "/ � logk.� log t /e:

Thus
n � c2 � logk.� log t / with c2 D 1C logk.� log "/.

Now
kn � kc2k� logk.� log t/

� kc2
1

� log t
� kc2

1

1 � t
;

where we use log t � t � 1 for the last inequality. We have

w.t�/ D A.t�/A.tk�/ � � �A.tk
n�1

�/w.tk
n

�/;

and thus kw.t�/k � cn0 c1. Now

cn0 c1 D c1k
n logk c0 � c1k

c2 logk c0.1 � t /� logk c0 :

The constant may be absorbed by replacing the exponent by a bigger one.
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Proposition 12.4. Let f .z/ 2 QJzK be k-Mahler with k-Mahler denominator d.z/. Sup-
pose all roots of d.z/ are contained in ¹0º [ U. There exists an algorithm to decide
whether d.z/ has a root in U XUk .

Moreover, if all roots of d.z/ are contained in ¹0º [Uk , then we can find an explicit
k-Mahler equation

s0.z/f .z/ D s1.z/f .z
k/C � � � C sd .z/f .z

kd /

with s0.z/; : : : ; sd .z/ 2 QŒz� and all roots of s0.z/ contained in ¹0º [Uk .

Proof. Let d.z/f .z/D p1.z/f .z
k/C � � � Cpd .z/f .z

kd /with p1.z/; : : : ;pd .z/ 2QŒz�.
Using the condition on d.z/ together with the fact that f .z/ converges in a neighborhood
of 0, this equation implies that f .z/ is analytic in Bj�j.0; 1/ for every absolute value j�j
on Q.

Now let q0.z/f .z/D q1.z/f .zk/C � � � C qd .z/f .zk
d
/with q0.z/; : : : ; qd .z/ 2QŒz�

and q0.z/qd .z/¤ 0 be an explicit k-Mahler equation for f .z/. Since d.z/ divides q0.z/,
we only have to check if any of the finitely many roots of q0.z/ in U XUk are roots
of d.z/.

Suppose � is such a root of q0.z/. Then there exists an (explicitly determinable) inte-
ger j0 � 1 such that �k

j0
D �. Let ` D kj0 . Again using [6] we can find an `-Mahler

equation for f .z/, say

r0.z/f .z/ D r1.z/f .z
`/C � � � C re.z/f .z

`e / (12.3)

with r0.z/; : : : ; re.z/ 2 QŒz� coprime and r0.z/re.z/ ¤ 0. If r0.�/ ¤ 0, then d.�/ ¤ 0.
Suppose now r0.�/ D 0. We will show d.�/ D 0. Fix any embedding Q ,! C, and

thereby an archimedean absolute value j�j on Q. Proposition 7.7 implies that there exist
a; b; c 2 R>0, m0; n0 2 Z�0, and a sequence .tj /j�0 ! 1 in Œ0; 1/ such thatˇ̌̌ 1X

nD0

anCn0.�tj /
n
ˇ̌̌
� .1 � tj /

a exp.b log2m/tmcj for all j � 0 and m � m0.

Define f0.z/ D
P1
nD0 anCn0z

n and mj D d1=.1 � tj /e. Then

log jf0.�tj /j � a log.1 � tj /C b log2d1=.1 � tj /e C d1=.1 � tj /ec log tj :

As in the proof of Lemma 7.3 we see that the right side is asymptotically equivalent to
b log2.1 � tj /. Now, if we had d.�/ ¤ 0, then Lemma 12.3 would give log jf0.�tj /j �
�c log.1 � tj / for some c 2 R>0, a contradiction.

To explicitly find an equation with s0.z/ as desired, note that for each � 2 U XUk

that is a root of q0.z/, we have found some k-Mahler equation, (12.3), for f .z/ with
r0.�/ ¤ 0. Taking the greatest common divisor of q0.z/ and all these r0.z/ as � varies
over the roots, we obtain the desired equation.

We have now shown that it is possible to decide algorithmically which of cases (1)
and (2) of Theorem 1.1 a given Mahler function f .z/ D

P1
nD0 anz

n 2 QJzK falls into.
Suppose now that f .z/ is k-regular. In this case, we wish to also decide whether f .z/
belongs to class (3), (4), or (5) of Theorem 1.1.
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12.1. From k-Mahler equations to linear representations

We have represented an arbitrary k-Mahler function f .z/ by a k-Mahler equation and
sufficiently many initial coefficients. If f .z/ is k-regular, it is more natural to represent
the sequence of coefficients by a linear representation. We show that such a linear repre-
sentation is computable from a k-Mahler equation satisfied by f .z/. Recall that �r with
r 2 †k denotes the Cartier operators (Definition 6.3).

Lemma 12.5. Let f1.z/; : : : ; fd .z/ 2QJzK with fi .z/D
P1
nD0 ai;nz

n. Suppose that, for
every r 2 †k and every 1 � i � d , there are explicitly known coefficients �r;1; : : : ; �r;d
in Q such that

�r .fi .z// D �r;1;if1.z/C � � � C �r;d;ifd .z/:

Then we get an explicit linear representation for the k-regular sequence .a1;n/n�0.

Proof. Let �W†�
k
! Q

d�d
be defined by

�.r/ WD

0B@�r;1;1 : : : �r;1;d
:::

: : :
:::

�r;d;1 : : : �r;d;d

1CA and let a.n/ WD .a1;n; : : : ; ad;n/:

Since �r .fi .z// D
P1
nD0 ai;knCrz

n, we obtain a.kn C r/ D a.n/�.r/ for r 2 †k .

Finally, let e1 D .1; 0; : : : ; 0/T 2 Q
d�1

. Then a1;Œw�k D a.Œw�k/e1 D a.0/�.w/e1 for
all words w 2 †�

k
.

Lemma 12.6. Let p1.z/; : : : ; pd .z/ 2 QŒz� with e D max ¹degp1.z/; : : : ; degpd .z/º. If
f .z/ D

P1
nD0 anz

n 2 QJzK satisfies the k-Becker equation

f .z/ D p1.z/f .z
k/C � � � C pd .z/f .z

kd /;

then a linear representation for the k-regular sequence .an/n�0 is computable from a0
and p1.z/; : : : ; pd .z/.

Proof. Following Becker [14, Theorem 2], we see that the Q-vector space V spanned by
¹zif .zk

j
/ W 0 � i � e; 0 � j � dº is closed under all Cartier operators. Explicitly, if

r 2 †k , 0 � i � e, and j � 1, then

�r .z
if .zk

j

// D �r .z
i /f .zk

j�1

/ 2 V;

since �r .zi / D z.i�r/=k if i � r mod k and �r .zi / D 0 otherwise. If j D 0, then
deg.�r .zipj .z/// � 2e=k � e, and thus

�r .z
if .z// D �r

� dX
jD1

zipj .z/f .z
kj /
�
D

dX
jD1

�r .z
ipj .z//f .z

kj�1/ 2 V:

Since�r .zipj .z// can be explicitly computed, we may apply Lemma 12.5 to find a linear
representation of .an/n�0. Since 0if .0k

j
/ 2 ¹0; a0º, the resulting linear representation

only depends on p1.z/; : : : ; pd .z/ and a0.
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It is rather non-trivial that the convolution product of k-regular sequences is again
k-regular. The standard way to show this uses the module-theoretic characterization of
k-regularity; see [8, Theorem 16.4.1] or [19, Proposition 5.2.7]. To see that a linear repre-
sentation of the convolution product is computable from linear representations, we need
to revisit this proof.

Remark 12.7. Using the growth-based characterization of k-regular sequences in Theo-
rem 6.1, it is easy to show that the convolution product of k-regular sequences is k-regular.
However, since this characterization already makes use of this fact that convolution prod-
ucts of k-regular sequences are k-regular (in Proposition 7.9), this does not actually give
a new, independent proof.

Lemma 12.8. Let .a.n//n�0 and .b.n//n�0 be two k-regular sequences in Q, each being
given by a linear representation. Then a linear representation of the convolution product
.a ? b.n//n�0 is computable.

Let us recall that by definition a ? b.n/ D
Pn
iD0 a.i/b.n � i/.

Proof of Lemma 12.8. For r 2 †k , let .�r .a/.n//n�0 be the sequence defined by
�r .a/.n/ WD a.knC r/. The key step in the proof of Allouche and Shallit [8, Theorem
16.4.1] is the reduction (with r 2 †k)

�r .a ? b/.n/ D
X
0�s�r

�s.a/ ? �r�s.b/.n/C
X

r<s�k�1

�s.a/ ? �kCr�s.b/.n � 1/:

(12.4)

We will adapt this proof to the case where a and b are given by linear representations.
Without restriction we can assume that the linear representations of a and b both have the
same dimension d � 0. After a change of basis, we may take the linear representation of
a to be .a.0/; �; e1/, where a.0/ D .a1.0/; : : : ; ad .0// with a1.0/ D a.0/, where e1 D
.1; 0; : : : ; 0/T , and where �W†�

k
! Q

d�d
is a monoid homomorphism. Define a.n/ WD

a.0/�.hnik/, where hnik 2†�k is the canonical base-k expansion of n. Then, in particular,

.a1.knC r/; : : : ; ad .knC r// D .a1.n/; : : : ; ad .n// �.r/ for r 2 †k .

For b we have a linear representation .b.0/; �; e1/ with analogous definitions.
We construct a linear representation for a ? b of dimension 2d2. For this, we index

the first set of d2 coordinates by .i; j / in lexicographic order, and the second by .i 0; j 0/,
where 1 � i; j � d . That is, the coordinates are indexed by .1; 1/, .1; 2/; : : : ; .d; d/,
.10; 10/, .10; 20/; : : : ; .d 0; d 0/. We use subscripts to indicate the corresponding entry of a
matrix, e.g., �.r/i;j is the entry in the i th row and j th column of �.r/. For 1 � i; j � d
and r , s 2 †k , we get

�r .ai / ? �s.bj / D
� dX
`D1

a`�.r/`;i

�
?
� dX
mD1

bm�.s/m;j

�
D

dX
`;mD1

�.r/`;i�.s/m;j .a` ? bm/:
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Using (12.4), we obtain

�r .ai ? bj /.n/ D
X
0�s�r

dX
`;mD1

�.s/`;i�.r � s/m;j .a` ? bm/.n/

C

X
r<s�k�1

dX
`;mD1

�.s/`;i�.k C r � s/m;j .a` ? bm/.n � 1/

D

dX
`;mD1

� X
0�s�r

�.s/`;i�.r � s/m;j

�
.a` ? bm/.n/

C

dX
`;mD1

� X
r<s�k�1

�.s/`;i�.k C r � s/m;j

�
.a` ? bm/.n � 1/:

Further, note that if r � 1, then ai ? bj .knC r � 1/ D �r�1.ai ? bj /.n/. For r D 0 we
have ai ? bj .kn � 1/ D ai ? bj .k.n � 1/ C .k � 1// D �k�1.ai ? bj /.n � 1/. In this
case, in (12.4), the second sum vanishes, and we again obtain ai ? bj .kn � 1/ as a linear
combination of the a` ? bm.n � 1/, namely,

�k�1.ai ? bj /.n � 1/ D

dX
`;m

� X
0�s�k�1

�.s/`;i�.k � 1 � s/m;j

�
.a` ? bm/.n � 1/:

For two d � d matrices A, B , the Kronecker product A˝ B is the d2 � d2 matrix
defined by .A˝B/.i;j /;.`;m/DAi;`Bj;m. For r 2†k with r ¤ 0, we define the 2d2 � 2d2

matrix �.r/ by the block structure

�.r/ WD

� P
0�s�r �.s/˝ �.r � s/

P
0�s�r �.s/˝ �.r � 1 � s/P

r<s�k�1 �.s/˝ �.k C r � s/
P
r<s�k�1 �.s/˝ �.k C r � 1 � s/

�
:

Similarly

�.0/ WD

 
�.0/˝ �.0/ 0Pk�1

sD1 �.s/˝ �.k � s/
Pk�1
sD0 �.s/˝ �.k � 1 � s/

!
:

Define for each n � 0 the 2d2 row vector v.n/ by v.n/.`;m/ D a` ? bm.n/ and v.n/.`0;m0/
D a` ? bm.n � 1/. Then

v.knC r/ D v.n/�.r/:

Now v.1;1/.n/ D a1 ? b1.n/ D a ? b.n/. Thus, the triple .v.0/; �; e.1;1//, where e.1;1/ is
the 2d2 column vector with 1 in the coordinate .1; 1/ and zeroes everywhere else, is a
linear representation for a ? b.

Proposition 12.9. Let f .z/ D
P1
nD0 anz

n 2 QJzK be k-regular, given by a k-Mahler
equation, the minimal n0 � 0 with an0 ¤ 0, and the value an0 . Then a linear representa-
tion for the k-regular sequence .an/n�0 is computable.
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Proof. From a linear representation of .an/n�n0 it is easy to find one for .an/n�0. We
may therefore without restriction assume n0 D 0. (An explicit k-Mahler equation for this
power series can be found using [2, Lemma 6.1].)

Using Propositions 12.2 and 12.4, we can further find a k-Mahler equation

p0.z/f .z/ D p1.z/f .z
k/C � � � C pdf .z

kd /;

with p0.z/; : : : pd .z/ 2 QŒz�, with p0.z/ and pd .z/ coprime, and with the property that
all roots of p0.z/ are contained in Uk . In particular, we may assume p0.0/ D 1.

Now Theorem 3.8 gives a decomposition

f .z/ D g.z/
� 1Y
iD0

p0.z
ki /
��1

;

where g.z/ is k-Becker, and a k-Becker equation for g.z/ can be computed. Lemma 12.6
yields a linear representation for the coefficient sequence of g.z/. Factoring p0.z/ into
linear factors of the form 1 � z��1 with � 2 Uk , we recall that

Q1
iD0.1 � z

ki ��1/�1 is
k-regular. Indeed, by [2, Proposition 7.8], this infinite product factors as a polynomial and
a k-Becker function (both computable). Using Lemma 12.8 we find a linear representation
for

Q1
iD0.1 � z

ki ��1/�1. Finally, Lemma 12.8 allows us to find a linear representation
for f .z/ itself.

12.2. Tame and finite semigroups

From a linear representation, a minimal linear representation is computable, and we may
now assume that the k-regular sequence .an/n�0 is given by such a minimal linear repre-
sentation .u;�;v/. To decide which of cases (3)–(5) of Theorem 1.1 the sequence belongs
to, it now suffices to decide whether or not the finitely generated matrix semigroup �.†�

k
/

is finite, respectively, tame.
For this, we first need the following two lemmas.

Lemma 12.10. Let A1; : : : ;At 2Q
d�d

. It is possible to decide whether or not the matri-
ces A1; : : : ;At have a proper non-zero common invariant subspace, and if so, to compute
one.

Proof. This can be done using exterior powers and Gröbner bases; see Arapura and Peter-
son [13]. A model-theoretic approach is given by Pastuszak [39]. Both papers discuss the
history of this problem.

Lemma 12.11. Let K be a number field and d � 0. For every r � 0, there exists a
computable n D n.r; K/ with the following property: if � � Kd�d is a finite semigroup
generated by r matrices, then #� � n.

Proof. By a result of Mandel and Simon [35, Theorem 1.2] there exists such a bound
n.r;K; g/, which however also depends on the maximal size g of a subgroup of � . Over
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a number field, Schur [43] proved that there exists an explicit bound on the size of a
finite subgroup of GLd .K/, so we can bound g independently of � . (See also the (largely
expository) article [28] for this and later results.)

Proposition 12.12. Let � � Q
d�d

be a finitely generated matrix semigroup, given by a
finite set of generators. It is decidable whether or not � is

(1) finite,

(2) tame.

Proof. Let A1; : : : ; Al be the given set of generators for � , and let K be the number field
generated by all the coefficients of the matrices Ai . Then � � Kd�d and it suffices to
consider the problem over the field K.

(1) With the bound from Lemma 12.11, one can decide whether or not � is finite.
(2) This problem can be reduced to the finiteness problem using Lemma 8.5. Indeed,

by iterated application of Lemma 12.10, we may decomposeKd�1 D V1 ˚ � � � ˚ Vs with
each Vi an �-invariant subspace that contains no proper, non-zero �-invariant subspace.
Then Lemma 8.5 implies that � is tame if and only if � jVi is finite for each 1 � i � s.
This can be decided using (1).
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