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HYPERTRANSCENDENCE AND LINEAR DIFFERENCE

EQUATIONS

BORIS ADAMCZEWSKI, THOMAS DREYFUS, AND CHARLOTTE HARDOUIN

1. Introduction

Number theorists have to face the following challenge. On the one hand, the
fields of rational and algebraic numbers are too poor, while, on the other hand, the
fields of real and complex numbers seem far too large (uncountable). An attempt
to classify transcendental numbers leads to the introduction of the ring of periods
P (see [KZ01]) and to the following classification:

Q ⊂ Q ⊂ P ⊂ C .

The main features of P are that most of classical mathematical constants (e.g., π,
log 2, ζ(3), Γ(1/3)3...)1 belong to it, and that P is a countable set whose elements
contain only a finite amount of information and can be identified in an algorithmic
way. After the pioneering works of Cauchy and Riemann, analytic and holomor-
phic functions figure prominently in mathematics. As already observed by Hilbert
[Hil02], their study gives rise to a similar difficulty: the fields of rational and alge-
braic functions are too limited, but the ring C[[x]] is huge. In order to overcome this
deficiency, he suggested to classify transcendental functions according to whether
they are holonomic (i.e., satisfy a linear differential equation with polynomial coef-
ficients), differentially algebraic (i.e., satisfy an algebraic differential equation), or
not. Hence, we obtain the following classification:

(1.1) Rat ⊂ Alg ⊂ Hol ⊂ Dif ⊂ C[[x]] .

Functions that are not differentially algebraic are said to be hypertranscendental.
Note that, if we restrict our attention to power series with algebraic coefficients,
the rings Hol and Dif become countable, and, again, their elements contain only a
finite amount of information and can be identified in an algorithmic way. These
rings play, in the setting of holomorphic functions, a role similar to the one played
by P in the setting of complex numbers. The classification (1.1) is also significant
in enumerative combinatorics. To some extent, the nature of a generating series
reflects the underlying structure of the objects it counts (see the discussion in
[BM06]). An appealing example, where all cases of (1.1) appear at once, is given
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1However, there should be some exceptions. For instance, it is conjectured that e is not a
period.
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476 BORIS ADAMCZEWSKI ET AL.

by the study of generating series associated with lattice walks (see, for instance,
[DHRS18] and the references therein).

Hilbert also observed that the class of differentially algebraic functions misses
important functions coming from number theory. Here are few examples. The very
first comes from a classical result of Hölder [Höl87] stating that the gamma function
Γ(x) is hypertranscendental. Furthermore, it follows from the identity

ζ(x) = 2(2π)x−1Γ(1− x) sin
(πx

2

)
ζ(1− x)

that the Riemann zeta function is also hypertranscendental. In an other direction,
Moore [Moo96] has shown that f1(x) =

∑
n≥0 x

2n is hypertranscendental. A result

reproved and extended later by Mahler [Mah30a] in connection with the so-called
Mahler’s method in transcendental number theory. More recently, Hardouin and
Singer [HS08] proved hypertranscendence for some q-hypergeometric series, such as

f2(x) :=

∞∑
n=0

(1− a)2(1− aq)2 · · · (1− aqn−1)2

(1− q)2(1− q2)2 · · · (1− qn)2
xn ,

where q ∈ C∗ is not a root of unity, a �∈ qZ and a2 ∈ qZ. Most proofs about
hypertranscendence turn out to be based on the fact that the function under con-
sideration satisfies a functional equation of a different type (i.e., not differential).
For instance, the three results we just mentioned are respectively based on the
following linear difference equations:

Γ(x+ 1) = xΓ(x) , f1(x
2) = f1(x)− x ,

and

f2(q
2x)− 2ax− 2

a2x− 1
f2(qx) +

x− 1

a2x− 1
f2(x) = 0 .

Broadly speaking, satisfying both a linear difference equation and an algebraic dif-
ferential equation would enforce too much symmetry for a transcendental function.
In this paper, we follow this motto:

(A) A solution to a linear difference equation should be either rational or hy-
pertranscendental.

Of course, this must be taken with a pinch of salt. For instance, log(x), exp(x),
and the Jacobi theta function θq(x) =

∑
n∈Z

q−n(n−1)/2xn are all differentially
algebraic, but they also satisfy the following simple linear difference equations:

log(xp) = p log x , exp(x+ 1) = e exp(x) , θq(qx) = qxθq(x) .

Nevertheless, we obtain in this paper the first complete results about hypertran-
scendence of solutions to general linear difference equations associated with the shift
operator x �→ x+ h (h ∈ C∗), the q-difference operator x �→ qx (q ∈ C∗ not a root
of unity), and the Mahler operator x �→ xp (p ≥ 2 integer). The only restriction
is that we constrain our solutions to be expressed as (possibly ramified) Laurent
series in the variable x (or in the variable 1/x in some special case associated with
the shift operator). For a precise statement, we refer the reader to our main result,
Theorem 1.2, which confirms guess (A) for these three operators.

1.1. Statement of our main result. All along this paper, our framework consists
in a tower of field extensions C ⊂ K ⊂ F0 ⊂ F with the following properties.
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HYPERTRANSCENDENCE AND LINEAR DIFFERENCE EQUATIONS 477

• The field K is equipped with an automorphism ρ and a derivation2 ∂.
• The automorphism ρ extends to F0 and F .
• The derivation ∂ extends to F , but F0 is not necessarily closed under ∂.

Our aim is to prove that, if f ∈ F0 is solution to a linear ρ-equation with coefficients
in K, then either f ∈ K or f is hypertranscendental over K. Specifically, we
consider the following four situations, which we refer to as Cases S0, S∞, Q, and
M, respectively.

Case S0. In this case, we let K = C(x), ∂ = d
dx , and ρ denote the automorphism

of K defined by
ρ(f(x)) = f(x+ h), h ∈ C∗.

The automorphism ρ and the derivation ∂ naturally extend to the of field F :=
Mer(C) of meromorphic functions on C. Let K0 := C(x, exp(∗x)) denote the field
generated over C(x) by the functions exp(�x), � ∈ C. In this setting, we let F0 be
any field extension of C(x) on which ρ extends and satisfying the following three
conditions.

(i) F0 ⊂ Mer(C).
(ii) {f ∈ F0 | ρ(f) = f} = C.
(iii) F0 ∩K0 = C(x).

Remark 1.1. For h = 1, let us see that we can choose F0 = C(x,Γ(x)), where Γ(x)
is the Gamma function. The functional equation Γ(x + 1) = xΓ(x) shows that
ρ extends to F0 and it is well-known that Γ ∈ Mer(C). Thus, (i) holds. Now,
let β ∈ F0 be such that ρ(β) = β. Writing β as a rational function in Γ with
coefficients in C(x), and then using the functional equation satisfied by Γ and the
fact that Γ is transcendental over C(x), we can deduce that β ∈ C. Hence (ii)
holds. Finally, to prove (iii) it is sufficient to show that Γ is transcendental over
K0. The latter property follows from classical asymptotics showing that, for every
α(x) ∈ K0, we have limx→+∞ |Γ(x)/α(x)| = +∞. Thus, Case S0 of Theorem 1.2
is a generalization of Hölder’s theorem.

Case S∞. In this case, we consider K, ρ, and ∂ as in Case S0. We note that the
automorphism ρ and the derivation ∂ naturally extend to the of field of Laurent
series C((x−1)), and we set F0 = F = C((x−1)).

Case Q. In this case, we let K =
⋃

j≥1 C(x
1/j) denote the field of ramified rational

functions. We also use the notation C(x1/∗) for this field. Given q ∈ C∗ that is not
a root of unity, we let ρ denote the automorphism of K defined by

ρ(f(x)) = f(qx), ∂ = x
d

dx
,

and we let F0 = F =
⋃

j≥1 C((x
1/j)) denote the field of Puiseux series. We also use

the notation C((x1/∗)) for this field.

Case M. In this case, we let K = C(x1/∗) and, given a natural number p ≥ 2, we
let ρ denote the automorphism of K defined by

ρ(f(x)) = f(xp) ,

and we set ∂ = x d
dx and F0 = F = C((x1/∗)).

2A derivation ∂ on K is a map from K into itself satisfying ∂(a + b) = ∂(a) + ∂(b) and
∂(ab) = ∂(a)b+ a∂(b) for every a, b ∈ K.
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478 BORIS ADAMCZEWSKI ET AL.

In all cases, ∂ is a derivation on K and F . An element f in F is said to be
differentially algebraic or ∂-algebraic over K if there exists n ∈ N such that the
functions f, ∂(f), . . . , ∂(n)(f) are algebraically dependent over K. Otherwise, f is
said to be hypertranscendental over K. Our main result reads as follow.

Theorem 1.2. Let K, F0, and ρ be defined as in Cases S0, S∞, Q, and M, and
let n be a positive integer. Let f ∈ F0 be solution to the ρ-linear difference equation
of order n

(1.2) ρn(y) + an−1ρ
n−1(y) + · · ·+ a1ρ(y) + a0y = 0 ,

where a0, . . . , an−1 ∈ K. Then either f ∈ K or f is hypertranscendental over K.

On the road to Theorem 1.2, there is already a whole bunch of partial results
and a number of them are used in our proof. These results can roughly be divided
into three different types.

• Those concerned with affine equations of order one, that is, with equations
of the form ρ(y) = ay+b. References include [Höl87,Moo96,Mah30a,Nis84,
Ran92, Ish98,Har08,HS08,Ngu12].

• Those concerned with equations whose difference Galois group is large (e.g.,
simple, semisimple, reductive). References include [HS08,DHR18,DHR16,
AS17,ADR18]. In particular, such results have nice applications to equa-
tions of order 2.

• Those dealing with general equations, but reaching only nonholonomicity
instead of hypertranscendence (see Theorem 1.3 and Remark 1.4). Refer-
ences include [Ram92,BG93,Béz94,SS19].

Among these results, we quote the following one, which may be considered as a
first step towards a proof of Theorem 1.2 (see Remark 1.4 for precise attribution).

Theorem 1.3. In each of the cases S0, S∞, Q, and M, the following property
holds. Any element of F0 that satisfies both a ρ-linear equation and a ∂-linear
equation with coefficients in K belongs to K.

Remark 1.4. Theorem 1.3 can be rephrased by saying that, if f is as in Theorem 1.2,
then either f ∈ K or f is not holonomic. Note that recently the authors of [SS19]
give a uniform proof for all cases of Theorem 1.3, see Corollaries 3 and 5 therein.
In each case, we also mention the original reference. Case S0 is due to Bézivin
and Gramain [BG93]. Case S∞ is due to Schäfke and Singer [SS19, Corollary 5].
Furthermore, in Cases Q and M, a change of variable of the form z = x1/�, � ∈ N∗,
can be used to reduce the situation to the case where K = C(x) and F0 = C((x)).
In the latter situation, Case Q is due to Ramis [Ram92], while Case M is due to
Bézivin [Béz94].

1.2. Strategy of proof. Elements of the rings Rat, Alg, and Hol are well-
understood. We have recurrence formulas for their coefficients, precise asymp-
totics, and a good understanding of their finitely many singularities. In contrast,
our knowledge about differentially algebraic functions is much more limited (see, for
instance, the survey [Rub89]). In fact, such functions can behave quite wildly. For

example, the function
∑

xn2

is differentially algebraic and admits the unit circle
as a natural boundary3. Thus, proving hypertranscendence requires more involved

3Incidentally, this example shows that the ”outrageous conjecture” suggested at the end of

[Rub89] is false. Indeed, it follows from a theorem of Nesterenko that
∑

2−n2
is transcendental.

Licensed to University Claude Bernard Lyon. Prepared on Sat May  8 09:46:20 EDT 2021 for download from IP 134.214.188.171.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HYPERTRANSCENDENCE AND LINEAR DIFFERENCE EQUATIONS 479

tools, and is substantially more difficult than proving irrationality, transcendence,
or nonholonomicity. In this direction, Hardouin and Singer [HS08] built a new
Galois theory of difference equations, which is designed to measure the differen-
tial dependencies among solutions to linear difference equations. In particular, it
applies to hypertranscendence. We refer the reader to [DV12] and [Har16] for an
introduction to this topic. Our proof of Theorem 1.2 relies on this theory.

Let us briefly describe our strategy. Since f satisfies a linear difference equation,
it is classical to associate with this equation its difference Galois group, which is a
linear algebraic group that encodes the algebraic relations between the solutions to
this equation. The more involved parametrized Galois theory developed in [HS08]
attaches to any linear difference equation, a geometric object, the parametrized Ga-
lois group, whose structure encodes the algebraic relations satisfied by the solutions
and their derivatives. This is not a linear algebraic group anymore, but a linear
differential group (see Section 2.2). Nevertheless, both groups are strongly related
and, viewed on a suitable field extension, the latter is Zariski dense in the former
(see Proposition 2.5). In this framework, we can conclude that f is hypertranscen-
dental when the corresponding parametrized Galois group is large. Furthermore,
there are several results, culminating in [AS17], showing that if the classical differ-
ence Galois group is large, then both groups are the same when viewed on a suitable
field extension. We emphasize that such results follow a strategy initiated in [HS08]
and developed further in [DHR18]. It combines a fundamental result about classifi-
cation of differential algebraic subgroups of semisimple algebraic groups by Cassidy
[Cas72,Cas89], parametrized Galois correspondence, and Theorem 1.3.

We prove Theorem 1.2 by induction on the order n of the ρ-linear equation
satisfied by f . We first prove the result for affine equations of order one. Then we
show that, iterating the associated linear system if necessary, one can reduce the
situation to the case where the associated difference Galois group G is connected.
Now, if G acts irreducibly on Cn, we show how to reduce the situation to the
case where G is semisimple. In that case, the difference Galois group is large
enough and a recent result of Arreche and Singer [AS17] allows us to conclude
that f is hypertranscendental. Finally, if G acts reducibly on Cn, we assume that
f is differentially algebraic and we show how to construct from f a differentially
algebraic function g that satisfies a linear equation of smaller order. Furthermore,
this construction ensures that g ∈ K if and only if f ∈ K. Applying the induction
assumption to g, we deduce that f ∈ K, as wanted. Thus, once the case of order
one equation is solved, the proof really makes a dichotomy between irreducible and
reducible difference Galois groups.

1.3. An application to number theory. At the end of the 1920s, Mahler [Mah29,
Mah30b,Mah30a] introduced a new method for proving transcendence and algebraic
independence of values at algebraic points of analytic functions satisfying differ-
ent types of functional equations associated with the operator x �→ xp. Mahler’s
method aims at transferring results about the algebraic independence over Q(x)
of such functions to the algebraic independence over Q of their values at algebraic
points. A major result in this direction is Nishioka’s theorem [Nis90], which pro-
vides an analogue of the Siegel-Shidlovskii theorem for linear Mahler systems. Let
us also mention that significant progress in this theory has been made recently
[Phi15, AF17, AF20, AF18]. Combining Case M of Theorem 1.2 with Nishioka’s
theorem and following the line of argument given in the proof of Proposition 4.1 in
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480 BORIS ADAMCZEWSKI ET AL.

[AF18], we can deduce the following general result. We recall that f(x) ∈ Q[[x]] is
a p-Mahler function if there exist polynomials a0(x), . . . , an(x) ∈ Q[x], not all zero,
such that

a0(x)f(x) + a1(x)f(x
p) + · · ·+ an(x)f(x

pn

) = 0 .

We simply say that f is a Mahler function if it is p-Mahler for some integer p ≥ 2.
According to Theorem 1.2, a Mahler function is thus either rational or hypertran-
scendental. We recall that an irrational Mahler function is meromorphic on the
open unit disc and admits the unit circle as a natural boundary.

Theorem 1.5. Let f(x) ∈ Q[[x]] be a Mahler function that is not rational, let r be
a positive integer, and let K be a compact subset of the open unit disc. Then, for all
but finitely many algebraic numbers α ∈ K, the complex numbers f(α), f ′(α), . . . ,
f (r)(α) are algebraically independent over Q.

Results of this type have been first obtained by Mahler [Mah30a] for solutions
to affine order one equations. The main feature of Theorem 1.5 is that it applies
to any irrational Mahler function. It is also almost best possible in the sense that
one cannot avoid the possibility of finding infinitely many exceptions in the whole
open unit disc. For instance, the transcendental 2-Mahler function

f(x) =
∞∏

n=0

(1− 3x2n)

vanishes at all algebraic numbers α such that α2n = 1/3 for some integer n ≥ 0.
This shows that, even for r = 1, the exceptional set can depend on K. However, if
K is fixed, we do not know whether the exceptional set always remains finite when
r tends to infinity.

1.4. Organization of the paper. This article is organized as follows. In Section
2, we provide a short introduction to difference Galois theory and to parametrized
difference Galois theory, following [vdPS97, HS08]. In Section 3, we describe, for
each Cases S0, S∞, Q, and M, the suitable framework that is needed to use the
parametrized difference Galois theory of [HS08]. Several auxiliary results are gath-
ered in Section 4. They concern algebraic groups, the behavior of the difference
Galois group when considered over different field extensions, and Picard-Vessiot
extensions associated with iterated systems. Finally, Section 5 is devoted to the
proof of Theorem 1.2.

2. Difference and parametrized difference Galois theories

In this section, we provide a short introduction to difference Galois theory and
to parametrized difference Galois theory.

2.1. Difference Galois theory. We first recall some notation, as well as classical
results, concerning difference Galois theory. We refer the reader to [vdPS97] for
more details.

2.1.1. Notation in operator algebra. A difference ring is a pair (R, ρ) where R is
a ring and ρ is a ring automorphism of R. If R is a field, then (R, ρ) is called a
difference field or a ρ-field. An ideal I of R such that ρ(I) ⊂ I is called a difference
ideal or a ρ-ideal. We say that the difference ring (R, ρ) is simple if the only ρ-ideals
of R are {0} and R. Two difference rings (R1, ρ1) and (R2, ρ2) are isomorphic if
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HYPERTRANSCENDENCE AND LINEAR DIFFERENCE EQUATIONS 481

there exists a ring isomorphism ϕ between R1 and R2 such that ϕ ◦ ρ1 = ρ2 ◦ϕ. A
difference ring (S, ρ′) is a difference ring extension of (R, ρ) if S is a ring extension
of R and if ρ′|R = ρ. In this case, we usually keep on denoting ρ′ by ρ. When R

is a ρ-field, we say that S is a R-ρ-algebra. Two difference ring extensions (R1, ρ)
and (R2, ρ) of the difference ring (R, ρ) are isomorphic over (R, ρ) if there exists a
difference ring isomorphism ϕ from (R1, ρ) to (R2, ρ) such that ϕ|R = IdR. The
ring of constants of the difference ring (R, ρ) is defined by

Rρ := {f ∈ R | ρ(f) = f} .
If Rρ is a field, it is called the field of constants. If there is no risk of confusion,
we usually simply say that R, instead of (R, ρ), is a difference ring (or a difference
field, or a difference ring extension...).

2.1.2. Difference equations and linear difference systems. Let (K, ρ) be a difference
field. A linear ρ-equation of order n over K is an equation of the form

(2.1) L(y) := ρn(y) + an−1ρ
n−1(y) + · · ·+ a0y = 0 ,

with a0, ..., an−1 ∈ K. If a0 �= 0, this relation can be written in matrix form as

(2.2) ρY = ALY

where

AL :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

−a0 −a1 · · · · · · −an−1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ GLn(K) .

The matrix AL is called the companion matrix associated with Equation (2.1). It
is often more convenient to use the notion of linear difference system, that is, of
system of the form

(2.3) ρ(Y ) = AY, with A ∈ GLn(K).

We recall that two difference systems ρ(Y ) = AY and ρ(Y ) = BY with A,B ∈
GLn(K) are said to be equivalent over K if there exists a gauge transformation
T ∈ GLn(K) such that B = ρ(T )AT−1. In that case, ρ(Y ) = AY if and only if
ρ(TY ) = B(TY ).

Remark 2.1. By [HS99, Theorem B.2.], if K contains a nonperiodic element with
respect to ρ, then the cyclic vector lemma holds, and any linear difference system is
equivalent to one given by a companion matrix associated with some linear equation.
Let L be a ρ-field extension of K and let (f0, f1, . . . , fn−1)

� ∈ Ln be a nonzero
solution to a linear system ρ(Y ) = AY , with A ∈ GLn(K). Then each coordinate
fj satisfies some linear ρ-equation over K of order at most n.

2.1.3. Picard-Vessiot rings and difference Galois groups. A Picard-Vessiot ring for
(2.3) over a difference field (K, ρ) of characteristic zero is a K-ρ-algebra satisfying
the following three properties.

(1) There exists U ∈ GLn(R) such that ρ(U) = AU . Such a matrix U is called
a fundamental matrix.

(2) R is generated as a ring over K by the coordinates of U and by det(U)−1,
that is, R = K[U, det(U)−1].
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482 BORIS ADAMCZEWSKI ET AL.

(3) R is a simple difference ring.

A Picard-Vessiot ring is not always an integral domain. However, it is a direct
sum of integral domains which are transitively permuted by ρ. More precisely, by
[vdPS97, Corollary 1.16], there exist r ≥ 1 and orthogonal idempotent elements
e0, . . . , er−1, such that

R = e0R⊕ · · · ⊕ er−1R ,

where eiR is an integral domain and ρ(ei) = ei+1modr. We recall that Picard-
Vessiot rings always exist. Indeed, it is sufficient to endow the polynomial K-
algebra K[X, 1

det(X) ] with a structure of K-ρ-algebra by setting ρ(X) = AX. Then,

for any maximal ρ-ideal M of K[X, 1
det(X) ], the quotient R = K[X, 1

det(X) ]/M is a

Picard-Vessiot ring. However, this construction does not guarantee that the ring of
ρ-constants has not grown. This justifies the introduction of the more convenient
notion of Picard-Vessiot extension.

A Picard-Vessiot extension Q for (2.3) over a difference field (K, ρ) of character-
istic zero is a K-ρ-algebra Q satisfying the following properties.

(1) There exists U ∈ GLn(Q) such that ρ(U) = AU . Such a matrix U is called
a fundamental matrix.

(2) Q is a pseudofield extension of K, that is, there exist a positive integer r,
orthogonal idempotent elements e0, . . . , er−1 of Q, and a field extension L
of K such that Q = e0L⊕ . . .⊕ er−1L and ρ(ei) = ei+1modr.

(3) Q is the smallest pseudofield extension of K containing U .
(4) Qρ = Kρ.

When Q is a field, we say that Q is a Picard-Vessiot field extension. By [vdPS97,
§1.1], if Kρ is algebraically closed, then there exists a Picard-Vessiot extension
and two Picard-Vessiot extensions are isomorphic as K-ρ-algebras. The relation
between Picard-Vessiot-rings and Picard-Vessiot-extensions is given by Proposition
2.2, which is a straightforward consequence of [OW15, Proposition 2.5 and Corollary
2.6].

Proposition 2.2. If Kρ is an algebraically closed field of characteristic zero, then
the following properties hold.

• Let Q be a Picard-Vessiot extension over K and let us define
R := K[U, 1

det(U) ] ⊂ Q, where U is a fundamental matrix. Then R is a

Picard-Vessiot ring.
• If R is a Picard-Vessiot ring over K then the total quotient ring4 of R is a
Picard-Vessiot extension.

From now on, we assume that K is a ρ-field such that k := Kρ is an algebraically
closed field of characteristic zero. Let Q be a Picard-Vessiot extension over K. The
difference Galois group Gal(Q/K) of (2.3) over K is defined as the group of K-ρ-
algebra automorphisms of Q:

Gal(Q/K) := {σ ∈ Aut(Q/K) | ρ ◦ σ = σ ◦ ρ}.
For any fundamental matrix U ∈ GLn(Q), an easy computation shows that

U−1σ(U) ∈ GLn(k) for all σ ∈ Gal(Q/K). By [vdPS97, Theorem 1.13], the faithful

4We recall that, given a ring R, its total quotient ring is defined as the localization of R at the
multiplicative set formed by all nonzero divisors of R.
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HYPERTRANSCENDENCE AND LINEAR DIFFERENCE EQUATIONS 483

representation

Gal(Q/K) → GLn(k)

σ �→ U−1σ(U)

identifies Gal(Q/K) with a linear algebraic subgroup G ⊂ GLn(k). Choosing
another fundamental matrix of solutions U leads to a conjugate representation.

2.1.4. Torsor and algebraic relations. A fundamental result in difference Galois the-
ory ([vdPS97, Theorem 1.13]) says that the Picard-Vessiot ring R is the coordinate
ring of a Gal(Q/K)-torsor over K. Thereby, the difference Galois group controls
the algebraic relations satisfied by the solutions to the underlying linear system.
As a corollary of this structure of Gal(Q/K)-torsor, one obtains the fundamental
equality

dimkGal(Q/K) = trdegKQ ,

where we let trdegKQ denote the transcendence degree of the field extension L/K.
Here, the field L is defined as in (2) of the definition of a Picard-Vessiot extension.

2.1.5. The Galois correspondence. The Galois correspondence for linear difference
systems can be summarized as follows (see [vdPS97, Theorem 1.29]).

Theorem 2.3. Let Q be a Picard-Vessiot extension over K. Let R denote the set
of K-ρ-algebras F such that F ⊂ Q and such that every nonzero divisor of F is
a unit of F . Let G denote the set of algebraic subgroups of Gal(Q/K). Then the
following properties hold.

- For any F ∈ R, the set

G(Q/F ) := {σ ∈ Gal(Q/K) | σ(f) = f, ∀f ∈ F}

is an algebraic subgroup of Gal(Q/K).
- For any H ∈ G, the set

QH := {f ∈ Q | σ(f) = f, ∀σ ∈ H}

belongs to R.
- The maps

r : R → G
F �→ G(Q/F )

and
g : G → R

H �→ QH

are each other’s inverses.

Remark 2.4. In the case where R is an integral domain, Q is a difference field,
and Theorem 2.3 provides a correspondence between the difference subfields of Q
containing K, on the one hand, and the algebraic subgroups of Gal(Q/K), on the
other hand.

2.2. Parametrized difference Galois theory. We recall here some notation and
results concerning parametrized difference Galois theory. We refer the reader to
[HS08] for more details.
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2.2.1. Notation in operator algebra. A differential ring is a pair (R, δ) where R is
a ring and δ is a derivation on R, that is, a homomorphism of the additive group
from R into itself satisfying the Leibniz rule:

δ(ab) = δ(a)b+ aδ(b) .

If R is a field, then (R, δ) is called a differential field or a δ-field. The ring of
constants of R is defined by

Rδ = {f ∈ R | δ(f) = 0} .
Let L be a δ-ring extension of a δ-ring R. Given a subset S of L, we let R{S}δ
denote the smallest R-δ-algebra generated by S. A fieldK endowed with a structure
of both difference and differential field is called a (ρ, δ)-field if ρ and δ commute,
that is, if

ρ ◦ δ(f) = δ ◦ ρ(f)
for every f ∈ K.

The study of algebraic structures of difference and differential fields is the main
object of the so-called differential and difference algebra. We refer the interested
reader to the founding book of Kolchin ([Kol73]) for further details concerning
differential algebra and to the book of Cohn for further details concerning difference
algebra ([Coh65]). It is worth mentioning that these two setting are very different.
In order to avoid many analogous definitions, we use the following convention: we
add an operator prefix to an algebraic attribute to signify the compatibility of the
algebraic structure with respect to the operator. For instance, a (ρ, δ)-ring is a
ring equipped with ρ and δ, a (ρ, δ)-field extension K ⊂ L is a field extension such
that the fields L and K are (ρ, δ)-fields and such that the action of ρ and δ are
compatible with the field extension, and so on.

2.2.2. (ρ, δ)-Picard-Vessiot ring and the parametrized difference Galois group. Let

K̃ be a (ρ, δ)-field and let A ∈ GLn(K̃). We consider the difference system

(2.4) ρ(Y ) = AY.

A (ρ, δ)-Picard-Vessiot ring for (2.4) over K̃ is a (ρ, δ)-ring extension R̃ of K̃
satisfying the following three properties.

(1) There exists U ∈ GLn(R̃) such that ρ(U) = AU . Such a matrix U is called
a fundamental matrix.

(2) R̃ is generated as a δ-ring over K̃ by the coordinates of U and by det(U)−1,

that is, R̃ = K̃{U, det(U)−1}δ.
(3) R̃ is a simple (ρ, δ)-ring, that is, the only (ρ, δ)-ideals of R̃ are {0} and R̃.

A (ρ, δ)-Picard-Vessiot ring is not always an integral domain but it is a direct sum
of integral domains closed under δ and transitively permuted by ρ. A construction
similar to that of Section 2.1.3 shows that (ρ, δ)-Picard-Vessiot rings always exist.
Again, this construction does not ensure that the ring of ρ-constants has not grown.
This justifies the introduction of the more convenient notion of (ρ, δ)-Picard-Vessiot
extension.

A (ρ, δ)-Picard-Vessiot extension Q̃ for (2.4) over K̃ is a K̃-ρ-δ-algebra satisfying
the following properties.

(1) There exists U ∈ GLn(Q̃) such that ρ(U) = AU . Such a matrix U is called
a fundamental matrix.
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(2) Q̃ is a pseudo δ-field extension of K̃, that is, there exist a positive integer r,

orthogonal idempotent elements e0, . . . , er−1 of Q̃, and L̃ a δ-field extension

of K̃ such that Q̃ = e0L̃⊕ . . .⊕ er−1L̃ and ρ(ei) = ei+1modr.

(3) Q̃ is equal to K̃〈U〉, that is, the smallest pseudo δ-field extension of K̃
containing U .

(4) Q̃ρ = K̃ρ.

When Q̃ is a field, we say that Q̃ is a (ρ, δ)-Picard-Vessiot field extension.

By [Wib12, Corollary 9], if K̃ρ is algebraically closed, then there exists a (ρ, δ)-

Picard-Vessiot extension Q̃ for (2.4) over K̃. The smallest K̃-(ρ, δ)-subalgebra

K̃{U, 1
det(U)}δ of Q̃ generated by a fundamental matrix and the inverse of its deter-

minant is a (ρ, δ)-Picard-Vessiot ring. However, in order to ensure the uniqueness

of (ρ, δ)-Picard-Vessiot rings up to K̃-(ρ, δ)-algebra isomorphisms, one needs the

field K̃ρ to be δ-closed ([HS08, Proposition 6.16]). We recall that a differential field
(L, δ) is called differentially closed or δ-closed if, for every set of δ-polynomials F ,
the system of δ-equations F = 0 has a solution in some δ-field extension of L if
and only if it has a solution in L. Note that a δ-closed field is algebraically closed.
Differentially closed fields are huge and, for instance, none of the function fields K
introduced in Section 1.1 satisfies the assumption that Kρ is differentially closed.
Nonetheless, working with δ-closed fields allows us to simplify many arguments.

Thus, we will embed K into a (ρ, δ)-field K̃ whose field of ρ-constants is δ-closed,
and we will use some descent argument to go back to K if necessary (see Sections
3 and 4.2).

From now on, we let K̃ denote a (ρ, δ)-field whose field of ρ-constants C̃ := K̃ρ

is δ-closed. Let Q̃ be a (ρ, δ)-Picard-Vessiot extension over K̃. The parametrized

difference Galois group Galδ(Q̃/K̃) of (2.4) over (K̃, ρ, δ), also called the (ρ, δ)-

Galois group, is defined as the group of K̃-(ρ, δ)-algebra automorphisms of Q̃:

Galδ(Q̃/K̃) :=
{
σ ∈ Aut(Q̃/K̃)

∣∣∣ ρ ◦ σ = σ ◦ ρ and δ ◦ σ = σ ◦ δ
}
.

The parametrized difference Galois group Galδ(Q̃/K̃) is a geometric object that
encodes the differential algebraic relations between the solutions to (2.4). See [HS08,

Proposition 6.24] for more details. Roughly speaking, the larger Galδ(Q̃/K̃), the

fewer δ-algebraic relations over K̃ that hold among the elements of Q̃.

For any fundamental matrix U ∈ GLn(Q̃), an easy computation shows that

U−1σ(U) ∈ GLn(C̃) for any element σ ∈ Galδ(Q̃/K̃). By [HS08, Proposition 6.18],
the faithful representation

Galδ(Q̃/K) → GLn(C̃)

σ �→ U−1σ(U)

identifies Galδ(Q̃/K̃) with a linear differential algebraic subgroup H ⊂ GLn(C̃),

i.e., a subgroup of GLn(C̃) that can be defined as the vanishing set of polynomial

δ-equations with coefficients in C̃. Furthermore, choosing another fundamental
matrix U leads to a conjugate representation.

2.2.3. Comparison between difference Galois groups and parametrized difference

Galois groups. Let R̃ denote a (ρ, δ)-Picard-Vessiot ring for the system (2.4) over K̃,

let Q̃ denote the associated (ρ, δ)-Picard-Vessiot extension, and let U ∈ GLn(R̃) be
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a fundamental matrix of solutions. By [HS08, Proposition 6.21], R :=

K̃[U, det(U)−1] is a Picard-Vessiot ring for (2.4) over K̃. Let Q denote the Picard-

Vessiot extension corresponding to R. Then we have Q ⊂ Q̃ and one can identify

Galδ(Q̃/K̃) with a subgroup of Gal(Q/K̃) by restricting the elements of Galδ(Q̃/K̃)
to Q. The following result provides a fundamental link between classical difference
Galois theory and its parametrized counterpart, see [HS08, Proposition 6.21].

Proposition 2.5. The parametrized difference Galois group Galδ(Q̃/K̃) is a

Zariski-dense subgroup of Gal(Q/K̃).

3. The parametrized framework

Let us go back to our K,F0, F, ρ, ∂ corresponding to Cases S0, S∞, Q, and M
(see Section 1.1). We first observe that, in each case, Kρ = C is algebraically closed
and K has characteristic zero. Hence the theory of [vdPS97] described in Section

2.1 applies. In this section, we describe some suitable field extensions K̃ of K, and

C̃ of C = F ρ, that allow us to apply the parametrized difference Galois theory of
[HS08] described in Section 2.2.

We first recall that any differential field K has a differential closure, i.e., a
differentially closed field extension that can be embedded in every differentially

closed field extension of K. In Case S0, we set δ := ∂, and we let C̃ denote a
δ-closure of Ch, the subfield of Mer(C) formed by those meromorphic functions
that are h-periodic. Note that Ch is also a δ-field for ρ and δ commute. Sometimes,

we will use the notation C̃h instead of C̃. In Cases S∞ and Q, we also set δ := ∂,

and we let C̃ denote a δ-closure of C and we set C̃ := C̃. By [DHR18, Lemma 2.3],
in these three cases, the field

K̃ := Frac(K ⊗C C̃)

is a (ρ, δ)-field extension of K such that K̃ρ = C̃.
Case M is a bit more tricky. Indeed, in order to apply the theory of [HS08],

we need to consider a derivation δ on K̃ such that δ and ρ commute. Following
[DHR18], we let log denote a transcendental element over K, and we define δ =
log×∂ to be the derivation that acts on K(log) by

δ(log) = log and δ(xa) = axa log .

Then we define a structure of ρ-field onK(log) by setting ρ(log) = p log. We observe

that K(log)ρ = C and that ρ and δ commute. Finally, we consider C̃ a δ-closure of

C such that ρ acts trivially on C̃. We set C̃ := C̃ and by [DHR18, Lemma 2.3], the
field

K̃ := Frac(K(log)⊗C C̃) ,

is a (ρ, δ)-field such that K̃ρ = C̃.
In all cases, K is a ρ-field of characteristic zero such that Kρ = C, F is a ρ-field

extension of K with C := F ρ, and K̃ is a (ρ, δ)-field of characteristic zero, such

that K̃ρ = C̃, where C̃ is differentially closed. Furthermore, ρ and δ commute. The
following table summarizes the different frameworks we consider in this paper.
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Case F K C ∂ δ C̃ K̃

S0 Mer(C) C(x) Ch
d
dx

d
dx C̃h C̃h(x)

S∞ C((x−1)) C(x) C d
dx

d
dx C̃ C̃(x)

Q C((x1/∗)) C(x1/∗) C x d
dx x d

dx C̃ C̃(x1/∗)

M C((x1/∗)) C(x1/∗) C x d
dx log×x d

dx C̃ C̃(x1/∗)(log)

Remark 3.1. Note that the field of δ-constants of C is the algebraically closed field

C. Then, by [CS07, Lemma 9.3], the field of δ-constants of C̃ is also C. At some
places, we will consider some iteration of the operator ρ. In Case S0, it might

happen that we start with the ρ-field extension K̃ = C̃h(x) of K, and then consider

this extension as a ρr-field extension. Note that C̃h �= C̃rh. Nonetheless, C̃h is a

ρr-constant field and all results of Section 2 can be applied to the (ρr, δ)-field K̃.

4. Auxiliary results

In this section, we let (K, ρ) be a difference field of characteristic zero and we
consider a ρ-linear difference system

(4.1) ρ(Y ) = AY, with A ∈ GLn(K) ,

where k := Kρ is an algebraically closed field.

4.1. Irreducible and reducible difference Galois groups. The strategy for
proving Theorem 1.2 is very different according to whether the difference Galois
group associated with the difference equation over K satisfied by f is irreducible or
not. By irreducible, we mean that the group acts irreducibly on kn; see Definition
4.1. We point out that this is different from saying that an algebraic group, viewed
as an algebraic variety, is irreducible.

Definition 4.1. Let G ⊂ GLn(k) be a group. We say that G is irreducible if it
acts irreducibly on kn, that is, if the only k-vector subspaces of kn invariant by G
are {0} and kn. We say that G is reducible otherwise. When G is an irreducible
group, we say that G is imprimitive if there exist an integer r ≥ 2, and V1, . . . , Vr,
some k-vector spaces satisfying the following conditions.

(i) kn = V1 ⊕ · · · ⊕ Vr.
(ii) For every g ∈ G, the mapping Vi �→ g(Vi) is a permutation of the set

{V1, . . . , Vr}.
We say that G is primitive otherwise.

The next result shows that a difference Galois group that is irreducible and
imprimitive cannot be connected. We recall that an algebraic group G is connected
if it has no proper open subgroup with respect to the Zariski topology. The identity
component of G is the connected component of G containing the identity.

Lemma 4.2. Let G ⊂ GLn(k) be an algebraic group. If G is connected and irre-
ducible, then G is primitive.

Proof. Let us assume by contradiction that G is imprimitive. Then there exist
an integer r ≥ 2 and some nonzero C-vector spaces V1, . . . , Vr � kn such that
kn = V1 ⊕ · · · ⊕ Vr. Furthermore, the action induced by every element of G on kn

is a permutation of the sets {V1, . . . , Vr}. Let GV1
denote the stabilizer of V1 in G.
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This is an algebraic subgroup of G. We claim that it has finite index in G. Let us
assume by contradiction that there are an infinite number of cosets giGV1

of GV1
in

G. Since the group of permutations of a set with r elements is finite, there exist two
distinct cosets g1GV1

and g2GV1
such that g1 and g2 induce the same permutation

of the Vi’s. In that case, g−1
2 g1 stabilizes V1 and thus belongs to GV1

, providing a
contradiction. This proves the claim. Now, since GV1

is a closed subgroup of G of
finite index, it contains the identity component of G. The latter is equal to G for
G is assumed to be connected. This means that V1 is invariant under the action of
G. Hence, G is reducible. This provides a contradiction. �

Now, let us recall the definition of a difference module; see [vdPS97, §1.4].

Definition 4.3. A K-difference module M is a pair (M,Σ) where M is a finite-
dimensional K-vector space and Σ is an additive endomorphism of M such that
Σ(λY ) = ρ(λ)Σ(Y ) for every Y ∈ M and λ ∈ K.

Let A ∈ GLn(K). The K-difference module MA attached to the system ρ(Y ) =
AY is MA = (Kn,ΣA), where ΣA(Y ) = A−1ρ(Y ). Given a monic linear difference
operator L = a0y + a1ρ(y) + · · ·+ ρn(y) with coefficients ai in K and a0 �= 0, one
can consider the corresponding linear difference system ρ(Y ) = ALY , where AL is
the companion matrix of L. If K contains a nonperiodic element with respect to ρ,
then [HS99, Theorem B.2] asserts that any K-difference module M is isomorphic
to MAL for some monic linear difference operator L. This is equivalent to the
existence of a so-called cyclic vector in M, that is, a nonzero element e ∈ M such
that the vectors e,Σ(e), . . . ,Σn−1(e) form a K-basis of M .

Lemma 4.4 characterizes linear difference systems whose difference Galois group
is reducible.

Lemma 4.4. Let G ⊂ GLn(k) be the difference Galois group of (4.1) over K and
let r be an integer with 0 < r < n. The following statements are equivalent.

• There exists a G-submodule5 of kn of dimension r over k.
• There exists a difference submodule of dimension r in the K-difference mod-
ule MA associated with (4.1).

• There exists T ∈ Gln(K) such that

ρ(T )AT−1 =

(
B1 B2

0 B3

)
with B1 ∈ GLr(K).

In particular, G is reducible if and only if the statements above hold for some r,
with 0 < r < n. Furthermore, if the matrix A in (4.1) is the companion matrix of
a difference operator L, then L admits a nontrivial right factor if and only if G is
reducible.

Proof. Since the category of K-difference modules is a Tannakian category, the
first two statements are nothing else than the usual Tannakian equivalence, see
[And01, Théorème 3.2.1.1]. Completing a K-basis of a difference submodule M in
MA of dimension r, 0 < r < n, to a K-basis e = (e1, . . . , en) of Kn, shows that

the matrix of Σ in the basis e is of the form B =

(
B1 B2

0 B3

)
, with B1 ∈ GLr(K).

5kn is a G-module via G ⊂ Gln(k).
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Let T ∈ GLn(K) denote the matrix associated with the change of basis from the
canonical basis f = (f1, . . . , fn) to e. Then

BTf = Be = Σ(e) = Σ(Tf) = ρ(T )Af.

This proves the equivalence between the second and the third statements.
Now, let us assume that A is the companion matrix of some difference operator L

and that there exists a nontrivial difference submodule N of MA. Let e be a cyclic
vector of MA such that L is the minimal monic linear difference operator annihilat-
ing e. Since N is a nontrivial difference submodule of MA, then dimKMA/N < n
and there exists a nontrivial monic linear difference operator L1 of order smaller
than or equal to dimKMA/N such that L1e ∈ N . The element L1e is nonzero by
minimality of L. Since N is a difference submodule of MA there exists a monic
linear difference operator L2 of order smaller than or equal to dimKN such that
L2L1(e) = 0. By minimality of L, this proves that L = L2L1, where L1 has order
smaller than n. Conversely, if there is a nontrivial factorization L = L2L1, then
the difference module corresponding to L1 is a nontrivial difference submodule of
M. Hence G is reducible. �

4.2. Going up and down. In this section, we let K,F0, ρ be defined as in Section

1.1, and we let K̃ be defined as in Section 3. Lemmas 4.5 and 4.6 compare the

difference Galois groups over K and over K̃.
We recall that a connected linear algebraic group G is said to be semisimple if it

is of positive dimension and its only solvable (or, equivalently, Abelian) connected
closed normal subgroup is the trivial group.

Lemma 4.5. Let A ∈ GLn(K) and let G (resp. G̃) be the Galois group of ρ(Y ) =

AY over K (resp. K̃). The following properties hold.

• In Cases S0, S∞, and Q, we have G̃ = G(C̃).

• In Case M, if G is semisimple, then G̃ = G(C̃).

Proof. In Cases S0, S∞, and Q, the field extension K̃ of K is obtained by extension

of the field of constants C to C̃. Then, [CHS08, Corollary 2.5] gives that the

difference Galois group over K̃ is just the extension of G to the C̃-points.
Let us deal with Case M. Let G denote the difference Galois group over K(log).

As previously, we infer from [CHS08, Corollary 2.5] that G̃ = G(C̃). Thus, it
remains to prove that G = G when G is semisimple. By [DHR18, Proposition 1.6],
we can see G as a subgroup of G such that one of the following two situations
occurs.

(1) G = G.
(2) G is a normal subgroup of G and G/G � Gm the multiplicative group

(C∗, .).

By [Mil17, Corollary 21.50], a semisimple algebraic group is perfect, that is, equal
to its derived subgroup, see [Mil17, Definition 12.45]. Thus, a semisimple algebraic
group has no nontrivial abelian quotient. Hence, (2) cannot occur. We deduce that
G = G, which ends the proof. �

Lemma 4.6. Let A ∈ GLn(K) and let G (resp. G̃) be the Galois group of ρ(Y ) =

AY over K (resp. K̃). The group G is irreducible if and only if the group G̃ is
irreducible.
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Proof. In Cases S0, S∞, and Q, Lemma 4.5 ensures that G̃ = G(C̃) and the result
follows directly.

Let us deal with Case M. We infer from [CHS08, Corollary 2.5] that G̃ = G(C̃),
where we let G denote the Galois group of the system over K(log). Thus, it remains
to prove that G is irreducible if and only if G is irreducible. As seen in the proof of
Lemma 4.5, G is a subgroup of G. Thus, G is reducible as soon as G is reducible.
Conversely, let us assume that G is reducible. By the cyclic vector lemma over K,
the linear difference system (4.1) is equivalent to an equation

L := ρn + an−1ρ
n−1 + · · ·+ a0 = 0 ,

with ai ∈ K and a0 �= 0. Since G is reducible, Lemma 4.4 gives that L admits a
factorization over K(log). Multiplying L by some nonzero element if necessary, we
can get rid of the denominators. Then, there exists α ∈ K[log] such that

αL = (bkρ
k + bk−1ρ

k−1 + · · ·+ b0)(cn−kρ
n−k + cn−k−1ρ

n−k−1 + · · ·+ c0) ,

where bi, ci ∈ K[log], bkb0cn−kc0 �= 0, and 0 < k < n. Rewriting the equation in
terms of powers of log, one finds

∑
i≥i0

logi(αiL) =

⎛
⎝ ∑

κ≥κ0

logκ Lκ

⎞
⎠

⎛
⎝∑

j≥j0

logj Dj

⎞
⎠ ,

where Lκ,Dj are linear difference operators over K, αi ∈ K, αi0 ∈ K∗, and Lκ0
:=∑t

r=0 γrρ
r and Dj0 are nonzero. Using the fact that log is transcendental over

K and ρ log = p log ρ, we deduce that i0 = κ0 + j0. Considering the terms in
logi0 in both sides of the factorization, we deduce that L = 1

αi0
MDj0 where M =∑t

r=0 γrp
j0rρr, leading to a nontrivial factorization of L over K. By Lemma 4.4,

we obtain that G is reducible, as wanted. �

Now, we prove the following descent lemma.

Lemma 4.7. For F0,K and K̃ defined as in Section 3, we have

F0 ∩ K̃ = K.

Proof. Let us first consider Case Q. Let a ∈ F0 ∩ C̃(x1/∗). There exists a positive

integer r such that a ∈ C((x1/r)) ∩ C̃(x1/r). It follows that there exists a positive
integerN such that xNa ∈ C[[x1/r]]. Thus, xNa is a formal power series in x1/r with

complex coefficients that represents a rational fraction with coefficients in C̃. This
property can be characterized by the vanishing of its associated Kronecker-Hankel
determinants (see, for instance, [Sal63, p. 5]). This condition does not depend on
the field of coefficients, so we deduce that xNa ∈ C(x1/r). Hence, a ∈ K.

The proof of Case S∞ is entirely similar. For Case M, if a ∈ C((x1/∗)) ∩
C̃(x1/∗)(log), we use the fact that the logarithm is transcendental over C((x1/∗)) to

conclude that a ∈ C((x1/∗))∩ C̃(x1/∗). Arguing as above, we can show that a ∈ K.

Now, let us deal with Case S0. Let a ∈ F0 ∩ C̃(x). Since F0 ⊂ Mer(C), one
can find x0 ∈ C such that a ∈ C[[x − x0]]. Once again, using Kronecker-Hankel
determinants, one can deduce that a ∈ K. �
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4.3. Iterating the difference operator. For every positive integer �, let us set

A[�] := ρ�−1(A)× · · · × A ∈ GLn(K) .

Note that if U is a fundamental matrix of ρ(Y ) = AY , then it is also a fundamental
matrix of ρ�(Y ) = A[�]Y . In other words, a vector solution to the system ρ(Y ) = AY

is also a solution to the iterated system ρ�(Y ) = A[�]Y . In this section, we show that,
replacing the original system by a suitable iteration, we can reduce the situation to
the more convenient case where the corresponding Galois group is connected and
the Picard-Vessiot extension is a field.

This iteration process might introduce some new constants. Lemma 4.8 shows
that this cannot happen when the field of ρ-constants is algebraically closed.

Lemma 4.8. Let L be a ρ-field such that Lρ = k, and r be a positive integer.
Then, any ρr-constant of L is algebraic of degree less than or equal to r over k. In
particular, if k is algebraically closed then Lρr

= k.

Proof. Let a ∈ L be a ρr-constant. Then the polynomial P (X) = (X − a) · · · (X −
ρr−1(a)) belongs to Lρ[X] = k[X]. This proves that a is algebraic over k of degree
less than or equal to r. �

One of the main difficulty of difference algebra is the control of the algebraic
difference field extensions. This is the source of many technical difficulties and
connected to the fact that the theory ACFA is unstable (see [CH99]). The difference
fields (K, ρ) introduced in Section 1.1 have the following very strong property with
respect to finite difference field extensions, which will allow us to bypass these
difficulties.

Lemma 4.9. Let r be a positive integer. In each of the cases S0, S∞, Q, and M,
there are no proper ρr-field extension of K of finite degree.

Proof. The results in [Hen97,Hen98,Roq18] cover all cases. �

We are now ready to prove the following result.

Proposition 4.10. Let (K, ρ) be defined as in Section 1.1 and let L be a ρ-field
extension of K such that Lρ = C. Let (f1, . . . , fn)

� ∈ Ln be a nonzero solution to
(4.1). Let G be the difference Galois group of (4.1) over K. There exists a positive
integer r such that the following properties hold.

(a) There exists a Picard-Vessiot field extension Q for ρr(Y ) = A[r]Y over (K, ρr),

with a fundamental solution matrix U having (f1, . . . , fn)
� as first column.

(b) The difference Galois group Gr := Gal(Q/K) of ρr(Y ) = A[r]Y over (K, ρr)
coincides with the identity component of G and is therefore connected.

Though this result can be easily deduced from the proof of [DHR16, Proposi-
tion 4.6] in the particular case where the parametric operator is the identity, we
find it more convenient for the reader to include the proof below.

Proof. (a) Since K(f1, . . . , fn)
ρ ⊂ Lρ = C, there exists a Picard-Vessiot ring R0 for

ρ(Y ) = AY over K(f1, . . . , fn). Since f1, . . . , fn ∈ R0, there exists a fundamental
matrix U for R0 having (f1, . . . , fn)

� as first column. Let Q0 be the total quotient
ring of R0. By Proposition 2.2, we find Qρ

0 = C.
Set R := K[U, 1/det(U)]. The difference ring (R, ρ) is a subring of the Picard-

Vessiot ring (R0, ρ). Since any element of R that is a zero divisor in R0 is a
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zero divisor in R, see for instance [Roq18, Lemma 5], the total quotient ring Q of R
embeds in Q0 and consequently is a pseudofield (see [Wib10, Lemma 1.3.4]). Conse-
quently C ⊂ Qρ ⊂ Qρ

0 = C. Then Qρ = C, and (Q, ρ) is a Picard-Vessiot extension
for ρ(Y ) = AY over (K, ρ). Since Kρ = C is algebraically closed, the uniqueness
of Picard-Vessiot extensions above K allows to conclude that Gal(Q/K) = G. We
have proved that we can embed any solution in L in a Picard-Vessiot extension
above K.

By Proposition 2.2, R is a Picard-Vessiot ring for ρ(Y ) = AY over (K, ρ). Let
e0, . . . , er−1 denote the orthogonal idempotents relative to its ring structure. Note
that K[f1, . . . , fn] is an integral domain that is closed under ρ. For i = 0, . . . , r−1,
let φi : R → eiR denote the projection from R to eiR. Note that φi(x) = xei.
Let us prove that the restriction to K[f1, . . . , fn] of this projection is injective for
all i ∈ {0, . . . , r − 1}. Suppose to the contrary that there exist a nonzero element
x ∈ K[f1, . . . , fn] and i ∈ {0, . . . , r − 1} such that φi(x) = 0. Since ρ permutes
the integral domains eiR, we find that xρ(x) · · · ρr−1(x) = 0. The latter equality
provides a contradiction with the fact thatK[f1, . . . , fn] is an integral domain which
is closed under the injective morphism ρ. Thus, eiK[f1, . . . , fn] ⊂ eiR is a copy
of K[f1, . . . , fn] in eiR. Since Kρ = C is algebraically closed, Lemma 4.8 implies
that Kρr

= C. By [vdPS97, Lemma 1.26], (eiR, ρr) is a Picard-Vessiot ring for
the ρr-system ρr(Y ) = A[r]Y and eiR is an integral domain. Its total quotient

ring Q1 is a field and, since Kρr

is algebraically closed, Q1 is a Picard-Vessiot field
extension by Proposition 2.2. By construction, Q1 contains f1, . . . , fn, and we can
thus choose a fundamental matrix having (f1, . . . , fn)

� as first column.
(b) By [Roq18, Theorem 12], Gr = Gal(Q1/K) is a normal algebraic subgroup

of G and the quotient G/Gr is finite. To conclude, it remains to prove that Gr is
connected. Let G◦

r denote its identity component. The Galois correspondence, see

Theorem 2.3, gives that the ρr-field Q1
G◦

r is a finite extension of K. Lemma 4.9

implies that Q1
G◦

r = K and, applying the Galois correspondence again, we deduce
that G◦

r = Gr. �
Remark 4.11. The proof of (b) shows that, if G is connected, then, for every positive
integer �, the Galois group of ρ�(Y ) = A[�]Y over K coincides with G.

In the parametrized framework, we have the following similar result.

Proposition 4.12. Let L be a (ρ, δ)-field extension of K̃ with Lρ = C̃, and let
(f1, . . . , fn)

� ∈ Ln be a nonzero solution to (4.1). Then there exist a positive

integer r and a parametrized Picard-Vessiot field extension Q̃ for ρr(Y ) = A[r]Y

over K̃, with a fundamental matrix U having (f1, . . . , fn)
� as first column.

Proof. The proof is similar to the one of Proposition 4.10 and [DHR18, Lemma

3.7], just noting that, by Lemma 4.8, K̃ρr

= C̃ for C̃ is algebraically closed. �
The following result is obtained by combining the two previous propositions.

Corollary 4.13. Let (f1, . . . , fn)
� ∈ Fn

0 be a nonzero solution to (4.1) and let G
be the difference Galois group of (4.1). Then, there exists a positive integer r such
that the following properties hold.

(a) There exists a (ρr, δ)-Picard-Vessiot field extension Q̃ for ρr(Y ) = A[r]Y

with a fundamental matrix U having (f1, . . . , fn)
� as first column over K̃

(where K̃ = C̃sh(x) for some positive integer s dividing r in Case S0).
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(b) The difference Galois group of ρr(Y ) = A[r]Y over K coincides with the
identity component of G.

Proof. By Proposition 4.10, there exists a positive integer s such that the difference
Galois group of ρs(Y ) = A[s]Y is equal to the identity component of G. In order
to apply Proposition 4.12 to the system ρs(Y ) = A[s]Y , we need to embed F0 into

a (ρs, δ)-field extension L of K̃ with Lρs

= C̃. We proceed as follows.

• Case S0. We let F1 denote the smallest (ρs, δ)-subfield of Mer(C) contain-

ing F0 and Csh. Since Mer(C)ρ
s

= Csh, we find that F1
ρs

= Csh. Let

C̃ denote a δ-closure of Csh, considered as a constant ρs-field. The field

extensions C̃ and F1 are linearly disjoint above Csh (see [Wib10, Lemma

1.1.6]). Thereby, their compositum L is the fraction field of C̃ ⊗Csh
F1

(see [Bou90, A.V.13]). Arguing as in the proof of [DHR18, Lemma 2.3], we
obtain that L has the required properties.

• Cases S∞ and Q. We let L be the fraction field of F0 ⊗C C̃.

• Case M. We let L be the field C̃((x1/∗))(log).

Applying Proposition 4.12 to the system ρs(Y ) = A[s]Y over K̃, one can per-

form a second iteration to obtain a system ρsl(Y ) = A[sl]Y satisfying (a). By

Remark 4.11, the difference Galois group of ρsl(Y ) = A[sl]Y over K is the identity
component of G. This ends the proof. �

5. Proof of Theorem 1.2

This section is devoted to the proof of our main result. Before proving Theo-
rem 1.2 in full generality, we first consider the following two particular cases.

- The function f is solution to an inhomogeneous equation of order one.
- The difference Galois group of the equation associated with f is both con-
nected and irreducible.

All along this section, we keep on with the notation of Sections 1.1 and 3.

5.1. Affine order one equations. Various hypertranscendence criteria for solu-
tions to inhomogeneous order one equations have already been obtained, see for
instance [Ran92, Ish98,HS08,Ngu12]. We first deduce from these criteria the fol-
lowing result.

Proposition 5.1. If f ∈ F0 is solution to an equation of the form ρ(f) = af + b,
with a, b ∈ K, then either f is ∂-transcendental over K or f belongs to K.

Proof of Proposition 5.1. Let us first note that if a = 0, then f = ρ−1(b) ∈ K. We
can thus assume that a �= 0. Furthermore, we observe that, in Cases Q and M,
we can use a change of variable of the form z = x1/� to reduce the situation to the
case where K = C(x). From now on, we thus assume that K = C(x). Let us also
assume that f is ∂-algebraic over K. It remains to prove that f ∈ K.

We first note that Case M corresponds to [Ran92, Théorème 5.2]. Now, let us
consider Cases S0, S∞, and Q, which are partially covered by [HS08]. We recall the
following definition from [HS08, §6.1] (see also [vdPS97, §2]). We say that α ∈ K
is standard if, for all positive integers �, α and ρ�(α) have no common zero or pole.
By [HS08, Lemma 6.2], there exists a standard element a∗ and a nonzero e ∈ K
such that a = a∗ρ(e)/e. It follows that f/e is solution to the equation

ρ(f/e) = a∗f/e+ b/ρ(e) .
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Set g = f/e and b̃ = b/ρ(e). Since e ∈ K, it suffices to prove that g ∈ K. Let us
note that g = f/e is ∂-algebraic over K.

The same argument as in [ADR18, Lemma 3.6] shows that there exists a nonzero
δ-algebraic solution of ρ(y) = a∗y+ b/ρ(e) in a (ρ, δ)-Picard-Vessiot field extension

of K̃. In Case S0, [HS08, Proposition 3.9] implies that a∗ ∈ C and there exists

h ∈ K such that b̃ = ρ(h)− a∗h. In Case S∞, the same argument as in the proof
of [HS08, Proposition 3.9] also yields the same conclusion. We obtain that

ρ(g) = a∗g + b̃

= a∗g + ρ(h)− a∗h .

Hence ρ(g − h) = a∗(g − h). If g = h, then g ∈ K and we are done. Thus, we can

assume that g �= h. In that case, setting f̃ = g− h, we obtain ρ(∂(f̃)) = a∗∂(f̃). It

follows that ρ(∂(f̃)/f̃) = ∂(f̃)/f̃ , and thus ∂(f̃)/f̃ ∈ C ⊂ K. Since f̃ ∈ F0 satisfies
both a linear ρ-equation and a linear ∂-equation with coefficients in K, Theorem
1.3 implies that f̃ ∈ K. Since h ∈ K, we deduce that g ∈ K, as expected.

In Case Q, the same argument as in the proof of [HS08, Proposition 3.10] shows
that a∗ = cxα for some c ∈ C∗ and α ∈ Z, and one of the following conditions
holds.

(a) a∗ = qr for some r ∈ Z, and b̃ = ρ(h) − a∗h + dxr for some h ∈ K and
d ∈ C.

(b) a∗ /∈ qZ and b̃ = ρ(h)− a∗h for some h ∈ K.

In Case (a), we deduce that

(5.1) ρ

(
g − h

xr

)
=

g − h

xr
+ dq−r ·

Since (g − h)/xr ∈ F0, we can consider its expansion in Puiseux series. Since q is
not a root of unity, we easily deduce from Equation (5.1) that (g−h)/xr ∈ C ⊂ K.
Hence g ∈ K, as wanted.

In Case (b), we have that a∗ /∈ qZ and b̃ = ρ(h)− a∗h for some h ∈ K. It follows
that ρ(g − h) = cxα(g − h), where g − h ∈ F0 is a Puiseux series. Arguing as in
Case (a), we obtain that α = 0 and g−h = c0x

r for some r ∈ Q and c0 ∈ C. Hence
g ∈ K. This ends the proof. �

For order one equations over K whose solutions do not necessarily belong to F0,
one has the following criterion for differential algebraicity.

Lemma 5.2. Let L be a (ρ, δ)-field extension of K̃ with Lρ = C̃. Let f ∈ L∗

such that ρ(f) = af with a ∈ K∗. Then, f is δ-algebraic over K̃ if and only if

a = cxα ρ(g)
g for some c ∈ C∗, α ∈ Q, and g ∈ K∗. Moreover, α = 0 in Cases S0,

S∞, and M.

Proof. Cases S0, S∞, and Q can be deduced in a similar way to [HS08, Corol-
lary 3.4] (resp. Case M is given by [DHR18, Proposition 3.1]), combined with some

descent argument to go from C̃ to C. Such argument is similar to the one given in
the proof of [HS08, Corollary 3.2]. �

5.2. Connected and irreducible Galois groups. As a second step, we consider
the situation where the difference Galois group is both connected and irreducible.
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Proposition 5.3. Let us assume that n ≥ 2. If f ∈ F0 is a nonzero solution to
Equation (1.2) and if the corresponding difference Galois group G over K is both
connected and irreducible, then f is ∂-transcendental over K.

Proposition 5.3 is obtained as a direct consequence of the following more general
result.

Proposition 5.4. Let us consider a linear system of the form (4.1) with n ≥ 2.
Let us assume that the difference Galois group G for (4.1) over K is connected and

irreducible. Let Q̃ be a (ρ, δ)-Picard-Vessiot field extension for (4.1) over K̃, with
fundamental matrix of solutions U . Then every column of U contains at least one

element that is δ-transcendental over K̃.

Proof of Proposition 5.3. We argue by contradiction, assuming that f is ∂-algebraic
over K. Then all coordinates of the vector (f, . . . , ρn−1(f))� are also ∂-algebraic
over K. This follows from the fact that ρ and ∂ almost commute, that is, ∂ρ = cρ∂
with c = 1 in Cases S0, S∞, and Q, and c = p in Case M. We deduce from
the construction of δ with respect to ∂ given in Section 3 (and the fact that log
is δ-algebraic for Case M) that all coordinates of the vector (f, . . . , ρn−1(f))� are

also δ-algebraic over K̃.
Now, let A denote the companion matrix associated with Equation (1.2). Since

(f, . . . , ρn−1(f))� ∈ Fn
0 is nonzero, Corollary 4.13 ensures the existence of a positive

integer r and a (ρr, δ)-Picard-Vessiot field extension Q̃ for ρr(Y ) = A[r]Y over K̃

such that the vector (f, . . . , ρn−1(f))� is the first column of a fundamental matrix
U . Furthermore, Remark 4.11 ensures that the Galois group of ρr(Y ) = A[r](Y )
over K is equal to G, for the latter is connected. Thus, Proposition 5.4 applies with
ρ replaced by ρr, providing a contradiction. �

It remains to prove Proposition 5.4. As a key argument, we will use the following
result due to Arreche and Singer [AS17, Lemma 5.1]. It says that the parametrized
Galois group must be as big as possible when the difference Galois group has an
identity component that is semisimple.

Proposition 5.5. Let us consider a system ρ(Y ) = AY , where A ∈ GLn(C(x)) in
Cases S0 and S∞, and where A ∈ GLn(C(x

1/�)) for some positive integer � in Cases

Q and M. In Cases S0, S∞, and M, we let G ⊂ GLn(C̃) denote the difference

Galois group over K̃, and H ⊂ GLn(C̃) denote the (ρ, δ)-Galois group over K̃. In

Case Q, we let G ⊂ GLn(C̃) denote the difference Galois group over C̃(x1/�), and

H ⊂ GLn(C̃) denote the (ρ, δ)-Galois group over C̃(x1/�). As in Proposition 2.5,
we see H as a subgroup of G. If the identity component of G is semisimple, then
H = G.

Proof. Cases S0 and S∞ are explicitly proved in [AS17, Lemma 5.1], since, by

Remark 3.1, the field of differential constants of C̃ is C. Cases Q and M are not
explicitly proved in [AS17, Lemma 5.1] for we consider the slightly more general
situation where A ∈ GLn(C(x

1/�)). However, the result follows easily from the
argument given in the proof of [AS17, Lemma 5.1]. �

We are now ready to prove Proposition 5.4.
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Proof of Proposition 5.4. We let H denote the (ρ, δ)-Galois group of (4.1) over K̃,
that is,

H = Galδ(Q̃/K̃) ⊂ GLn(C̃) .

We also let G̃ denote the Galois group of ρ(Y ) = AY over K̃. Let us argue by
contradiction, assuming the existence of one column of U whose coordinates are all

δ-algebraic over K̃.

We first show that all entries of U are δ-algebraic over K̃. Since G is irreducible,

Lemma 4.6 implies that G̃ is irreducible too. By Proposition 2.5, H is Zariski dense

in the irreducible group G̃. This implies that H is irreducible, since otherwise, H
would be conjugated to a group formed by block upper triangular matrices, as well

as its Zariski closure, contradicting the irreducibility of G̃. Now, let S denote the

C̃-vector space of solution vectors over Q̃ whose entries are all δ-algebraic over K̃.
By assumption, S is not reduced to {0}. Furthermore, S is invariant under the
action of any σ ∈ H. Since H is irreducible, we deduce that S contains n linearly
independent solutions to (4.1). In other words, all columns of U belong to S, which
implies that all entries of U are δ-algebraic over K̃, as claimed.

We observe that the determinant det(U) is solution to the equation

(5.2) ρ(y) = det(A)y

and that the difference Galois group of this equation over K is the group det(G).

Since all entries of U are δ-algebraic over K̃, we obtain that det(U) is also δ-algebraic

over K̃. We first consider the particular case where det(U) ∈ K, and then we move
to the general case.

Let us first assume that det(U) belongs to K. In that case, det(G) = {1} and
therefore G ⊂ SLn(C). We recall that G is assumed to be connected and irreducible.
According to Lemma 4.2, we have that G is primitive. By [SU93, Proposition 2.3],

we finally obtain that G is semisimple. By Lemma 4.5, G̃ = G(C̃) is semisimple
too.

In Cases S0, S∞, and M, we infer from Proposition 5.5 that H = G̃. Since

all entries of U are δ-algebraic over K̃, the δ-dimension of the (ρ, δ)-Picard-Vessiot
extension is zero6, and therefore the δ-dimension of H is zero by [HS08, Proposi-
tion 6.26]. By a result of Kolchin [Kol73, Chap. IV, Proposition 10], the dimension

of an algebraic group G over C̃ is the same as the δ-dimension of G viewed as a

differential group over C̃. This proves that the dimension of H equals the dimen-

sion of G(C̃) . Since C is algebraically closed, the dimension of G(C̃) over C̃ equals

the dimension of G over C. Thus, the above equality H = G̃ = G(C̃) implies that
the dimension of the algebraic group G over C is zero. We recall that an algebraic
group of dimension zero is just a finite group, and that a finite connected group
has cardinality one. Thus, we deduce that G = {In}, where we let In denote the
identity matrix of size n. Since by assumption n ≥ 2, this provides a contradiction
with the assumption that G is irreducible. This ends the proof in these cases.

In Case Q, the system ρ(Y ) = AY has coefficients in C(x1/�) and the entries

of U are δ-algebraic over C̃(x1/�), for some positive integer �. Let G
˜K,� denote

the difference Galois group of ρ(Y ) = AY over C̃(x1/�). Since K̃ is an algebraic

6We refer the reader to [HS08, P. 374] for a definition of the notion of δ-dimension of a (ρ, δ)-
Picard-Vessiot ring and of a (ρ, δ)-Galois group.
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extension of C̃(x1/�), we deduce from [Roq18, Theorem 7] that G
˜K and G

˜K,� have

the same identity component, which is G
˜K since the latter is connected. Hence

the identity component of G
˜K,� is semisimple. By Proposition 5.5, it follows that

H� = G
˜K,�, where H� denote the (ρ, δ)-Galois group over C̃(x1/�). Furthermore,

the entries of U are δ-algebraic over C̃(x1/�) which implies that the δ-dimension of
H� is zero. Since H� = G

˜K,�, we get as previously that the algebraic group G
˜K,�

has dimension zero. Since G
˜K ⊂ G

˜K,�, this proves that the dimension of G
˜K is also

zero, and we can argue as previously to get a contradiction.
Now, let us consider the general case. We remind that det(U) is δ-algebraic

over K̃ and ρ(det(U)) = det(A)det(U). By Lemma 5.2, there exist some rational
number α and nonzero elements c ∈ C and g ∈ K such that det(A) = cxαρ(g)/g.
Furthermore, α = 0 in Cases S0, S∞, and M.

Let us consider the rank one linear difference system

(5.3) ρ(y) = c−1/nx−α/ny .

Since Q̃ is a (ρ, δ)-field with Q̃ρ = C̃, there exists a (ρ, δ)-Picard-Vessiot extension

Q̃1 for (5.3) over Q̃. Let (λ) ∈ GL1(Q̃1) be a fundamental matrix associated with
this system. Then

ρ(λ) = c−1/nx−α/nλ

and λ is invertible in Q̃1. Using the commutativity of δ and ρ, we obtain that

δ

(
δ(λ)

λ

)
∈ Q̃ρ

1 = C̃ ,

which shows that λ is δ-algebraic over C̃. In particular, it is δ-algebraic over K̃.

Thus, all entries of the matrix λU ∈ GLn(Q̃1) are δ-algebraic over K̃.
On the other hand, we set

B = c−1/nx−α/nA ∈ Gln(K) and UB := λU.

Note that ρ(UB) = BUB . Let GB be the difference Galois group of the system
ρ(Y ) = BY over K. Our choice of B ensures that det(B) = ρ(g)/g. Thus, the
equation

ρ(y) = det(B)y

has a solution in K. It follows that its difference Galois group det(GB) is reduced
to {1}. Hence, GB ⊂ SLn(C). For k ≥ 1, we let GB[k]

denote the difference Galois

group of ρk(Y ) = B[k]Y over K. By Proposition 4.10, there exists r ≥ 1 such that
GB[r]

is connected. Furthermore, ρr(g)/g = det(B[r]) and the difference Galois

group of ρr(Y ) = B[r]Y over K remains included in SLn(C). Let us notice that

A[r] = αrB[r]

for some αr ∈ K×.
We claim that GB[r]

is irreducible. Let us argue by contradiction, assuming that

GB[r]
is reducible. By Lemma 4.4, there exists T ∈ GLn(K) such that ρr(T )B[r]T

−1

is a block upper triangular matrix, and we deduce that

αrρ
r(T )B[r]T

−1 = ρr(T )A[r]T
−1 .

By Lemma 4.4, we obtain that Gr, the difference Galois group of the system
ρr(Y ) = A[r]Y over K, is conjugated to a group of block upper triangular ma-
trices, which implies that Gr is reducible. By Remark 4.11, Gr = G, providing a
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contradiction with the assumption that G is irreducible. This proves that GB[r]
is

irreducible.
Finally by Lemma 4.2, the irreducible connected group GB[r]

is primitive. Again,

since GB[r]
⊂ SLn(C), we infer from [SU93, Proposition 2.3] that GB[r]

is semisim-

ple. Since Q̃1 s a pseudo δ-field that contains K̃ and all coordinates of UB , we have

K̃〈UB〉 ⊂ Q̃1 (see Section 2.2.2 for the notation). Furthermore, since Q̃ρ
1 = C̃, the

pseudo δ-field K̃〈UB〉 is a (ρr, δ)-Picard-Vessiot extension for ρr(Y ) = B[r]Y over

K̃.
Since all entries of UB are δ-algebraic over K̃, we can apply Proposition 5.5 and,

arguing as in the first part, we deduce that GB[r]
= {In}. Since n ≥ 2, we obtain a

contradiction with the fact that GB[r]
is irreducible. �

5.3. The general case. We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We argue by induction on n. More precisely, our induction
assumption reads as follows.

(Hn) For all positive integers k and all f ∈ F0 that is solution to a ρk-linear
equation of order at most n with coefficients in K, we have either f is
∂-transcendental over K or f ∈ K.

Proposition 5.1 implies that (H1) hold true. Let n ≥ 2 and let us assume (Hn−1).
Let f ∈ F0 be solution to a ρk-linear equation of order n with coefficients in K.
Without any loss of generality, we can assume that f �= 0 and k = 1. Considering
the companion matrix associated with this equation, Corollary 4.13 ensures the
existence of a positive integer r such that the following properties hold.

(a) The vector (f, . . . , ρn−1(f))� is solution to the system ρr(Y ) = AY for
some A ∈ GLn(K).

(b) There exists a (ρr, δ)-Picard-Vessiot field extension Q̃ for ρr(Y ) = AY

over K̃, such that the vector (f, . . . , ρn−1(f))� is the first column of a

fundamental matrix U ∈ GLn(Q̃).
(c) The difference Galois group G of the system ρr(Y ) = AY over K is con-

nected.

If G is irreducible, Proposition 5.3 shows that f is ∂-transcendental. Hence (Hn)
holds. From now on, we assume that G is reducible. Furthermore, we assume that
f is ∂-algebraic over K. Thus, it remains to prove that f ∈ K. Without loss of
generality, we can assume that r = 1.

By Lemma 4.4, there exists a gauge transformation T = (ti,j) ∈ GLn(K) such
that

ρ(T )AT−1 =

(
A1 A1,2

0 A2

)
,

where Ai ∈ GLni
(K), n1 + n2 = n, and 0 < n2 < n. Furthermore, let us assume

that n1 is minimal with respect to this property.
Set

(5.4) (gi)
�
i≤n := T (ρi−1(f))�i≤n ∈ Fn

0 .

The vector (gi)
�
n1+1≤i≤n ∈ Fn2

0 is solution to the system ρ(Y ) = A2Y . Furthermore,

since f is ∂-algebraic over K, the gi are also ∂-algebraic over K. By (Hn2
) and
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Remark 2.1, we obtain that

(5.5) (gi)
�
n1+1≤i≤n ∈ Kn2 .

Let G1 denote the difference Galois group of the system ρ(Y ) = A1Y over K. We
claim that G1 is connected and irreducible. Indeed, if G1 were reducible, then by
Lemma 4.4, there would exist a gauge transformation changing A1 into a block
upper triangular matrix, contradicting the minimality of n1. Furthermore, the
Galois group of ρ(Y ) = A1Y over K is a quotient of the connected group G and
thereby a connected group.

The main step of the proof consists in showing the following result.

Claim. One has n1 = 1.

Proof of the claim. By assumption, f is ∂-algebraic over K. Arguing as in the
proof of Proposition 5.3, we get that all coordinates of the vector (f, . . . , ρn−1(f))

are δ-algebraic over K̃. Then, (5.4) implies that all the gi’s are also δ-algebraic over

K̃. We have to distinguish two cases.

Let us first assume that all the gi’s belong to K̃. By (5.4) and Lemma 4.7, we
obtain that

∀i ∈ {1, . . . , n}, gi ∈ F0 ∩ K̃ = K

and hence (f, . . . , ρn−1(f))� = T−1(g1, . . . , gn)
� ∈ Kn. Thus the vector

(f, . . . , ρn−1(f))� is fixed by the difference Galois group G. By Lemma 4.4, there
exists P ∈ GLn(K) such that

ρ(P )AP−1 =

(
b1 B1,2

0 B2

)
,

for some matrices B1,2 and B2 with coefficients in K and a nonzero b1 ∈ K. By
minimality of n1, we obtain that n1 = 1, as wanted.

Now, let us assume that at least one the gi’s does not belong to K̃. Note that, by

assumption, the fi’s all belong to Q̃ and thus the gi’s all belong to Q̃ too. We let H

denote the (ρ, δ)-Galois group of ρ(Y ) = AY over K̃. By the parametrized Galois
correspondence [HS08, Theorem 6.20], we deduce the existence of some σ ∈ H, such
that

(σ(gi))
�
i≤n �= (gi)

�
i≤n ,

while (5.5) implies that σ(gi) = gi for every i, n1 + 1 ≤ i ≤ n. Set

u1 := (gi)
�
i≤n1

, u2 := (gi)
�
n1+1≤i≤n and v1 := (σ(gi))

�
i≤n1

.

Hence w := u1 − v1 is a nonzero vector. Since the coordinates of u1 are δ-algebraic

over K̃ and σ belongs to the (ρ, δ)-Galois group H, the coordinates of v1 are also δ-

algebraic over K̃. Hence the coordinates of w are δ-algebraic over K̃. Furthermore,
u1 and v1 are both solution to the system

ρ(Y ) = A1Y +A1,2u2 .

It follows that
ρ(w) = A1w .

Since we have
C̃ = K̃ρ ⊂ K̃(w)ρ ⊂ Q̃ρ = C̃ ,

Corollary 4.13 ensures the existence of a positive integer s and a (ρs, δ)-Picard-

Vessiot field extension Q̃1 for the system ρs(Y ) = (A1)[s]Y over K̃ such that w is
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the first column of a fundamental matrix. Furthermore, the difference Galois group
of ρs(Y ) = (A1)[s]Y is equal to G1 for the latter is connected. The coordinates of w

being δ-algebraic over K̃ and G1 being connected and irreducible, Proposition 5.4
implies that n1 = 1. �

Now, let us prove that (g1, . . . , gn) ∈ Kn. Set

u2 := (gi)
�
2≤i≤n .

By (5.5), we have u2 ∈ Kn−1 and thus A1,2u2 ∈ K. Furthermore, g1 ∈ F0 is
solution to the inhomogeneous order one equation

ρ(Y ) = A1Y +A1,2u2 .

Since g1 is ∂-algebraic over K, Proposition 5.1 implies that g1 ∈ K, and hence
(g1, . . . , gn) ∈ Kn. By (5.4), we obtain that

(f, . . . , ρn−1(f))� = T−1(g1, . . . , gn)
� .

Since the coefficients of T belong to K, it follows that f ∈ K, as wanted. �
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[Béz94] Jean-Paul Bézivin, Sur une classe d’équations fonctionnelles non linéaires (French),
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tialgleichung zu genügen, Math. Ann., 28 (1887): 1–13.

[HS08] Charlotte Hardouin and Michael F. Singer, Differential Galois theory of linear differ-
ence equations, Math. Ann. 342 (2008), no. 2, 333–377, DOI 10.1007/s00208-008-0238-
z. MR2425146

[HS99] Peter A. Hendriks and Michael F. Singer, Solving difference equations in finite terms, J.
Symbolic Comput. 27 (1999), no. 3, 239–259, DOI 10.1006/jsco.1998.0251. MR1673591

[Ish98] Katsuya Ishizaki, Hypertranscendency of meromorphic solutions of a linear functional
equation, Aequationes Math. 56 (1998), no. 3, 271–283, DOI 10.1007/s000100050062.
MR1639233

[Kol73] Ellis R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathe-
matics, vol. 54, Academic Press, New York-London, 1973. MR0568864

Licensed to University Claude Bernard Lyon. Prepared on Sat May  8 09:46:20 EDT 2021 for download from IP 134.214.188.171.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=360611
https://www.ams.org/mathscinet-getitem?mr=992323
https://www.ams.org/mathscinet-getitem?mr=1652269
https://www.ams.org/mathscinet-getitem?mr=2441376
https://www.ams.org/mathscinet-getitem?mr=0205987
https://www.ams.org/mathscinet-getitem?mr=2322329
https://arxiv.org/abs/1603.06771
https://www.ams.org/mathscinet-getitem?mr=3836845
https://www.ams.org/mathscinet-getitem?mr=3815564
https://www.ams.org/mathscinet-getitem?mr=3467284
https://www.ams.org/mathscinet-getitem?mr=2422340
https://www.ams.org/mathscinet-getitem?mr=3497726
https://www.ams.org/mathscinet-getitem?mr=1457845
https://www.ams.org/mathscinet-getitem?mr=1646675
https://www.ams.org/mathscinet-getitem?mr=1557926
https://www.ams.org/mathscinet-getitem?mr=2425146
https://www.ams.org/mathscinet-getitem?mr=1673591
https://www.ams.org/mathscinet-getitem?mr=1639233
https://www.ams.org/mathscinet-getitem?mr=0568864


502 BORIS ADAMCZEWSKI ET AL.

[KZ01] Maxim Kontsevich and Don Zagier, Periods, Mathematics unlimited—2001 and be-
yond, Springer, Berlin, 2001, pp. 771–808. MR1852188

[Mah29] Kurt Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funk-
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