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On the Littlewood conjecture
in fields of power series

Boris Adamczewski and Yann Bugeaud†

Abstract.

Let k be an arbitrary field. For any fixed badly approximable
power series Θ in k((X−1)), we give an explicit construction of contin-
uum many badly approximable power series Φ for which the pair (Θ,Φ)
satisfies the Littlewood conjecture. We further discuss the Littlewood
conjecture for pairs of algebraic power series.

§1. Introduction

A famous problem in simultaneous Diophantine approximation is
the Littlewood conjecture [17]. It claims that, for any given pair (α, β)
of real numbers, we have

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0, (1.1)

where ‖ · ‖ stands for the distance to the nearest integer. Despite some
recent remarkable progress [24,12], this remains an open problem.

The present Note is devoted to the analogous question in fields of
power series. Given an arbitrary field k and an indeterminate X , we
define a norm | · | on the field k((X−1)) by setting |0| = 0 and, for any
non-zero power series F = F (X) =

∑+∞
h=−m fhX−h with f−m �= 0, by

setting |F | = 2m. We let ||F || stand for the norm of the fractional part
of F , that is, of the part of the series which comprises only the negative
powers of X . In analogy with (1.1), we ask whether we have

inf
q∈k[X]\{0}

|q| · ‖qΘ‖ · ‖qΦ‖ = 0 (1.2)
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for any given Θ and Φ in k((X−1)). A negative answer to this question
has been obtained by Davenport and Lewis [11] (see also [3,6,9,10,13] for
explicit counter-examples) when the field k is infinite. As far as we are
aware, the problem is still unsolved when k is a finite field (the papers
by Armitage [2], dealing with finite fields of characteristic greater than
or equal to 5, are erroneous, as kindly pointed out to us by Bernard de
Mathan).

A first natural question regarding this problem can be stated as
follows:

Question 1. Given a badly approximable power series Θ, does there
exist a power series Φ such that the pair (Θ, Φ) satisfies non-trivially the
Littlewood conjecture?

First, we need to explain what is meant by non-trivially and why
we restrict our attention to badly approximable power series, that is, to
power series from the set

Bad =
{
Θ ∈ k((X−1)) : inf

q∈k[X]\{0}
|q| · ‖qΘ‖ > 0

}
.

Obviously, (1.2) holds as soon as Θ or Φ does not belong to Bad. This is
also the case when 1, Θ and Φ are linearly dependent over k[X ]. Hence,
by non-trivially, we simply mean that both of these cases are excluded.

In the present paper, we answer positively Question 1 by using the
constructive approach developed in [1]. Our method rests on the basic
theory of continued fractions and works without any restriction on the
field k. Actually, our result is much more precise and motivates the in-
vestigation of a stronger question, introduced and discussed in Section 2.
Section 3 is concerned with the Littlewood conjecture for pairs of alge-
braic power series. When k is a finite field, we provide several examples
of such pairs for which (1.2) holds. In particular, we show that there
exist infinitely many pairs of quartic power series in F3((X−1)) that sat-
isfy non-trivially the Littlewood conjecture. It seems that no such pair
was previously known. The proofs are postponed to Sections 5 and 6,
after some preliminaries on continued fractions gathered in Section 4.

§2. Main results

The real analogue of Question 1 was answered positively by Polling-
ton and Velani [24] by using metric theory of Diophantine approxima-
tion, as a consequence of a much stronger statement. Some years later,
Einsiedler, Katok and Lindenstrauss [12] proved the outstanding result
that the set of pairs of real numbers for which the Littlewood conjecture
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does not hold has Hausdorff dimension zero. Obviously, this implies
a positive answer to Question 1. However, it is unclear that either of
these methods could be transposed in the power series case. Further-
more, both methods are not constructive, in the sense that they do not
yield explicit examples of pairs of real numbers satisfying (1.1).

A new, explicit and elementary approach to solve the real analogue
of Question 1 is developed in [1]. It heavily rests on the theory of
continued fractions and it can be quite naturally adapted to the function
field case. Actually, our Theorem 1 answers a strong form of Question 1.

Theorem 1. Let ϕ be a positive, non-increasing function defined on
the set of positive integers and with ϕ(1) = 1 and limd→+∞ ϕ(d) = 0.
Given Θ in Bad, there is an uncountable subset Bϕ(Θ) of Bad such
that, for any Φ in Bϕ(Θ), the power series 1, Θ, Φ are linearly inde-
pendent over k[X ] and there exist polynomials q in k[X ] with arbitrarily
large degree and satisfying

|q|2 · ‖qΘ‖ · ‖qΦ‖ ≤ 1
ϕ(|q|) · (2.1)

In particular, if
lim

deg q→+∞
|q|ϕ(|q|) = +∞,

the Littlewood conjecture holds non-trivially for the pair (Θ, Φ) for any
Φ in Bϕ(Θ). Furthermore, the set Bϕ(Θ) can be effectively constructed.

Although the proof closely follows that of Theorem 1 from [1], we
give it with full detail. Actually, some steps are even slightly easier than
in the real case.

Observe that, for any given Θ and Φ in Bad, there exists a positive
constant c(Θ, Φ) such that

|q|2 · ‖qΘ‖ · ‖qΦ‖ ≥ c(Θ, Φ)

holds for any non-zero polynomial q in k[X ]. In view of this and of
Theorem 1, we propose the following problem in which we ask whether
the above inequality is best possible.

Question 2. Given a power series Θ in Bad, does there exist a power
series Φ such that the pair (Θ, Φ) satisfies non-trivially the Littlewood
conjecture and such that we moreover have

lim inf
deg q→+∞

|q|2 · ‖qΘ‖ · ‖qΦ‖ < +∞ ? (2.2)
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The restriction ‘non-trivially’ in the statement of Question 2 is
needed, since (2.2) clearly holds when the power series 1, Θ, Φ are
linearly dependent over k[X ]. There are, however, non-trivial examples
for which (2.2) holds. Indeed, if the continued fraction expansion of a
power series Θ begins with infinitely many palindromes and if Φ = 1/Θ,
then (2.2) is true for the pair (Θ, Φ). This can be seen by working out
in the power series case the arguments from Section 4 of [1].

Theorem 2. Let Θ be an element of the field k((X−1)) whose con-
tinued fraction expansion begins with infinitely many palindromes. Then,
the Littlewood conjecture is true for the pair (Θ, Θ−1) and, furthermore,
we have

lim inf
deg q→+∞

|q|2 · ‖qΘ‖ · ‖qΘ−1‖ ≤ 1.

Moreover, if k has characteristic zero, then Θ is transcendental over
k(X).

We can weaken the assumption that the continued fraction expan-
sion of Θ begins with infinitely many palindromes to get additional ex-
amples of pairs (Θ, Θ−1) that satisfy the Littlewood conjecture. Before
stating our next result, we need to introduce some notation. It is conve-
nient to use the terminology from combinatorics on words. We identify
any finite or infinite word W = w1w2 . . . on the alphabet k[X ] \ k with
the sequence of partial quotients w1, w2, . . . Further, if U = u1 . . . um

and V = v1v2 . . . are words on k[X ] \ k, with V finite or infinite,
and if u0 is in k[X ], then [u0, U, V ] stands for the continued fraction
[u0, u1, . . . , um, v1, v2, . . .]. The mirror image of any finite word W =
w1 . . . wm is denoted by W := wm . . . w1. Recall that a palindrome is a
finite word W such that W = W . Furthermore, we let |W | stand for the
number of letters composing W (here, we clearly have |W | = m). There
should not be any confusion between |W | and the norm |F | of the power
series F .

Theorem 3. Let Θ be in Bad such that |Θ| �= 1. Let (pn/qn)n≥1

denote the sequence of its convergents. Assume that there exist a positive
real number x, a sequence of finite words (Uk)k≥1, and a sequence of
palindromes (Vk)k≥1 such that, for every k ≥ 1, the continued fraction
expansion of Θ is equal to [Uk, Vk, . . .] and |Vk+1| > |Vk| ≥ x|Uk|. Set
further

M = lim sup
�→+∞

deg q�

�
and m = lim inf

�→+∞

deg q�

�
·

If we have

x > 3 · M

m
− 1, (2.3)
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then the Littlewood conjecture is true for the pair (Θ, Θ−1). Moreover,
if k has characteristic zero, then Θ is transcendental over k(X).

From now on, we make use of the following notation: if � is a positive
integer, then W [�] stands for the word obtained by concatenation of �
copies of the word W .

Theorem 4. Let Θ = [a0, a1, a2, . . .] be in Bad. Let (pn/qn)n≥1

denote the sequence of its convergents. Assume that there exist a finite
word V , a sequence of finite words (Uk)k≥1, an increasing sequence of
positive integers (nk)k≥1 and a positive real number x such that, for every
k ≥ 1, the continued fraction expansion of Θ is equal to [Uk, V [nk], . . .]
and |V [nk]| ≥ x|Uk|. Let Φ be the quadratic power series defined by

Φ := [V , V , V , . . .].

Set further

M = lim sup
�→+∞

deg a� and m = lim inf
�→+∞

deg a�.

If we have

x >
M

m
, (2.4)

then the pair (Θ, Φ) satisfies the Littlewood conjecture. Moreover, if k
has characteristic zero, then Θ is transcendental over k(X).

The last assertion of Theorems 2, 3 and 4 follows from the analogue
of the Schmidt Subspace Theorem in fields of power series over a field
of characteristic zero, worked out by Ratliff [25]. It is well-known that
the analogue of the Roth theorem (and, a fortiori, the analogue of the
Schmidt Subspace Theorem) does not hold for fields of power series over
a finite field. For k = Fp, a celebrated example given by Mahler [18] is
recalled in Section 3.

Theorems 2, 3 and 4 will be used in the next section to provide new
examples of pairs of algebraic power series satisfying the Littlewood
conjecture.

§3. On the Littlewood conjecture for pairs of algebraic power
series

It is of particular interest to determine whether the Littlewood con-
jecture holds for pairs of algebraic real numbers. To the best of our
knowledge, only two results are known in this direction. First, if (α, β)
is a pair of real numbers lying in a same quadratic field, then 1, α and
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β are linearly dependent over Q and the Littlewood conjecture is thus
easily satisfied. This was for instance remarked in [7]. The other result is
due to Cassels and Swinnerton-Dyer [8] who proved that the Littlewood
conjecture is satisfied for pairs of real numbers lying in a same cubic
field. However, it is generally believed that no algebraic number of de-
gree greater than or equal to 3 is badly approximable. At present, no
pair of algebraic numbers is known to satisfy non-trivially the Littlewood
conjecture.

In this Section, we discuss whether the (function field analogue of
the) Littlewood conjecture holds for pairs of algebraic power series de-
fined over a finite field k. Our knowledge is slightly better than in the
real case, especially thanks to works of Baum and Sweet [4] and of de
Mathan [19,20,21,22] that we recall below.

First, we observe that, as in the real case, (1.2) holds when Θ and
Φ are in a same quadratic extension of k[X ], since 1, Θ and Φ are then
linearly dependent over k[X ]. We further observe that the existence of
the Frobenius automorphism (that is, the p-th power map) yield many
examples of well-approximated algebraic power series. For instance, for
any prime number p, the power series Θp = [0, X, Xp, Xp2

, Xp3
, . . .] is

a root in Fp((X−1)) of the polynomial Zp+1 + XZ − 1, and Θp is well-
approximated by rational functions. Indeed, there exist infinitely many
rational functions pn/qn such that

∣∣∣∣Θp −
pn

qn

∣∣∣∣ ≤ 1
|qn|p+1

·

Clearly, for any (algebraic or transcendental) power series Φ in Fp((X−1)),
the Littlewood conjecture holds for the pair (Θp, Φ).

On the other hand, there are several results on pairs of algebraic
functions that satisfy non-trivially the Littlewood conjecture. De Mathan
[21] established that (1.2) holds for any pair (Θ, Φ) of quadratic elements
when k is any finite field of characteristic 2 (see also [19,20] for results
when k is any finite field). Furthermore, he proved in [22] the analogue
of the Cassels and Swinnerton-Dyer theorem when k is a finite field.
We stress that, when k is finite, there do exist, unlike in the real case,
algebraic power series in Bad that are of degree greater than or equal
to 3 over k(X). The first example was given by Baum and Sweet [4]
who proved that, for k = F2, the unique Θ in F2((X−1)) which satisfies
XΘ3 + Θ + X = 0 is in Bad. Thus, it follows from [22] that the pair
of algebraic power series (Θ, Θ−1) satifies non-trivially the Littlewood
conjecture.
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Further examples of badly approximable algebraic power series were
subsequently found by several authors. It turns out that many of these
examples contain some symmetric patterns in their continued fraction
expansion. In the sequel of this Section, this property is used in order to
apply Theorems 2, 3 and 4 to provide new examples of pairs of algebraic
power series satisfying non-trivially the Littlewood conjecture. These
examples also illustrate the well-known fact that there is no analogue to
the Schmidt Subspace Theorem for power series over finite fields.

We keep on using the terminology from combinatorics on words. For
sake of readability we sometimes write commas to separate the letters
of the words we consider.

3.1. A first example of a badly approximable quartic in
F3((X−1))

Mills and Robbins [23] established that the polynomial

X(X + 2)Z4 − (X3 + 2X2 + 2X + 2)Z3 + Z − X − 1

has a root Θ in F3((X−1)) whose continued fraction expansion is ex-
pressed as follows. For every positive integer n, set

Hn = X [3n−2], X + ε, 2X + ε, (2X)[3
n−2], 2X + ε, X + ε,

where ε = 2 if n is odd and ε = 1 otherwise. Then, the continued
fraction expansion of the quartic power series Θ is given by

Θ = [X, 2X + 2, X + 1, H1, H2, H3, . . .].

It turns out that the continued fraction expansion of Θ contains
some symmetric patterns that we can use to apply Theorem 3. This
gives rise to the following result.

Theorem 5. The pair (Θ, Θ−1) satisfies the Littlewood conjecture.
In particular, there exists a pair of quartic power series in F3((X−1))
satisfying non-trivially the Littlewood conjecture.

To our knowledge, this is the first known example of a pair of al-
gebraic power series of degree greater than 3 for which the Littlewood
conjecture is non-trivially satisfied.

Proof. For every integer n ≥ 2, set

Un := X, 2X + 2, X + 1, H1, H2, H3, . . . , Hn−1

and
Vn := Hn, X [3n−2].
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Since X [3n−2] is a prefix of Hn+1, the continued fraction expansion of Θ
is equal to [Un, Vn, . . .]. Furthermore, Vn is a palindrome and the length
of Hn (resp. of Un, of Vn) is equal to 2 · 3n (resp. to 3n, to 3n+1 − 2).
In particular, we have |Vn| > 2.5|Un| for every n ≥ 2, and, since all the
partial quotients of Θ are linear, the assumption (2.3) is satisfied. We
apply Theorem 3 to complete the proof.

3.2. An infinite family of badly approximable quartics in
F3((X−1))

We now consider the infinite family of badly approximable quartics
in F3((X−1)) introduced by Lasjaunias in [15]. Let k be a non-negative
integer. For any non-negative integer n, set

un = (k + 2)3n − 2,

and define the finite word Hn(X) on F3[X ] \ F3 by

Hn(X) := (X + 1)X [un](X + 1).

Then, consider the power series

Θ(k) := [0, H0(X), H1(−X), H2(X), . . . , Hn((−1)nX)), . . .]. (3.1)

This definition obviously implies that Θ(k) is badly approximable by
rational functions, since all of its partial quotients are linear. Lasjaunias
[15] established that Θ(k) is a quartic power series. More precisely, if
(pn(k)/qn(k))n≥0 denotes the sequence of convergents to Θ(k), he proved
that

qk(k)Θ4(k) − pk(k)Θ3(k) + qk+3(k)Θ(k) − pk+3(k) = 0.

The description of the continued fraction expansion of Θ(k) given in
(3.1) makes transparent the occurrences of some palindromic patterns.
This can be used to apply Theorem 3 and yields the following result.

Theorem 6. For any non-negative integer k, the pair (Θ(k), Θ(k)−1)
satisfies the Littlewood conjecture. In particular, there exist infinitely
many pairs of quartic power series in F3((X−1)) satisfying non-trivially
the Littlewood conjecture.

Proof. For any even positive integer n, set

Un := H0(X)H1(−X)H2(X) . . .Hn−2(X)(−X + 1)

and

Vn := (−X)[un−1](−X + 1)(X + 1)X [un](X + 1)(−X + 1)(−X)[un−1].
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Observe that the continued fraction expansion of Θ(k) is equal to [0,
Un, Vn, . . .] and that

|Un| =
(

k + 2
2

)
3n−1 − k

2
and |Vn| = 5(k + 2)3n−1 − 2.

Furthermore, Vn is a palindrome. We have |Vn| ≥ 3|Un| + 3 for n ≥ 2,
and, since all the partial quotients of Θ(k) are linear, the assumption
(2.3) is satisfied. We apply Theorem 3 to complete the proof.

3.3. Badly approximable power series in Fp((X−1)) with
p ≥ 5

Let p ≥ 5 be a prime number. For any positive integer k, consider
the polynomial fk in Fp[X ] defined by

fk =
∑ (

k − j

j

)
Xk−2j ,

where the sum is over all integers j such that 0 ≤ 2j ≤ k. Then, Mills
and Robbins [23] showed that the polynomial of degree p + 1

XZp+1 − (X2 − 3)Zp + (Xfp−2 − 3fp−1)Z − fp−2(X2 − 3) + fp−1X

has a root Θp in Fp((X−1)) with a nice continued fraction expansion.
Let V (−1) = −X,−X and V (3) = X/3, 3X and, for k ≥ 1, set

Lk(−1) = V (−1)[(p
k−1)/2] and Lk(3) = V (3)[(p

k−1)/2].

Mills and Robbins proved that the continued fraction expansion of Θp

is given by

Θp = [X, L0(3),−X/3, L0(−1), X, L1(3),−X/3, L1(−1), X, L2(3),
−X/3, L2(−1), . . .],

where L0(3) and L0(−1) are equal to the empty word. It follows that Θp

is badly approximable by rational functions, all of its partial quotients
being linear. Moreover, Θp is not quadratic since its continued fraction
expansion is not eventually periodic.

As a consequence of Theorem 3, we get the following result.

Theorem 7. For any prime number p ≥ 7, the pair (Θp, Θ−1
p ) of

algebraic power series in Fp((X−1)) satisfies non-trivially the Littlewood
conjecture.
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Moreover, we can apply Theorem 4 to provide pairs of algebraic
power series of distinct degrees satisfying non-trivially the Littlewood
conjecture. To the best of our knowledge, no such pair was previously
known.

Theorem 8. Let p ≥ 5 be a prime number. Let Θp be as above. Let
Φp be the quadratic power series in Fp((X−1)) defined by

Φp := [3X, X/3, 3X, X/3, 3X, X/3, 3X, . . .].

Then the pair (Θp, Φp) satisfies non-trivially the Littlewood conjecture.

Proof of Theorems 7 and 8. For any even positive integer n, set

Un := X,−X/3, X, L1(3),−X/3, L1(−1), X, L2(3),−X/3, L2(−1),
X . . . , Ln−1(−1), X

and
Vn := (X/3, 3X)[(p

n−3)/2], X/3.

Observe that the continued fraction expansion of Θp is equal to [Un, Vn, . . .]
and that

|Un| = 1 +
(

2 · pn − 1
p − 1

)
and |Vn| = pn − 2.

Furthermore, Vn is a palindrome and |Vn| ≥ 2.5|Un| holds for p ≥ 7 and
n ≥ 2. Since all the partial quotients of Θp are linear, the assumption
(2.3) is then satisfied. We apply Theorem 3 to complete the proof of
Theorem 7.

To get Theorem 8, we observe that Ln(3) is the concatenation of
(pn − 1)/2 copies of the word V (3), and we check that |Ln(3)| ≥ 1.5|Un|
holds for p ≥ 5 and n ≥ 2. Since all the partial quotients of Θp are
linear, the assumption (2.4) is then satisfied. We then apply Theorem 4
to complete the proof of Theorem 8.

3.4. A normally approximable quartic in F3((X−1))
We end this Section with another quartic power series in F3((X−1))

found by Mills and Robbins [23]. Unlike the previous examples, this
quartic is not badly approximable but we will see that it has some in-
teresting Diophantine properties.

Mills and Robbins pointed out that the polynomial

Z4 + Z2 − XZ + 1

has a unique root Θ in F3((X−1)). They observed empirically that Θ has
a particularly simple continued fraction expansion. Define recursively a
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sequence (Ωn)n≥0 of words on the alphabet F3[X ]\F3 by setting Ω0 = ε,
the empty word, Ω1 = X , and

Ωn = Ωn−1(−X)Ω(3)
n−2(−X)Ωn−1, for n ≥ 2. (3.2)

Here, if W = w1w2 . . . wr = w1, w2, . . . , wr with wi ∈ F3[X ] \ F3, then
W (3) stands for the word obtained by taking the cube of every letter of
W , that is, W (3) := w3

1, w
3
2 , . . . , w

3
r . Set

Ω∞ = lim
n→+∞

Ωn. (3.3)

Buck and Robbins [5] confirmed a conjecture of Mills and Robbins [23]
asserting that the continued fraction expansion of Θ is [0, Ω∞] (note that
their proof was later simplified by Schmidt [26], and that Lasjaunias [14]
gave an alternative proof).

The quartic power series Θ does not lie in Bad. Lasjaunias [14,
Theorem A] proved that Θ is normally approximable (this terminology
is explained in [16]) in the following sense: there exist infinitely many
rational functions p/q such that

|Θ − p/q| ≤ |q|−(2+2/
√

3 deg q),

while for any positive real number ε there are only finitely many rational
functions p/q such that

|Θ − p/q| ≤ |q|−(2+2/
√

3 deg q+ε).

Note that an easy induction based on (3.2) shows that for every
positive integer n the word Ωn is a palindrome. By (3.3), we thus get
that the continued fraction expansion of Θ−1 begins with infinitely many
palindromes. The following consequence of Theorem 2 and of Theorem
A from [14] is worth to be pointed out.

Theorem 9. Let Θ be the unique root in F3((X−1)) of the polyno-
mial Z4 + Z2 − XZ + 1. Then,

inf
q∈k[X]\{0}

|q|2 · ‖qΘ‖ · ‖qΘ−1‖ < +∞

and for any positive real number ε we have

|q|2+4/
√

3 deg q+ε · ‖qΘ‖ · ‖qΘ−1‖ ≥ 1,

for any q in F3[X ] with deg q large enough.
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§4. Preliminaries on continued fraction expansions of power
series

It is well-known that the continued fraction algorithm can as well
be applied to power series. The partial quotients are then elements of
k[X ] of positive degree. We content ourselves to recall some basic facts,
and we direct the reader to Schmidt’s paper [26] and to Chapter 9 of
Thakur’s book [27] for more information.

Specifically, given a power series F = F (X) in k((X−1)), which we
assume not to be a rational function, we define inductively the sequences
(Fn)n≥0 and (an)n≥0 by F0 = F and Fn+1 = 1/(Fn−an), where Fn−an

is the fractional part of Fn.
Plainly, for n ≥ 1, the an are polynomials of degree at least one. We

then have

F = [a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2 +
1

. . .

·

The truncations [a0, a1, a2, . . . , an] := pn/qn, with relatively prime poly-
nomials pn and qn, are rational functions and are called the convergents
to F . It is easily seen that

deg qn+1 = deg an+1 + deg qn,

thus

deg qn =
n∑

j=1

deg aj . (4.1)

Furthermore, we have

deg(qnF − pn) = − deg qn+1 < − deg qn,

that is,

‖qnF‖ = |qn+1|−1 = 2− deg qn+1 < 2− deg qn . (4.2)

We stress that F is in Bad if and only if the degrees of the poly-
nomials an are uniformly bounded. We also point out that | · | is an
ultrametric norm, that is, |F + G| ≤ max{|F |, |G|} holds for any F and
G in k((X−1)), with equality if |F | �= |G|.

We end this Section by stating three basic lemmas on continued
fractions in k((X−1)).
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Lemma 1. Let Θ = [a0, a1, a2, . . .] be an element of k((X−1)) and
let (pn/qn)n≥1 be its convergents. Then, for any n ≥ 2, we have

qn−1

qn
= [0, an, an−1, . . . , a1].

Proof. As in the real case, this easily follows from the recursion
formula qn+1 = an+1qn + qn−1.

Lemma 2. Let Θ = [a0, a1, a2, . . .] and Φ = [b0, b1, b2, . . .] be two
elements of k((X−1)). Assume that there exists a positive integer n such
that ai = bi for any i = 0, . . . , n. We then have |Θ −Φ| ≤ |qn|−2, where
qn denotes the denominator of the n-th convergent to Θ.

Proof. Let pn/qn be the n-th convergent to Θ. By assumption,
pn/qn is also the n-th convergent to Φ and we have

|Θ − Φ| ≤ max {|Θ − pn/qn|, |Φ − pn/qn|} ≤ |qn|−2,

since the norm | · | is ultrametric.

Lemma 3. Let M be a positive real number. Let Θ =[a0, a1, a2, . . .]
and Φ = [b0, b1, b2, . . .] be two elements of k((X−1)) whose partial quo-
tients are of degree at most M . Assume that there exists a positive
integer n such that ai = bi for any i = 0, . . . , n and an+1 �= bn+1. Then,
we have

|Θ − Φ| ≥ 1
22M |qn|2

,

where qn denotes the denominator of the n-th convergent to Θ.

Proof. Set Θ′ = [an+1, an+2, . . .] and Φ′ = [bn+1, bn+2, . . .]. Since
an+1 �= bn+1, we have

|Θ′ − Φ′| ≥ 1. (4.3)

Furthermore, since the degrees of the partial quotients of both Θ and Φ
are bounded by M , we immediately obtain that

|Θ′| ≤ 2M and |Φ′| ≤ 2M . (4.4)

Let (pj/qj)j≥1 stand for the sequence of convergents to Θ. Then, the
theory of continued fractions gives that

Θ =
pnΘ′ + pn−1

qnΘ′ + qn−1
and Φ =

pnΦ′ + pn−1

qnΦ′ + qn−1
,
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since the first n-th partial quotients of Θ and Φ are assumed to be the
same. We thus obtain

|Θ − Φ| =
∣∣∣∣pnΘ′ + pn−1

qnΘ′ + qn−1
− pnΦ′ + pn−1

qnΦ′ + qn−1

∣∣∣∣
=

∣∣∣∣ Θ′ − Φ′

(qnΘ′ + qn−1)(qnΦ′ + qn−1)

∣∣∣∣ =
∣∣∣∣Θ

′ − Φ′

Θ′Φ′q2
n

∣∣∣∣ .
Together with (4.3) and (4.4), this yields

|Θ − Φ| ≥ 1
22M |qn|2

,

concluding the proof of the lemma.

§5. Proof of Theorem 1

Without any loss of generality, we may assume that |Θ| ≤ 1/2 and
we write Θ = [0, a1, a2, . . . , ak, . . .]. Let M be an upper bound for the
degrees of the polynomials ak. We first construct inductively a rapidly
increasing sequence (nj)j≥1 of positive integers. We set n1 = 1 and
we proceed with the inductive step. Assume that j ≥ 2 is such that
n1, . . . , nj−1 have been constructed. Then, we choose nj sufficiently
large in order that

ϕ(2mj ) ≤ 2−2(M+2)(mj−1+1), (5.1)

where mj = n1 +n2 + . . .+nj +(j−1). Such a choice is always possible
since ϕ tends to zero at infinity and since the right-hand side of (5.1)
only depends on n1, n2, . . . , nj−1.

Our sequence (nj)j≥1 being now constructed, for an arbitrary se-
quence t = (tj)j≥1 with values in k[X ] \ k, we set

Φt = [0, b1, b2, . . .]

= [0, an1 , . . . , a1, t1, an2 , . . . , a1, t2, an3 , . . . , a1, t3, . . .].

Then, we introduce the set

Bϕ(Θ) =
{
Φt, t ∈ (kM+1[X ] ∪ kM+2[X ])Z≥1

}
,

where kn[X ] denotes the set of polynomials in k[X ] of degree n. Clearly,
the set Bϕ(Θ) is uncountable.

Let Φ be in Bϕ(Θ). We first prove that (2.1) holds for the pair
(Θ, Φ). Let (pn/qn)n≥1 (resp. (rn/sn)n≥1) stand for the sequence of
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convergents to Θ (resp. to Φ). Let j ≥ 2 be an integer. We infer from
Lemma 1 that

smj−1

smj

= [0, a1, . . . , anj , tj−1, a1, . . . , anj−1 , tj−2, . . . , t1, a1, . . . , an1 ].

By (4.2), we have
‖smj Φ‖ ≤ |smj |−1. (5.2)

On the other hand, Lemma 2 implies that
∣∣∣∣Θ −

smj−1

smj

∣∣∣∣ ≤ 1
|qnj |2

= 2−2 deg qnj .

Consequently, we get

‖smj Θ‖ ≤ 2deg smj
−2 deg qnj . (5.3)

It follows from (4.1) that

mj−nj∑
k=1

deg bk ≤ (M + 2)(mj − nj) (5.4)

and

deg smj =
mj∑
k=1

deg bk = deg qnj +
mj−nj∑

k=1

deg bk. (5.5)

We infer from (5.3), (5.4) and (5.5) that

‖smj Θ‖ ≤ 1
|smj | · 2−2(M+2)(mj−nj)

· (5.6)

Since ϕ is a non-increasing function and mj−1 + 1 = mj − nj , we
deduce from (5.1) that

ϕ(|smj |) ≤ ϕ(2mj ) ≤ 2−2(M+2)(mj−1+1) = 2−2(M+2)(mj−nj). (5.7)

From (5.2), (5.6) and (5.7), we thus obtain that

|smj | · ‖smj Φ‖ · ‖smj Θ‖ ≤ ‖smj Θ‖ ≤ 1
|smj | · ϕ(|smj |)

·

Since j ≥ 2 is arbitrary, we have established that (2.1) holds.
It now remains to prove that 1, Θ and Φ are independent over k[X ].

Therefore, we assume that they are dependent and we aim at deriving a
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contradiction. Let (A, B, C) be a non-zero triple of polynomials in k[X ]
satisfying

AΘ + BΦ + C = 0.

Then, for any non-zero polynomial q in k[X ], we have

‖qAΘ‖ = ‖qBΦ‖.

In particular, we get

‖smj AΘ‖ = ‖smjBΦ‖ ≤ |B| · ‖smjΦ‖ 	 |smj |−1, (5.8)

for any j ≥ 2. Here and below, the constants implied by 	 depend (at
most) on A, B, C, Θ and M , but do not depend on j.

On the other hand, we have constructed the sequence (nj)j≥1 in
order to guarantee that

|smj Θ − smj−1| ≤
1

|smj | · ϕ(|smj |)
· (5.9)

This implies that
‖smj Θ‖ = |smj Θ − smj−1|

for j jarge enough. Since by assumption the degree of bmj−1+1 = tj−1 is
either M+1 or M+2, we have deg bmj−1+1 �= deg anj+1 and in particular
bmj−1+1 �= anj+1. Consequently, Lemma 3 implies that∣∣∣∣Θ −

smj−1

smj

∣∣∣∣ ≥ 1
22(M+2) · |qnj |2


 1
22 deg qnj

,

thus,
‖smjΘ‖ 
 2deg smj

−2 deg qnj . (5.10)

Moreover, we infer from (5.5) that deg smj ≥ deg qnj +mj−1. Combined
with (5.10), this gives

|smj | · ‖smjΘ‖ 
 22mj−1 . (5.11)

For j large enough, we deduce from (5.9) that

|smj AΘ − smj−1A| < 2−1,

thus,
‖smjAΘ‖ = |smj AΘ − smj−1A| = |A| · ‖smjΘ‖.

By (5.11), this yields

|smj | · ‖smjAΘ‖ 
 22mj−1 ,

which contradicts (5.8). This completes the proof of Theorem 1.
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§6. Proof of Theorems 2, 3 and 4

Proof of Theorem 2. Let Θ = [a0, a1, a2, . . .]. The key observation
for the proof of Theorem 2 is Lemma 1. Indeed, assume that the integer
n ≥ 3 is such that a0a1 . . . an is a palindrome. In particular, the degree
of a0 is at most 1 since a0 = an, and 1/Θ = [0, a0, a1, a2, . . .]. Let
(pk/qk)k≥1 denote the sequence of convergents to 1/Θ. It then follows
from Lemma 1 that qn+1/qn is very close to Θ. Precisely, we have

‖qnΘ‖ ≤ 2−deg qn ,

by Lemma 2. Furthermore, (4.2) asserts that

‖qnΘ−1‖ = 2−deg qn+1 < 2− deg qn .

Consequently, we get

|qn|2 · ‖qnΘ‖ · ‖qnΘ−1‖ = 22 deg qn · ‖qnΘ‖ · ‖qnΘ−1‖ < 1.

This ends the proof.

In the proofs below we assume that |Θ| ≤ 1/2 (if needed, replace Θ
by 1/Θ in Theorem 3, and Θ by Θ − a0 in Theorem 4). The constants
implied by 	 may depend on Θ but not on k.

Proof of Theorem 3. Assume now that Θ is in Bad and satisfies
the assumption of Theorem 3. Let k ≥ 1 be an integer and let Pk/Qk

be the last convergent to the rational number

P ′
k

Q′
k

:= [0, Uk, Vk, Uk].

Since, by assumption, Vk is a palindrome, we obtain that the word
UkVkUk is also a palindrome. Then, Lemma 1 implies that P ′

k = Qk.
Setting rk = |Uk| and sk = |Vk|, we infer from Lemma 2 that

‖QkΘ‖ ≤ 2deg Qk 2−2 deg qrk+sk . (6.1)

Observe that by Lemmas 1 and 2 we have
∣∣∣∣Θ−1 − Q′

k

Qk

∣∣∣∣ 	 2−2 deg qrk+sk

and thus
‖QkΘ−1‖ 	 2deg Qk 2−2deg qrk+sk . (6.2)
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Furthermore, it follows from (4.1) that

deg Qk < deg qrk
+ deg qrk+sk

.

Then, we get from (6.1) and (6.2) that

|Qk| · ‖QkΘ‖ · ‖QkΘ−1‖ 	 23 deg qrk 2−deg qrk+sk .

In virtue of (2.3), this concludes the proof.

Proof of Theorem 4. Assume now that Θ and Φ satisfy the as-
sumption of Theorem 4. Let k ≥ 1 be an integer and let Pk/Qk be
the last convergent to the rational number

P ′
k

Q′
k

:= [0, Uk, V [nk]].

On the one hand, (4.2) gives

‖QkΘ‖ <
1

|Qk|
·

On the other hand, Lemma 1 implies that

Q′
k

Qk
= [V

[nk]
, Uk].

Setting rk = |Uk| and sk = |V [nk]|, we thus infer from Lemma 2 and
(4.1) that

‖QkΦ‖ 	 2Mrk−msk .

In virtue of (2.4), this concludes the proof.
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