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Abstract. We develop a theory of linear Mahler systems in several
variables from the perspective of transcendence and algebraic indepen-
dence, which also includes the possibility of dealing with several systems
associated with sufficiently independent matrix transformations. Our
main results go far beyond the existing literature, also surpassing those
of two unpublished preprints the authors made available on the arXiv
in 2018. The main new feature is that they apply now without any
restriction on the matrices defining the corresponding Mahler systems.
As a consequence, we settle several problems concerning expansions of
numbers in multiplicatively independent bases. For instance, we prove
that no irrational real number can be automatic in two multiplicatively
independent integer bases, and we give a new proof and a broad al-
gebraic generalization of Cobham’s theorem in automata theory. We
also provide a new proof and a multivariate generalization of Nishioka’s
theorem, a landmark result in Mahler’s method.
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1. Introduction

Most of transcendental number theory concerns the study of the algebraic
relations over the field of algebraic numbers Q between the values at algebraic
points of (possibly multivariate) convergent power series with coefficients in

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under the Grant
Agreement No 648132.

1



2 BORIS ADAMCZEWSKI AND COLIN FAVERJON

Q. Given some convergent power series f1(z), . . . , fm(z) ∈ Q{z}, where
z = (z1, . . . , zn), and a point α ∈ Qn where these functions are well-defined,
one of the main challenges is then to understand to what extent the alge-
braic relations between f1(z), . . . , fm(z) over the field of rational functions
Q(z) govern the algebraic relations over Q between the complex numbers
f1(α), . . . , fm(α). In particular, a reoccurring theme consists in establishing
the equality

(1.1) tr.degQ(f1(α), . . . , fm(α)) = tr.degQ(z)(f1(z), . . . , fm(z)) .

Equality (1.1) has been notoriously established in the context of Siegel E-
functions, leading to the famous Siegel-Shidlovskii theorem [58, Chapter 4],
and in that of Mahler M -functions by Ku. Nishioka [49]. More recently
(cf. [19, 17, 53, 8, 48]), particular attention has been paid to refining these
results, by proving that any homogeneous algebraic relation between the
values f1(α), . . . , fm(α) can be obtained as the specialization at α of a ho-
mogeneous algebraic relation between the functions f1(z), . . . , fm(z). These
refinements are referred to as lifting’s theorems.

Let n be a positive integer, T = (ti,j)1≤i,j≤n be an n × n matrix with
nonnegative integer coefficients, with which we associate the transformation

Tz := (z
t1,1
1 z

t1,2
2 · · · zt1,nn , . . . , z

tn,1

1 z
tn,2

2 · · · ztn,n
n ) ,

and f1(z), . . . , fm(z) ∈ Q{z} be convergent power series satisfying a linear
system of functional equations of the form

(1.2)

 f1(Tz)
...

fm(Tz)

 = A(z)

 f1(z)
...

fm(z)

 ,

where A(z) ∈ GLm(Q(z)). Then Mahler’s method aims at studying the
algebraic relations over Q between f1(α), . . . , fm(α) for suitable algebraic
points α. In particular, proving that Equality (1.1) holds true under some
reasonable assumptions on A(z), T , and α is a problem that has its origin
in Mahler’s pioneering work [39, 40, 41] in the late 1920s.

In this paper, we develop a general theory of linear Mahler systems in sev-
eral variables from the perspective of transcendental number theory, which
also includes the possibility of dealing with several systems associated with
sufficiently independent matrix transformations. It is condensed in three
main results, Theorems 3.3, 3.6, and 3.8, which go far beyond the exist-
ing literature. In particular, Theorem 3.3 is a lifting theorem from which
we deduce a multivariate extension of Nishoka’s theorem (cf. Corollary 3.5):
Equality (1.1) holds true for all A(z) under minimal assumptions on T and
α. These results also surpass those of two unpublished preprints [10, 11] the
authors made available on the arXiv in 2018. The main new feature with
respect to these two preprints is that our results apply now without any
further restriction on the matrices A(z).

In this introduction, we focus on the consequence of the results obtained
in the multivariate framework for the univariate framework. In the latter,
we have n = 1, T = (q) for some integer q ≥ 2, Tz = zq, and the power
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series involved correspond to the so-called Mq-functions defined by (1.3).
Our main result about these functions is Theorem 1.1. In Section 2, we give
some applications of Theorem 1.1 to old problems concerning expansions of
numbers in multiplicatively independent bases (cf. Theorems 2.2, 2.3, and
2.4). While proving these theorems was our initial objective, it seems to us
that the general theory developed in Section 3 to achieve this goal is equally
valuable in its own right.

1.1. Values of M-functions at algebraic points. Given an integer q ≥ 2,
f(z) ∈ Q[[z]] is said to be an Mq-function or a q-Mahler function if there
exist polynomials p0(z), . . . , pm(z) ∈ Q[z], not all zero, such that

(1.3) p0(z)f(z) + p1(z)f(z
q) + · · ·+ pm(z)f(zq

m
) = 0.

We simply say that f(z) is an M -function if it is an Mq-function for some
q that we do not need to specify. An M -function is always analytic in some
neighborhood of zero and has a meromorphic continuation in the open unit
disc. Furthermore, its coefficients generate only a finite field extension of Q.
Let us also recall that nonzero complex numbers x1, . . . , xr are multiplica-
tively independent if there is no nonzero tuple of integers (n1, . . . , nr) such
that xn1

1 · · ·xnr
r = 1.

Theorem 1.1. Let r ≥ 1 be an integer and K ⊆ Q be a field. For every
integer i, 1 ≤ i ≤ r, we let qi ≥ 2 be an integer, fi(z) ∈ K[[z]] be an Mqi-
function, and αi ∈ K, 0 < |αi| < 1, be such that fi(z) is well-defined at αi.
Let us assume that one of the two following properties holds.

(i) The numbers α1, . . . , αr are multiplicatively independent.
(ii) The numbers q1, . . . , qr are pairwise multiplicatively independent.

Then f1(α1), f2(α2), . . . , fr(αr) are algebraically independent over Q, unless
one of them belongs to K.

Until now, Theorem 1.1 was only proved when r = 1. This special case,
conjectured by Cobham [22] in 1968 and settled by the authors [8] in 2017,
implies that the decimal expansion of algebraic irrational numbers cannot
be generated by finite automata1.

Remark 1.2. An algorithm to determine whether the numbers fi(αi) belong
to K or not is given in [9]. We briefly describe it in Section 11.1.

Let us point out the four main difficulties we have to face when trying to
prove Theorem 1.1.

(i) We have to consider a bunch of arbitrary M -functions. In con-
trast, many results in the past were restricted to inhomogeneous
order one equations (see Section 3). That is, equations of the form
p−1(z)+p0(z)f(z)+p1(z)f(z

q) = 0. Being able to deal with arbitrary
equations becomes essential for applications involving automata.

(ii) Given an M -function, we have to consider its values at arbitrary
algebraic points where it is well-defined, while a classical feature of

1This result was first proved by Bugeaud and the first author [4] by means of the
subspace theorem.
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results in this framework is that they are only available for points
which are regular2 with respect to the underlying Mahler system.

(iii) We have to consider simultaneously values of M -functions at differ-
ent algebraic points. In the setting of Siegel E-functions, the study
of algebraic relations between values of E-functions at different alge-
braic points can be achieved by considering different E-functions at
the same point. Indeed, if f(z) is an E-function and α is an algebraic
number, then the function f(αz) is still an E-function. However, this
trick no longer works for M -functions.

(iv) We have to consider M -functions associated with different transfor-
mations (i.e., z 7→ zq with different q).

Thanks to the work of Ku. Nishioka [49], the transcendence theory of
linear Mahler systems in one variable is well-developed. It has even reached a
rather definitive stage after the recent works of Philippon [53] and the authors
[8]. These new results provide tools to overcome (ii), and also (i) in some
situations. However, Theorem 1.1 does not fall into the scope of Mahler’s
method in one variable. In particular, the problem raised by (iii) requires a
major development of Mahler’s method in several variables. Partial results
in this direction are due to Mahler [41], Kubota [33], Loxton and van der
Poorten [36, 38], and Nishioka [51]. Last but not least, (iv) is a source of
well-known difficulties and only limited results, though of great interest, have
been obtained by Nishioka [50] and Masser [44]. In fine, the new approach
we follow allows us to overcome all the aforementioned difficulties.

1.2. Organization of the paper. In Section 2, we first recall a famous
conjecture of Furstenberg concerning expansions of real numbers in multi-
plicatively independent bases. Then we state our main results related to this
conjecture, namely Theorems 2.2, 2.3, and 2.4. In Section 3, we state our
main results concerning the study of linear Mahler systems in several vari-
ables, namely Theorems 3.3, 3.6, and 3.8. We also discuss the three main
new ingredients of our approach in Section 3.4. Some notation are intro-
duced in Section 4. As made clear in Section 3, the strength of our results
strongly depends on our ability to provide simple and natural conditions that
ensure certain admissibility conditions. This problem is addressed in Section
5 where concrete and optimal conditions are given. In Section 6 we prove
a new vanishing theorem that is a key ingredient for proving Theorem 3.8.
In Section 7, we state Theorem 7.2, a general result dealing with families
of linear Mahler systems associated with sufficiently independent transfor-
mations. Some preliminary results for proving Theorem 7.2 are gathered in
Section 8. Then Theorem 7.2 is proved in Section 9, while Theorems 3.3, 3.6,
3.8, and Corollaries 3.5 and 3.9 are derived from Theorem 7.2 in Section 10.
Finally, we deduce Theorem 1.1 from Theorems 3.6 and 3.8 in Section 11,
and Theorems 2.2, 2.3, and 2.4 from Theorem 1.1 in Section 12.

2. Representing numbers in independent bases

It is commonly expected that expansions of numbers in multiplicatively
independent bases, such as 2 and 10, should have no common structure.

2See Definition 3.2.
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However, it seems extraordinarily difficult to confirm this naive heuristic
principle in some way or another. In the late 1960s, Furstenberg [28, 29]
suggested a series of conjectures, which became famous, and aim to capture
this heuristic (cf. Conjecture 2.1). Despite recent remarkable progress, Con-
jecture 2.1 remains totally out of reach of the current methods. As always
when mathematicians have to face such an enormous gap between heuristic
and knowledge, it becomes essential to find out good problems. By that, we
mean problems which, on the one hand, formalize and express the general
heuristic, and, on the other hand, whose solution does not seem desperately
out of reach. While Furstenberg’s conjectures take place in a dynamical set-
ting, we use instead the language of automata theory to formulate and solve
some related problems that, hopefully, belong to the above category.

2.1. The dynamical point of view: Furstenberg’s conjecture. The
fact that Furstenberg’s conjectures take place in a dynamical setting does
not come as a great surprise for there is a well-known dictionary transferring
combinatorial properties of the expansion of a real number x in an integer
base b ≥ 2 in terms of dynamical properties of the orbit of {x} under the
map Tb defined on R/Z by x 7→ bx. Endowed with the Haar measure, the
topological dynamical system (Tb,R/Z) is ergodic. We let Ob(x) denote the
forward orbit of x under Tb, that is,

Ob(x) :=
{
x, Tb(x), T

2
b (x), . . .

}
.

If X ⊂ R, we let dimH(X) denote the Hausdorff dimension of X and X its
closure. The entropy of x with respect to the base b is defined as the topo-
logical entropy of the dynamical system (Tb,Ob(x)). One of Furstenberg’s
conjecture [29] reads as follows.

Conjecture 2.1 (Furstenberg). Let b1 and b2 be two multiplicatively inde-
pendent natural numbers, and let x ∈ [0, 1) be a real number. Then

dimH Ob1(x) + dimH Ob2(x) ≥ 1 ,

unless x is rational.

This conjecture has wonderful consequences about expansions of both real
and natural numbers. It beautifully expresses the expected balance between
the complexity of expansions of an irrational real number in two multiplica-
tively independent bases:

If x has a simple expansion in base b1, then it should have a complex
expansion in base b2.

It is easy to see that Conjecture 2.1 holds true generically. Indeed, it
follows from the ergodic theorem that

dimH Ob1(x) = dimH Ob2(x) = 1 ,

for almost all real numbers x in [0, 1). In fact, all the strength of Conjec-
ture 2.1 takes shape when x has a simple expansion in one of the two bases.
In particular, Conjecture 2.1 implies that if x has zero entropy in base b1,
then it has a dense orbit under Tb2 .

Let us illustrate this with a concrete example. The binary Thue-Morse
number τ is defined as follows. Its nth binary digit is equal to 0 if the sum
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of digits in the binary expansion of n is even, and to 1 otherwise. It is
somewhat puzzling that its decimal expansion

⟨τ⟩10 = 0.412 454 033 640 107 597 783 361 368 258 455 283 089 · · ·

seems unpredictable, while its binary expansion

⟨τ⟩2 = 0.011 010 011 001 011 010 010 110 011 010 011 001 011 · · ·

is, by definition, so regular. This intriguing phenomenon would be nicely
explained by Conjecture 2.1. Indeed, since τ has zero entropy in base 2, it
should have a dense orbit under T10, meaning that all blocks of digits should
occur in its decimal expansion.

Recently, Shmerkin [59] and Wu [62] proved that the set of exceptions to
Conjecture 2.1 has Hausdorff dimension zero. Unfortunately, this remarkable
results does not tell us anything about expansions of real numbers with zero
entropy in some base. Indeed, the set of all such real numbers has Hausdorff
dimension zero [45]. Though the works of Shmerkin and Wu mark significant
progress towards Conjecture 2.1, the latter remains far out of the reach
of current methods. Even worse, we are afraid that their result could be
essentially the best dynamical methods have to say about this conjecture.

2.2. The computational point of view: from finite automata to
Mahler’s method. From a computational point of view, there is another
relevant notion of simple number, namely the notion of automatic real num-
ber (see [14, Chapter 13]). While computable numbers can be generated by
general Turing machines, automatic numbers are those whose expansion in
some base can be generated by a finite automaton. Broadly speaking, a finite
automaton is a Turing machine without any memory tape, all its memory
being stored in the finite state control. This severe restriction justifies that
these numbers are considered as especially simple. For example, the Thue-
Morse number τ is automatic in base 2. We refer the reader to [5] and the
references therein for a discussion on these different models of computation.

In 1968, Cobham [22] first noticed the following fundamental connection
between automatic sequences and M -functions: if the sequence (an)n≥0 ∈
QN is generated by a finite automaton, then the generating function

f(z) :=
∞∑
n=0

anz
n

is an M -function. In turn, problems about transcendence and algebraic
independence of automatic real numbers can be translated and extended
to problems concerning transcendence and algebraic independence of M -
functions at algebraic points. Thanks to this connection, the apparently
unrelated Theorem 1.1 turns out to be a powerful tool for confirming our
general heuristic in this computational setting.

We first deduce from Part (i) of Theorem 1.1 the following result.

Theorem 2.2. Let b1 and b2 be two multiplicatively independent natural
numbers. A real number cannot be automatic in both bases b1 and b2, unless
it is rational.
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This result is a very special case of Conjecture 2.1 since being automatic
in some base implies having zero entropy in that base. Nevertheless, proving
Theorem 2.2 remained a real challenge. Indeed, until now, for no real number
x that is automatic in some base, it had been proved that x could not be
automatic in another independent base. We also mention that a weaker
version of Theorem 2.2 appears as Open Problems 7 in [14, Chapter 13].

In fact, Part (i) of Theorem 1.1 allows us to deduce the following much
stronger result, which has a more Diophantine flavor.

Theorem 2.3. Let r ≥ 1 be an integer. Let b1, . . . , br be multiplicatively
independent positive integers, and, for every i, 1 ≤ i ≤ r, let xi be a real
number that is automatic in base bi. Then the numbers x1, . . . , xr are alge-
braically independent over Q, unless one of them is rational.

Unlike Theorem 2.2, Theorem 2.3 is not implied by Furstenberg’s con-
jecture. Theorem 2.3 does not only imply that the Thue-Morse number τ
cannot be automatic in base 10, but also that this is the case for any number
obtained from τ by using algebraic numbers and algebraic operations (ad-
dition, multiplication, division, taking nth roots...). The case r = 1 was a
long-standing conjecture first proved by Bugeaud and the first author [4] by
means of the subspace theorem. See also [8, 53] for a recent different proof
based on Mahler’s method. So far, Theorem 2.3 was only known in that
particular case.

2.3. Representing natural numbers in independent bases. Other as-
tonishing consequences of Furstenberg’s conjecture concern expansions of
natural numbers. For instance, using an elementary construction, Fursten-
berg shown in [29] how to deduce from Conjecture 2.1 that any finite block
of digits occurs in the decimal expansion of 2n, as soon as n is large enough.
Note that, in the same vein, a conjecture of Erdös claims that the digit 2
occurs in the ternary expansion of 2n for all n > 8 (see, for instance, [26]).
These kinds of problems are notoriously difficult.

Theorem 1.1 has also valuable consequences about expansions of natural
numbers. We recall that a set E ⊂ N is q-automatic if its elements, when
written in base q, can be recognized by a finite automaton (cf. [14, Chapter
5]). In that case, the generating series

∑
n∈E z

n is an Mq-function. In this
framework, Cobham [23] proved the following famous theorem: a set E ⊂ N
that is both p- and q-automatic, where p and q are multiplicatively indepen-
dent, is necessarily periodic (i.e., the union of a finite set and finitely many
arithmetic progressions). Cobham’s theorem can be rephrased in terms of
power series as follows: if E is both p- and q-automatic, then its generating
series is a rational function.

In 1987, Loxton and van der Poorten [55] conjectured the following gener-
alization: if a power series is both an Mp-function and an Mq-function then
it is rational. This conjecture was first proved by Bell and the first author
in [2], while a different proof was given by Schäfke and Singer [57]. Very
recently, the authors of [7] even proved a stronger result also conjectured by
Loxton and van der Poorten [55]: given any Mp-function f(z) and any Mq-
function g(z), then f(z) and g(z) are algebraically independent over Q(z),
unless one of them is rational. This result refines Cobham’s theorem by
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expressing, in algebraic terms, the discrepancy between aperiodic automatic
sets associated with multiplicatively independent input bases. The proof
given in [7] is based on a suitable parametrized Galois theory associated
with linear Mahler equations and follows the strategy initiated in [6].

Part (ii) of Theorem 1.1 leads to the following significant generalization
of all the aforementioned results, providing in particular a totally new proof
of Cobham’s theorem.

Theorem 2.4. Let r ≥ 1 be an integer. For every integer i, 1 ≤ i ≤ r,
let qi ≥ 2 be an integer and fi(z) ∈ Q{z} be an Mqi-function. Assume that
q1, . . . , qr are pairwise multiplicatively independent. Then f1(z), . . . , fr(z)
are algebraically independent over Q(z), unless one of them is rational.

The case r = 1 is well-known (cf. [52, Theorem 5.1.7]), while, as previously
mentioned, the case r = 2 is much harder and was only recently proved in
[7]. So far, Theorem 2.4 was only proved in these particular cases.

Finally, let us mention that similar results have been obtained by Zannier
[63] and, more recently, by Medvedev, Nguyen, and Scanlon [46] for solutions
of some nonlinear Mahler equations of order one.

3. Mahler’s method in several variables

In this section, we state our main results concerning the study of linear
Mahler systems in several variables form the perspective of transcendental
number theory.

3.1. Mahler’s transformations and linear Mahler systems. Let n be
a positive integer and T = (ti,j)1≤i,j≤n be an n×n matrix with nonnegative
integer coefficients. Given a n-tuple of indeterminates z = (z1, . . . , zn), we
set

Tz := (z
t1,1
1 z

t1,2
2 · · · zt1,nn , . . . , z

tn,1

1 z
tn,2

2 · · · ztn,n
n ) ,

and we let also T act on Cn in a similar way. We let Q denote the field of
algebraic numbers which embeds into the field C of complex numbers, and
Q⋆

:= Q \ {0}. If K is a subfield of C, we let K{z} denote the ring of formal
power series with coefficients in K that converges in some neighborhood of
the origin.

Definition 3.1. A linear T -Mahler system, or simply a Mahler system, is a
system of functional equations of the form

(3.1)

 f1(Tz)
...

fm(Tz)

 = A(z)

 f1(z)
...

fm(z)

 ,

where A(z) ∈ GLm(Q(z)). A multivariate convergent power series f(z) ∈
Q{z} is said to be a Mahler function if it is a coordinate of a vector repre-
senting a solution to a linear Mahler system.

Definition 3.2. A point α ∈ (Q⋆
)n is said to be regular with respect to the

Mahler system (3.1) if the matrix A(z) is well-defined and invertible at T kα
for all nonnegative integers k.
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Warning. Independently of the choice of the Mahler system (3.1), there
are some unavoidable restrictions that one has to impose on the matrix
transformation T and on the algebraic point α. When these conditions are
fulfilled, the pair (T,α) is said to be admissible. We postpone the definition
of an admissible pair to Section 5, but let us just already say that, in this
respect, our results are as general as possible. With this formalism, all our
results are concerned with values at some algebraic point α of some Mahler
functions f1(z), . . . , fm(z) related by a system of the form (3.1) under the
assumption that:

(a) the pair (T,α) is admissible,
(b) α is regular with respect to (3.1).

As discussed in [1], these conditions are typical in Mahler’s method.

3.2. The lifting theorem. As a first contribution, we prove the following
result. Let us recall that a field extension L of a field K is said to be regular3

if K is algebraically closed in L and L is separable over K. If α ∈ Qn, we let
Q(z)α denote the algebraic closure of Q(z) in Q{z −α}.

Theorem 3.3 (Lifting). Let f1(z), . . . , fm(z) ∈ Q{z} be related by a system
of functional equations of the form (3.1). Let us assume that α ∈ (Q⋆

)n is
a regular point with respect to (3.1) and that the pair (T,α) is admissible.
Then for every homogeneous polynomial P ∈ Q[X1, . . . , Xm] such that

P (f1(α), . . . , fm(α)) = 0 ,

there exists a homogeneous polynomial Q ∈ Q(z)α[X1, . . . , Xm] such that

Q(z, f1(z), . . . , fm(z)) = 0 and Q(α, X1, . . . , Xm) = P (X1, . . . , Xm).

Furthermore, if Q(z)(f1(z), . . . , fm(z)) is a regular extension of Q(z), then
there exists such a polynomial Q in Q[z, X1, . . . , Xm].

Theorem 3.3 is the first result in this area that applies to all linear Mahler
systems in several variables, that is, without any restriction on the matrix
A(z).

Remark 3.4. Theorems 3.3 also applies to inhomogeneous polynomial rela-
tions, for we can always turn an inhomogeneous relation into a homogeneous
one by adding the constant function f0 ≡ 1 to the system and replacing the
matrix A(z) by 

1 0

0 A(z)

 .

As a corollary of the lifting theorem, we deduce the following multivariate
extension of Nishioka’s theorem.

3The reader will take care that we use two totally different notions of regularity in this
paper.
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Corollary 3.5. Let f1(z), . . . , fm(z) ∈ Q{z} be related by a system of the
form (3.1). Let us assume furthermore that α ∈ (Q⋆

)n is a regular point
with respect to (3.1) and that the pair (T,α) is admissible. Then

(3.2) tr.degQ(f1(α), . . . , fm(α)) = tr.degQ(z)(f1(z), . . . , fm(z)) .

Now, let us compare Theorem 3.3 and Corollary 3.5 with previous results
on the subject.

The case n = 1. In that case, the operator T takes the simple form z 7→ zq,
where q ≥ 2 is an integer, and the pair (T, α) is admissible as soon as
0 < |α| < 1. Furthermore, the field extension Q(z)(f1(z), . . . , fm(z)) is
always regular. After several partial results due to Mahler, Kubota, and
Loxton and van der Poorten, Ku. Nishioka [49] finally proved in 1990 that

tr.degQ(f1(α), . . . , fm(α)) = tr.degQ(z)(f1(z), . . . , fm(z))

for all matrices A(z) and all regular points α ∈ Q, 0 < |α| < 1. This is
certainly a landmark result in Mahler’s method, which corresponds to the
case n = 1 of Corollary 3.5. The proof of Nishioka’s theorem is based on
some technics from commutative algebra first introduced in the framework
of algebraic independence by Nesterenko. More recently, Philippon [53] and
then the authors [8] have refined Nishioka’s theorem by proving the case
n = 1 of Theorem 3.3, which we refer to as Philippon’s lifting theorem.
Similar lifting theorems have first been obtained in the framework of Siegel
E-functions by Nesterenko and Shidlovskii [47], by Beukers [19] using some
results of André [15, 16] on the theory of E-operators, and then by André [17].
A recent proof of Philippon’s lifting theorem in the spirit of [17] is also given
in [48]. In [53, 8, 48], the latter is derived from Nishioka’s theorem, while
our proof of Theorem 3.3 has little in common with these papers and [49].
In particular, it provides a new and elementary way to prove the theorems
of Nishioka and Philippon, which we have detailed in the subsequent paper
[12].

The case n ≥ 2. Unfortunately, the method used in [49] for proving Nish-
ioka’s theorem hardly generalizes to higher dimension. In 1982, Loxton and
van der Poorten [38] published a paper claiming that Equality (3.2) holds
true when the matrix A(0) is well-defined and nonsingular, the pair (T,α)
is admissible, and α is a regular algebraic point. It was the main result
published in this area, but unfortunately some argument in their proof is
flawed. This is reported, for instance, by Nishioka in [49]. In the end,
Mahler’s method in several variables has only been successfully applied to
the following two much more restricted classes of matrices. In 1977, Kubota
[33] proved that Equality (3.2) holds true when the matrix A(z) is almost
diagonal, that is, when the functions fi(z) satisfy a system of equations of
the form

1
f1(Tz)

...
fm(Tz)

 =


1 0 · · · 0

b1(z) a1(z)
...

. . .
bm(z) am(z)




1
f1(z)

...
fm(z)
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where ai(z), bi(z) ∈ Q(z) have no pole at 0, and ai(0) ̸= 0. Such systems are
precisely those arising from the study of several inhomogeneous equations of
order one. A variant of this result is due to Nishioka [51], who proved in 1996
that Equality (3.2) also holds true when the matrix A(z) is almost constant,
that is, for systems of the form

1
f1(Tz)

...
fm(Tz)

 =


1 0 · · · 0

b1(z)
... B

bm(z)




1
f1(z)

...
fm(z)


where B ∈ GLm(Q), and bi(z) ∈ Q(z) have no pole at 0. The proof of these
results (and also of the failed attempt by Loxton and van der Poorten) follow
closely the approach initiated by Mahler in [41]. We stress that, so far, this
remained the only available strategy to tackle this problem (see Section 3.4).

3.3. The two purity theorems. According to the lifting theorem, the
study of the algebraic relations between the values of Mahler functions re-
lated by a system of equations of the form (3.1) can be reduced to the easier
study of the algebraic relations between the functions themselves. However,
easier does not necessarily mean easy, and, so far, only the linear relations
between M -functions have been fully understood [8, 9]. Our second main
result is of a different nature. It states that, when evaluated at sufficiently
independent algebraic points, Mahler functions associated with transforma-
tions having the same spectral radius always behave independently. The
main feature of this result is that there is no need to check any kind of
independence between the Mahler functions under consideration.

To state this result properly, we first need some notation. Let us consider
several tuples of complex numbers

E1 = (ζ1,1, . . . , ζ1,s1), . . . , Er = (ζr,1, . . . , ζr,sr) .

With every i, 1 ≤ i ≤ r, we associate a vector of indeterminates Xi =
(Xi,1, . . . , Xi,si), and we let

AlgQ(Ei) :=
{
P (Xi) ∈ Q[Xi] : P (ζi,1, . . . , ζi,si) = 0

}
denote the ideal of algebraic relations over Q between the coordinates of Ei.
We also consider the tuple E = (ζ1,1, . . . , ζr,sr) obtained by concatenation of
the tuples Ei, and we set X := (X1, . . . ,Xr) and

AlgQ(E) :=
{
P (X) ∈ Q[X] : P (ζ1,1, . . . , ζr,sr) = 0

}
.

We say that P ∈ AlgQ(E) is a pure algebraic relation with respect to Ei if it
belongs to the extended ideal

AlgQ(Ei | E) := spanQ[X]{P (Xi) : P ∈ AlgQ(Ei)} .

Our second main result reads as follows.
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Theorem 3.6 (Purity–Independent points). Let r ≥ 2 be an integer. For
every integer i, 1 ≤ i ≤ r, let us consider a linear Mahler system

(3.3.i)

 fi,1(Tizi)
...

fi,mi(Tizi)

 = Ai(zi)

 fi,1(zi)
...

fi,mi(zi)


where Ai(zi) belongs to GLmi(Q(zi)), zi := (zi,1, . . . , zi,ni) is a tuple of inde-
terminates, and Ti is an ni × ni matrix with nonnegative integer coefficients
and with spectral radius ρ(Ti). Let αi = (αi,1, . . . , αi,ni) ∈ (Q⋆

)ni , Ei be a
subtuple of (fi,1(αi), . . . , fi,mi(αi)), and E = (E1, . . . , Er). Suppose that the
two following conditions hold.

(i) For every i, αi is regular w.r.t. (3.3.i) and (Ti,αi) is admissible.
(ii) ρ(T1) = · · · = ρ(Tr) and there is no nonzero tuple (µ1, . . . ,µr) ∈ ZN ,

N = n1 + · · ·+nr, such that (T k
1 α1)

µ1 · · · (T k
r αr)

µr = 1, for all k in
an infinite arithmetic progression.

Then

AlgQ(E) =
r∑

i=1

AlgQ(Ei | E) .

In other words, the only algebraic relations between the coordinates of E
are those that can be trivially derived from the pure algebraic relations with
respect to the coordinates of each Ei.

The first results dealing with values of Mahler functions at independent
points are due to Mahler [40] and are limited to linear independence over
Q. Some generalization are due to Kubota [33] and to Loxton and van
der Poorten [36]. All these results are restricted to the study of several
inhomogeneous equations of order one.

Remark 3.7. Condition (ii) is clearly satisfied when all the algebraic numbers
α1,1, . . . , αr,nr are multiplicatively independent.

Let us turn to our third main result. It states that values at algebraic
points of Mahler functions associated with sufficiently independent trans-
formations always behave independently. As with Theorem 3.6, the main
advantage is that there is no need to check any kind of functional indepen-
dence. Again, this result is expressed in terms of purity.

Theorem 3.8 (Purity–Independent transformations). We continue with the
notation of Theorem 3.6. Suppose that the two following conditions hold.

(i) For every i, αi is regular w.r.t. (3.3.i) and (Ti,αi) is admissible.
(ii) The spectral radii ρ(T1), . . . , ρ(Tr) are pairwise multiplicatively inde-

pendent.
Then

AlgQ(E) =
r∑

i=1

AlgQ(Ei | E) .

In 1976, Kubota [32] and van der Poorten [54], first envisaged the possibil-
ity of extending Mahler’s method in order to consider simultaneously several
Mahler systems associated with independent transformations. In [32], Kub-
ota gave a sketch of proof in a very specific case and announced a paper on
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this problem, but the latter never appeared in print. Then Loxton and van
der Poorten [37] stated some related result, but the corresponding proof is
incomplete (see [50, p. 89]). In 1987, van der Poorten [55] made this guess
more ambitious and precise, pointing out several striking consequences that
would follow from results he expected to prove in his collaboration with Lox-
ton. However, these authors did not publish any new paper on this problem.
In the end, only examples limited to the study of several inhomogeneous
equations of order one have been worked out by Nishioka [50] and Masser
[44]. In contrast, Theorem 3.8 applies to arbitrary linear Mahler systems,
and to a much larger class of transformation matrices and algebraic points.

Of course, Theorems 3.6 and 3.8 are strong statements about algebraic
independence.

Corollary 3.9. We continue with the assumptions of Theorems 3.6 or 3.8.
The following equality holds true:

tr.degQ(E) =
r∑

i=1

tr.degQ(Ei) .

Remark 3.10. In geometric terms, Theorems 3.6 and 3.8 can be rephrased
by saying that the affine Q-variety associated with the ideal AlgQ(E) is iso-
morphic to the cartesian product of the affine Q-varieties associated with
the ideals AlgQ(Ei), 1 ≤ i ≤ r. Indeed, we prove that their coordinate rings
are isomorphic. That is,

Q[X]

AlgQ(E)
∼=

Q[X1]

AlgQ(E1)
⊗Q · · · ⊗Q

Q[Xr]

AlgQ(Er)
·

3.4. Main new ingredients. As already mentioned, all previous results
concerning the transcendence theory of linear Mahler systems in several vari-
ables are very much inspired by the early work of Mahler [41]. We also start
with the same initial strategy, but we add a number of fundamental new
ingredients, including Hilbert’s Nullstellensatz, tools from ergodic Ramsey
theory, and a new vanishing theorem.

In all previous works, a crucial step consists in expressing the coordinates
of the iterated matrix Ak(z) := A(z)A(Tz) · · ·A(T k−1z) associated with
the Mahler system (3.1) in terms of linear combinations of some convergent
power series of the form gi(T

kz), possibly twisted by some multivariate expo-
nential polynomials. This is really of great importance for one can then apply
some vanishing theorems to the power series gi(z). This step has gradually
become more difficult in the aforementioned works, as the matrices under
consideration have taken a more general form. Its complexity culminated in
[10]. Unfortunately, one cannot expect to find this kind of expression when
A(z) is not regular singular in the sense of [10, Definition 1.1]. Hence this
strategy suffers from an intrinsic limitation, which prevents it from dealing
with arbitrary Mahler systems. We overcome this main deficiency by defin-
ing the so-called relation matrices in Section 8. Their existence and main
properties are obtained by means of Hibert’s Nullstellensatz and the notion
of piecewise syndetic set. Introducing these matrices is a cornerstone of
the present work and the main novelty with respect to our two unpublished
preprints [10, 11].
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In order to apply our results to transformations T and points α that are
as general as possible, it is of great importance to prove suitable vanishing
theorems. That is, results that guarantee the nonvanishing of arbitrary mul-
tivariate analytic functions at special sets of points (typically, certain subsets
of {T kα, k ≥ 0}). In the case of a single transformation, Masser [43] solved
this problem in a rather definitive way. We note that Masser’s vanishing
theorem (in fact a refinement using the notion of piecewise syndetic set) is
already strong enough to prove Theorems 3.3 and 3.6. In fact, as shown
in [12], we only need the identity theorem for reproving Nishioka’s theorem
and Philippon’s lifting theorem. Unfortunately, Masser’s vanishing theorem
is not suited to deal with Mahler systems associated with independent trans-
formations. First results towards this goal were proved by Nishioka [50] and,
again, by Masser [44]. Unfortunately, they remain too restricted for proving
Theorem 3.8. In 2005, Corvaja and Zannier [24, Theorem 3] deduced from
the subspace theorem a general result concerning the vanishing at S-units of
analytic multivariate power series with algebraic coefficients. They already
noticed that it could be relevant for Mahler’s method. Using the flexibility of
their result and the notion of piecewise syndetic set, we cook up in Section 6
our own vanishing theorem, which is specifically shaped for our purpose.

3.5. Relevance of Mahler’s formalism. To end this section, we recall
two major advantages that this multivariate formalism offers.

First, adding variables makes it possible to deal with values of M -functions
at different algebraic points. Let us give a basic example. With the function
f(z) =

∑∞
n=0 z

2n , we can associate the two variables linear T -Mahler system

(3.4)

 1
f(z21)
f(z22)

 =

 1 0 0
−z1 1 0
−z2 0 1

 1
f(z1)
f(z2)

 , where T =

(
2 0
0 2

)
.

By Theorem 5.9, the point α := (1/2, 1/3) is regular w.r.t. (3.4) and the pair
(T,α) is admissible. The key point is that the transcendence of f(z) gives
for free the algebraic independence over Q(z1, z2) of the functions f(z1) and
f(z2). By Corollary 3.5, it follows that f(1/2) and f(1/3) are algebraically in-
dependent over Q. This important principle really takes shape, and acquires
great generality, with Theorems 1.1 and 3.6.

The second advantage of Mahler’s multivariate formalism comes from the
possibility of dealing with a much larger class of one-variable functions ob-
tained by suitable specializations of Mahler functions in several variables.
Mahler’s favorite example was the family of the Hecke-Mahler functions

fω(z) =

∞∑
n=0

⌊nω⌋zn ,
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where ω is a quadratic irrational real number. Though fω(z) is not an M -
function4, we have that fω(z) = Fω(z, 1), where

Fω(z1, z2) =

∞∑
n1=0

⌊n1ω⌋∑
n2=0

zn1
1 zn2

2

is a Mahler function in two variables. In another direction, Cobham [22]
proved that generating functions of morphic sequences are specializations of
the form F (z, . . . , z) for some multivariate Mahler functions F (z1, . . . , zn).
Some related applications of our main results can be found in [11, 13].

4. Notation

We fix here some notation that we will use all along this paper. We let
N := {0, 1, 2, . . .} denote the set of nonnegative integers. Given a field K, we
let K⋆ denote the set K \ {0}. Given a field extension L of K, and elements
a1, . . . , am in L, we let tr.degK(a1, . . . , am) denote the transcendence degree
over K of the field extension K(a1, . . . , am).

4.1. Matrices and vectors. We draw the reader’s attention to the fact
that, all along this paper, we let matrices act on vectors in several different
ways.

4.1.1. Nonlinear action of matrices with nonnegative integer coefficients. Let
d be a positive integer and Md(N) denote the set of d×d matrices with non-
negative integer coefficients. The functional equations considered in Mahler’s
method involve a nonusual action of such matrices on vectors of complex
numbers (usually of algebraic numbers), as well as on vectors of indetermi-
nates. If T = (ti,j)1≤i,j≤d ∈ Md(N) and α = (α1, . . . , αd) ∈ Cd, we set

Tα := (α
t1,1
1 α

t1,2
2 · · ·αt1,d

d , . . . , α
td,1
1 α

td,2
2 · · ·αtd,d

d ) .

Similarly, given a d-tuple of indeterminates z = (z1, . . . , zd), we set

Tz := (z
t1,1
1 z

t1,2
2 · · · zt1,dd , . . . , z

td,1
1 z

td,2
2 · · · ztd,dd ) .

This action is generally not linear. In order to limit confusion as much as
possible, we will always use the letter T , adding possibly some subscripts
(i.e., using the general form T∗), when using this specific action.

4.1.2. Linear action of general matrices. For matrices which are not of the
previous sort (i.e., not of the form T∗), we keep the standard notation for
products of matrices and vectors. Let n,m, r be positive integers and K be
a field. Given A ∈ Mn×m(K) and B ∈ Mm×r(K), we write AB ∈ Mn×r(K)
for the usual linear action of matrices. In particular, if A ∈ Mn×m(K) and
x ∈ Km is a column vector (resp. x ∈ Kn a row vector), we write Ax (resp.
xA) for the usual matrix product between A and x (resp. x and A). We also
let tA ∈ Mm×n(K) denote the transpose of A. If A1, . . . , Ar are matrices

4This fact only very recently became known. It is an easy consequence of Theorem 3.8,
but it can also be obtained by combining the results in [3] and [25].
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with coefficients in K, we let A1 ⊕ · · · ⊕ Ar denote the direct sum of these
matrices. That is,

A1 ⊕ · · · ⊕Ar :=

 A1

. . .
Ar

 .

We let Mn(K) denote the set of n × n matrices with coefficients in K and
In denote the identity matrix of size n. If A ∈ Mn(C), we let ρ(A) denote
its spectral radius, that is the maximum of the modulus of its eigenvalues.

4.1.3. Warning. There are few places where we have to use the classical
linear action for some matrices of the form T∗ ∈ Md(N). First, the right
action of T∗ is always linear, that is if λ ∈ Zd is a row vector, we let λT∗
denote the usual matrix product between λ and T∗. Secondly, in Sections
5 and 6, there are few places where we have to consider the usual matrix
product between a matrix T∗ ∈ Md(N) and a vector x ∈ Cd. There we
write T∗(x), adding parentheses, in order to make a clear distinction with
the nonlinear action of T∗ as in T∗α.

4.1.4. Multidimensional powers. Let λ = (λ1, . . . , λd) and γ = (γ1, . . . , γd)
be two vectors in Nd. We define a partial order on Nd by setting λ ≤ γ
if λi ≤ γi, 1 ≤ i ≤ d. Similarly, we define a strict partial order on Nd by
setting λ < γ if λi < γi, 1 ≤ i ≤ d. When λ ≤ γ we also set(

γ

λ

)
:=

d∏
i=1

(
γi
λi

)
,

the product of binomial coefficients associated with each coordinate of λ and
γ. Given two positive integers d, h, a matrix M = (ai,j) ∈ Md,h(R) with
coefficients in some ring R, and a matrix µ = (µi,j) ∈ Md,h(Z), we set

Mµ :=

d∏
i=1

h∏
j=1

a
µi,j

i,j ,

if the product exists. In particular, if h = 1, µ = (µ1, . . . , µd) ∈ Zd and α =

(α1, . . . , αd) ∈ (Q⋆
)d, then αµ stands for αµ1

1 · · ·αµd
d . Thus, if T ∈ Md(N),

we get that (Tα)µ = αµT , where as previously mentioned Tα refers to the
nonlinear left action of T , while µT refers to the usual linear right action of
T .

4.2. Norms. We let |·| denote the 1-norm on Cd, that is |x| := |x1|+· · ·+|xd|
for x = (x1, . . . , xd) ∈ Cd, where |xi| stands for the modulus of xi. In
particular, when λ = (λ1, . . . , λd) ∈ Nd, we have |λ| = λ1 + · · · + λd. We
also let ∥ · ∥ denote the maximum norm of matrices with complex numbers,
that is the maximum of the modulus of their coefficients. This will be used
for square matrices, row vectors, and column vectors.
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4.3. Asymptotics. We use the standard Landau notation O, as well as the
usual equivalence relation ∼. We also use the notation ≫ as follows. Let
λ1, . . . , λn be some integer parameters. Writing that some property holds
true for all λ1 ≫ 1 means that it holds true for all λ1 large enough, while
writing that it holds true for all λ1 ≫ λ2, . . . , λn means that it holds true for
all λ1 that is sufficiently large w.r.t. all the parameters λ2 . . . , λn. Finally,
writing that some property holds true for all λ1 ≫ λ2 ≫ λ3 means that it
holds true for all λ1 that is sufficiently large w.r.t. λ2, assuming that λ2 is
itself sufficiently large w.r.t. λ3.

4.4. Convergent power series. Given a positive real number R and α ∈
Cd, we let

D(α, R) := {θ ∈ Cd : ∥θ −α∥ < R}
denote the open polydisc with center α and radius R. By definition, an
element g ∈ Q{z} has a unique expansion of the form

g(z) =
∑
λ∈Nd

gλz
λ ,

which converges in some neighborhood of the origin. The radius of con-
vergence of g is defined as the supremum of the positive real numbers R
such that the power series defining g is convergent on D(0, R). By [21,
Proposition 2.2], when the radius of convergence of g is finite and equal
to R0, the power series defining g is absolutely convergent on D(0, R0).
By specialization, we deduce from the Cauchy-Hadamard theorem that if
g(z) =

∑
λ∈Nd gλz

λ ∈ Q{z}, then

(4.1) |gλ| = O
(
R−|λ|

)
,

for all positive real numbers R smaller than the radius of convergence of g.

4.5. Height. We will only need some basic properties of the absolute Weil
height and we refer the interested reader to [61, Chapter 3] for more details.
Let K be a number field, [K : Q] its degree, and MK be the set of places of
K. With each place v ∈ MK, we can associate a normalized absolute value
| · |v and a positive integer dv such that the product formula holds:∏

v∈MK

|α|dvv = 1 , ∀α ∈ K⋆ .

Furthermore, this normalization ensures that the restriction of | · |v to Q
corresponds to one of the classical absolute value of Q (i.e., the classical
Archimedean absolute value or a p-adic absolute value normalized such that
|p|p = 1/p). The absolute Weil height of a point β = (β1, . . . , βd) ∈ Kd is
then defined by

H(β) :=
∏

v∈MK

max (1, |β1|v, . . . , |βd|v)dv/[K:Q] .

The value H(β) in this definition does not depend on the choice of a number
field K containing β1, . . . , βd. When d = 1 and β ∈ K, we obtain that

H(β) =
∏

v∈MK

max (1, |β|v)dv/[K:Q] .
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Given a number field K, we have the fundamental Liouville inequality (cf.
[61, p. 82]):

(4.2) log |β| ≥ −[K : Q] logH(β) , ∀β ∈ K⋆ .

4.6. Arithmetic progressions. An infinite arithmetic progression is a set
of the form a + bN with a, b ∈ N and b ̸= 0. An arithmetic progression of
length n ≥ 1 is a finite set of the form

{a, a+ b, a+ 2b, · · · , a+ (n− 1)b}

with a, b ∈ N and b ̸= 0.

5. Admissibility conditions

A well-known feature of Mahler’s method is that, independently of the
choice of the matrix A(z) defining the system (3.1), some unavoidable re-
strictions on the transformation T and on the point α are required.

Definition 5.1. Let T ∈ Mn(N) and α ∈ (Q⋆
)n. The pair (T,α) is said to

be admissible if there exist two real numbers ρ > 1 and c > 0 such that the
following three conditions hold.

(a) The coefficients of the matrix T k belong to O(ρk).
(b) Set T kα =: (α

(k)
1 , . . . , α

(k)
n ). Then log |α(k)

i | ≤ −cρk, for every integer
i, 1 ≤ i ≤ n, and all sufficiently large integers k.

(c) If f(z) ∈ C{z} is nonzero, then there are infinitely many integers k
such that f(T kα) ̸= 0.

The strength of our results strongly depends on our ability to provide
simple and natural conditions that imply Conditions (a), (b), and (c) as
they are necessary to apply Mahler’s method (see [39]). Though they appear
naturally in proofs, it is not that easy, at first glance, to see how to check
them. We provide here a simple characterization of matrices and algebraic
points satisfying these conditions, gathering results of Kubota [33], Loxton
and van der Poorten [35, 36], and mainly Masser [43].

Definition 5.2. Let T ∈ Mn(N) with spectral radius ρ(T ). We say that T
belongs to the class T if it satisfies the following three conditions.

(i) It is nonsingular.
(ii) None of its eigenvalues are roots of unity.
(iii) It has a Perron-Frobenius eigenvector, that is an eigenvector with

real positive coefficients associated with the eigenvalue ρ(T ).

Remark 5.3. If T ∈ T , then ρ(T ) > 1.

Let us recall some basic facts about matrices with nonnegative real coef-
ficients that can be found in [30]. Let T be such a matrix. Then its spectral
radius ρ(T ) is an eigenvalue of T and T always has an associated eigenvector
with nonnegative real coefficients. When such a vector has positive coef-
ficients, it is called a Perron-Frobenius eigenvector. A square matrix with
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nonnegative real coefficients is irreducible if there is no permutation of the
rows and the columns such that it has a block decomposition of the form(

A 0
B C

)
.

It follows from the Perron-Frobenius theorem [30, Chapter 2, Theorem 2]
that any irreducible matrix has a Perron-Frobenius eigenvector. In partic-
ular, it satisfies Condition (iii) of Definition 5.2. Any matrix T with non-
negative real coefficients has, after a permutation of its rows and columns, a
block decomposition of the form

T1

0
. . . 0

...
. . . . . .

0 · · · 0 Tκ

Sκ+1,1 · · · · · · Sκ+1,κ Tκ+1
...

. . . . . .
Sµ,1 · · · · · · · · · · · · Sµ,µ−1 Tµ


,

where T1, ..., Tµ are irreducible square matrices and, for each i, κ+1 ≤ i ≤ µ,
at least one of the matrices Si,j , 1 ≤ j < i, is nonzero. This decomposition
is called the normal form of T . From [30, Chapter 3, Theorem 6], T satisfies
Condition (iii) of Definition 5.2 if and only if ρ(T1) = · · · = ρ(Tκ) = ρ(T )
and ρ(Ti) < ρ(T ) for every i such that κ+ 1 ≤ i ≤ µ.

Remark 5.4. This discussion shows that there is no difficulty in checking
whether or not a given matrix T belongs to the class T . If T1, . . . , Tr ∈ T
have the same spectral radius, then T1 ⊕ · · · ⊕ Tr ∈ T . More generally, if
T1, . . . , Tr ∈ T have pairwise multiplicatively dependent spectral radii, then
there exist positive integers a1, . . . , ar, such that T a1

1 ⊕ · · · ⊕ T ar
r ∈ T .

Example 5.5. The matrices(
2 0
0 2

)
,

(
1 1
1 0

)
,

(
3 0
1 2

)
belong to T , while (

2 2
2 2

)
,

(
1 1
0 1

)
,

(
2 0
0 3

)
,

do not belong to T for they respectively do not satisfy Condition (i), (ii), or
(iii) in Definition 5.2.

Let us note the following result for future use.

Lemma 5.6. Let T ∈ T . Then, there exists a real number κ > 0 such that
for every row vector with nonnegative real coefficients λ and every integer
k ≥ 0,

|λT k| ≥ κρ(T )k|λ| .
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Proof. Let µ be a Perron-Frobenius eigenvector of T with ∥µ∥ ≤ 1 and
let κ > 0 denote the smallest coordinate of µ. Following the notation in
Section 4.1, we have T (µ) = ρ(T )µ. Then

|λT k| ≥ |λT k(µ)| = ρ(T )k|λµ| ≥ κρ(T )k|λ| ,

as wanted. □

Given a one-variable Mahler system associated with a matrix A(z), we
can consider the same system twice but with different variables. That is, the
system associated with the matrix(

A(z1) 0
0 A(z2)

)
.

This shows that some kind of minimal independence between the coordinates
of the point α = (α1, α2) is required in order to apply Mahler’s method.
Typically, we cannot consider a point of the form (α, α) in that case.

Definition 5.7. A point α ∈ (C⋆)n is said to be T -independent if there is
no nonzero n-tuple of integers µ for which (T kα)µ = 1 for all k in an infinite
arithmetic progression.

Remark 5.8. If α1, . . . , αn ∈ C⋆ are multiplicatively independent complex
numbers, then (α1, . . . , αn) is T -independent for all T ∈ T . According to
Definition 5.7, Condition (ii) of Theorem 3.6 is equivalent to the fact that
the point α := (α1, . . . ,αr) is T -independent with respect to the direct sum
T := T1 ⊕ · · · ⊕ Tr.

With these definitions, we have the following characterization of admissi-
bility, which makes our main results very convenient to apply.

Theorem 5.9. Let T ∈ Mn(N) and α ∈ (Q⋆
)n. Then the following proper-

ties are equivalent.

(i) The pair (T,α) is admissible.

(ii) T ∈ T , limk→∞ T kα = 0, and α is T -independent.

Proof of Theorem 5.9. We first prove that (ii) implies (i). Let us assume that
T belongs to T , α ∈ (Q⋆

)n is T -independent, and that limk→∞ T kα = 0.
Then there exists k0 such that ∥T k0α∥ < 1. We observe that if the pair
(T, T k0α) is admissible, then so is the pair (T,α). Thus, we can assume
without any loss of generality that ∥α∥ < 1. We set

(5.1) x := t(− log |α1|, . . . ,− log |αn|) ,

so that x is a column vector with positive coordinates. By assumption,
T has a positive eigenvector associated with the eigenvalue ρ(T ). Let us
choose such an eigenvector µ whose coordinates are all smaller than those
of x. According to the notation of Section 4.1, we use Tα for the nonlinear
action of T and T (x) for the usual linear action of T . Then we have

− log ∥T kα∥ = ∥T k(x)∥ = ∥T k(µ) + T k(x− µ)∥ > ∥T k(µ)∥ = ρ(T )k∥µ∥ ,
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for all k ∈ N, because T k(x − µ) has positive coordinates. Condition (b)
is thus satisfied with ρ = ρ(T ). By [35, Lemma 3], there exists a positive
integer h such that ∥T hk∥ = O(ρ(T )hk). Then,

∥T k∥ ≤ n∥T h−1∥ × ∥T h⌊k/h⌋∥ = O(ρ(T )h⌊k/h⌋) = O(ρ(T )k) .

Thus, Condition (a) is satisfied. Finally, Masser vanishing theorem [43]
implies that Condition (c) holds since α is T -independent. Hence, the pair
(T,α) is admissible.

Now, we prove that (i) implies (ii). Let (T,α) be an admissible pair. First,
we note that Condition (b) implies that limk→∞ T kα = 0. Secondly, we
note that Condition (c) implies that α is T -independent. Indeed, otherwise
there would exist two distinct tuples of nonnegative integers (s1, . . . , sn) and
(t1, . . . , tn) such that P (T kα) = 0 for infinitely many k, where P (z) :=
zs11 · · · zsnn - zt11 · · · ztnn , providing a contradiction with Condition (c). It thus
remains to prove that T ∈ T . Since it is proved in [33] that Condition (c)
implies that the matrix T is nonsingular and that none of its eigenvalues
is a root of unity, it only remains to prove that T has a Perron-Frobenius
eigenvector.

Replacing α by T kα for some k if necessary, we can assume without any
loss of generality that ∥α∥ < 1. As noticed in Remark 5.3, ρ(T ) > 1. Let ρ

be as in Definition 5.1. By Gelfand’s formula, ρ(T ) = limk→∞ ∥T k∥1/k and
then Condition (a) implies that ρ(T ) ≤ ρ. On the other hand, setting

c0 := min(− log |αi| : 1 ≤ i ≤ n) > 0 ,

we have

log |α(k)
i | ≥ −nc0∥T k∥ , ∀i , 1 ≤ i ≤ n , ∀k ≥ 0 .

We thus infer from Condition (b) and Gelfand’s formula that ρ ≤ ρ(T ), so
that ρ = ρ(T ). Since the coefficients of T are nonnegative integers, for every
eigenvalue ρ′ with |ρ′| = ρ, there is a root of unity µ such that ρ′ = µρ (cf.
[30, Theorem 2, p. 65 & Chapter III §4]). Replacing T by some power of T
if necessary, we can assume that ρ is larger than every other eigenvalue of T .
Let Eρ denote the eigenspace associated with ρ. Condition (a) implies that
the characteristic space associated with ρ is equal to Eρ, since otherwise the
sequence T k/ρk would not be bounded. Hence Eρ has a T -invariant vector
space complement, say Ec

ρ. From Condition (b), we infer the existence of a
real number γ > 0 such that every coordinate of T k(x) is larger than γρk,
where x is defined in (5.1). We have a decomposition

x = e+ ec, where e ∈ Eρ and ec ∈ Ec
ρ .

Suppose that there is no vector in Eρ with positive coordinates. Then,
for some j, the jth coordinate of e is nonpositive. Since T k(x) = ρke +
T k(ec), we deduce that the jth coordinate of T k(ec) is larger than γρk. Since
all eigenvalues of T on Ec

ρ are smaller than ρ, we obtain a contradiction.
This shows that T has a Perron-Frobenius eigenvector and completes the
proof. □
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6. A new vanishing theorem

As already mentioned, it is of great importance to find natural conditions
that ensure nonvanishing properties similar to Condition (c) in Definition 5.1.
Of course, our goal is to obtain a vanishing theorem that can be applied to
transformation matrices and points which are as general as possible. Our
contribution to this problem is Theorem 6.4.

6.1. Piecewise syndetic, full, and negligible sets. In the framework
of Mahler’s method, several vanishing theorems have been formulated by
saying that a nonzero multivariate power series cannot vanish at all points
in some well-structured large sets. The latter are obtained by iteration of the
transformation matrix and usually involve arithmetic progressions. In order
to prove our main theorems, we need to replace these well-structured sets by
sets which remain large but offer much more flexibility. We use the notion
of piecewise syndetic set, which is classical in Ramsey theory, especially in
its ergodic counterpart. As we just said, it can be thought of as a notion of
largeness for subsets of N. Furthermore, Brown’s lemma (see (ii) in Lemma
6.2) shows that such sets are partition regular, and thus much more robust
in terms of partitions than arithmetic progressions.

Definition 6.1. A set Z ⊂ N is said to be piecewise syndetic if there exists
a natural number B ≥ 1 such that for any given integer C ≥ 2 there exist
l1 < · · · < lC in Z such that

li+1 − li ≤ B, 1 ≤ i < C .

In this case, we say that B is a bound for Z. A set Z ⊂ N is said to be
negligible if it is not piecewise syndetic, while it is said to be full if N \ Z is
negligible.

Let us recall that a subset of N is said to be syndetic, or sometimes rel-
atively dense, if it has bounded gaps. A subset of N is said to be thick if
it contains arbitrarily long intervals. Thus piecewise syndetic sets are those
that can be obtained as the intersection of a syndetic set and a thick set. In
the rest of this section, as well as all along Section 8, we will use heavily the
following results.

Lemma 6.2. Let Z ⊂ N be a piecewise syndetic set with bound B. Then
the following properties hold.

(i) If Z ⊂ Z ′ ⊂ N, then Z ′ is also piecewise syndetic.
(ii) If Z ⊂ ∪s

i=1Zi, then at least one of the sets Zi is piecewise syndetic.
(iii) Let m0 ∈ N. The set

Z0 := {l ∈ Z : ∃m ∈ [m0,m0 +B − 1] such that l +m ∈ Z}

is piecewise syndetic.
(iv) The set Z contains arbitrarily long arithmetic progressions.
(v) Let π : Z → N be such that |π(l)− l| is bounded. The set

π(Z) = {π(l) : l ∈ Z}

is piecewise syndetic.
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Proof. Property (i) immediately follows from the definition, while Properties
(ii) and (iv) correspond to classical results respectively known as Brown’s
lemma (see [20]) and Szemerédi’s theorem [60].

Let us prove (iii). Let m0 and C ≥ 2 be two natural numbers and let a
be the smallest integer such that aB > m0. Since Z is piecewise syndetic,
there exists a sequence l1 < l2 < · · · < lC+aB of integers in Z such that
li+1 − li < B. Let i ∈ {1, . . . , C}. Then, li +m0 < li + aB ≤ li+aB. There
thus exists an integer j ≤ aB such that li +m0 ≤ li+j ≤ li +m0 + B − 1.
Hence li ∈ Z0. Thus, l1, . . . , lC all belong to the set Z0, which proves that
this set is piecewise syndetic.

Let us prove (v). Let C ≥ 2 be a natural number and let a be an integer
such that |π(l)− l| < a for every l ∈ Z. If l, l′ ∈ Z and l′ ≥ l + 2a, we have
π(l) < π(l′). Since Z is piecewise syndetic, there exists a sequence l0 < l1 <
· · · < l2aC ∈ Z with li+1 − li < B. Let ki := π(l2ai), 0 ≤ i ≤ C. Then,
ki ∈ π(Z). Since for every i, l2a(i+1) ≥ l2ai+2a, we have k0 < k1 < · · · < kC .
On the other hand, for every i, 0 ≤ i ≤ C, we have

ki+1 − ki =π(l2a(i+1))− π(l2ai)

≤|π(l2a(i+1))− l2a(i+1)|+ |l2a(i+1) − l2ai|+ |l2ai − π(l2ai)|
≤2a(B + 1)

Thus, π(Z) is a piecewise syndetic set with bound 2a(B + 1). □

Part of Lemma 6.2 can be naturally rephrased as follows.

Lemma 6.3. The following properties hold.
(i) A subset of a negligible set is negligible.
(ii) A finite union of negligible sets is negligible.
(iii) A finite intersection of full sets is full.
(iv) If Z1 is full and Z2 is negligible, then Z1 \ Z2 is full.

Proof. Property (i) follows directly from Property (i) of Lemma 6.2. Prop-
erty (ii) follows directly from Property (ii) of Lemma 6.2. Let Z1, . . . ,Zr be
full sets. For a set Z ⊂ N, we let Zc denote the set N \Z. By (ii), we obtain
that (∩Zi)

c = ∪(Zc
i ) is negligible, which proves (iii). Let us prove (iv). By

assumption, Zc
1 is negligible. By (ii), the set Z2∪Zc

1 is also negligible. Since
Z2 ∪ Zc

1 = (Z1 \ Z2)
c, we obtain that Z1 \ Z2 is full, as wanted. □

6.2. The vanishing theorem. We are now ready to state and prove our
vanishing theorem.

Theorem 6.4. Let T1, . . . , Tr be matrices in the class T whose spectral radii
ρ(T1), . . . , ρ(Tr) are pairwise multiplicatively independent. Let ni denote the
size of the matrix Ti and set N :=

∑r
i=1 ni. Set

(6.1) Θ :=

(
1

log ρ(T1)
, . . . ,

1

log ρ(Tr)

)
.

Let (kl = (k1,l, . . . , kr,l))l∈N denote a sequence of r-tuple of positive integers
such that

(6.2) kl = lΘ+O(1) .
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Let α = (α1, . . . ,αr) ∈ (Q⋆
)N be such that the pair (Ti,αi) is admissible for

every i, 1 ≤ i ≤ r, and let g(z) ∈ Q{z} be nonzero. Then the set{
l ∈ N : g(T

k1,l
1 α1, . . . , T

kr,l
r αr) = 0

}
is negligible.

Applying Mahler’s method to several Mahler systems requires some uni-
form speed of convergence to the origin for the orbits of each algebraic point
αi under the matrix transformations Ti. As noticed by van der Poorten
[55], one way to overcome this difficulty is to iterate each transformation Ti

ki-times, and to choose the iteration vector k = (k1, . . . , kr) so that asymp-
totically the matrices T ki

i have essentially the same radius of convergence.
This explains why the assumption (6.2) is natural in this framework. In the
rest of this section, we set

Tk := T k1
1 ⊕ · · · ⊕ T kr

r so that Tkα = (T k1
1 α1, . . . , T

kr
r αr).

Lemma 6.5. We continue with the notation and assumptions of Theorem
6.4. There exists a real number c > 0 such that

∥Tkl
∥ = O(el) and log ∥Tkl

α∥ ≤ −cel , ∀l ≫ 1 .

Proof. From (6.2), there exists a positive real number B, such that, for every
l ∈ N and i, 1 ≤ i ≤ r, we have ki,l = l/ log(ρ(Ti)) + ε(i, l), for some real
number ε(i, l) with |ε(i, l)| ≤ B. By Conditions (a) and (b) in Definition 5.1,
we have, on the one hand, that∥∥∥T ki,l

i

∥∥∥ = O
(
ρ(Ti)

ki,l
)
= O

(
ρ(Ti)

l/ log(ρ(Ti))+ε(i,l)
)
= O

(
el
)
,

while, on the other hand,

log
∥∥∥T ki,l

i αi

∥∥∥ ≤ −ciρ(Ti)
ki,l ≤ −ciρ(Ti)

−Bel ,

for all l large enough, where ci are positive real numbers. Setting c :=
min{c1ρ(T1)

−B, . . . , crρ(Tr)
−B}, we obtain the desired estimate. □

Before proving Theorem 6.4, we need the two following auxiliary results.
The proof of Theorem 6.4 is based on a vanishing theorem due to Corvaja
and Zannier [24, Theorem 3]. The latter states that if the set of zeros of a
multivariate analytic function with algebraic coefficients contains an infinite
sequence of S-unit points whose height does not grow too fast, then these
points all belong to a finite number of translates of tori. The goal of the
following two lemmas is to show that most points of the form Tkl

α , l ∈ N,
avoid these tori.

Lemma 6.6. We continue with the assumptions of Theorem 6.4. Let µ be
a nonzero N -tuple of integers. Then the set

Z := {l ∈ N : (Tkl
α)µ = 1}

is negligible.

Proof. We argue by contradiction, assuming that Z is piecewise syndetic.
For every pair of nonnegative integers (l,m), with m > 0, we define the
r-tuple of integers e = e(l,m) by

(6.3) e = kl+m − kl
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and we set E := {e(l,m) : l, m ∈ N}. Since by (6.2) we have kl = lΘ+O(1),
we obtain that

(6.4) e(l,m) = mΘ+O(1) ,

which shows that E is infinite. However, given any positive integer m0, the
set {e(l,m0) : l ∈ N} is finite.

Let us remark that given any pair (β1, β2) of nonzero complex numbers
that are not roots of unity, and any pair of natural numbers (i, j), 1 ≤ i <
j ≤ r, the set

E1 :=
{
e = (e1, . . . , er) ∈ E : βei

1 = β
ej
2

}
is finite. Indeed, the set of natural numbers u such that there exists a natural
number v for which βu

1 = βv
2 is an ideal of Z. Let u0 ≥ 0 be a generator of

this ideal and let v0 ∈ N be such that βu0
1 = βv0

2 . Write E1 = E2 ∪ E3 where

E2 := {e ∈ E1 : ei = 0} and E3 := {e ∈ E1 : ei ̸= 0} .

It follows from (6.4) that the set E2 is finite. Thus, we only have to prove
that E3 is finite. If u0 = 0, then ei = 0 for every e ∈ E1. Thus E3 = ∅ is a
finite set. Suppose that u0 > 0. For every (e1, . . . , er) ∈ E3, there exists an
integer a ̸= 0 such that ei = au0. We obtain that

β
ej
2 = βei

1 = βau0
1 = βav0

2 .

Since β2 is nonzero and is not a root of unity, we have ej = av0. Hence
ej/ei = v0/u0 ∈ Q. Since ei = ki,l+m − ki,l and ej = kj,l+m − kj,l, we get
that

ki,l+m − ki,l
kj,l+m − kj,l

=
v0
u0

∈ Q .

Now let us assume by contradiction that E3 is infinite. Then, there exist
arbitrarily large integers m with this property. Letting m tends to infinity, we
deduce from (6.4) that the ratio log ρ(Ti)/ log ρ(Tj) is rational. This provides
a contradiction since by assumption ρ(Ti) and ρ(Tj) are multiplicatively
independent. Hence E3 is finite and so is E1.

Let us recall that, by assumption, none of the eigenvalues of the matrices
Ti is equal to zero or to a root of unity. The previous reasoning shows that
there exists a positive integer m0 such that, for every m ≥ m0, every l ∈ N,
every eigenvalue λi of Ti, and every eigenvalue λj of Tj , i ̸= j, we have

(6.5) λei
i ̸= λ

ej
j ,

where e = e(l,m) = (e1, . . . , er). For such a vector e, set

Te := T e1
1 ⊕ · · · ⊕ T er

r .

Given a vector space V ⊂ CN , we have

V ⊂
r⊕

i=1

ιi ◦ πi(V ) ,

where we let πi : CN = Cn1+···+nr → Cni denote the projection defined
by πi(x1, . . . ,xr) = xi and ιi : Cni → CN be the canonical injection with
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respect to the decomposition CN = Cn1×· · ·×Cnr . By (6.5), if V is invariant
under Te, then

(6.6) V =
r⊕

i=1

ιi ◦ πi(V ) .

We are now ready to proceed with the proof of the lemma. Set

(6.7) x := t(logα1,1, logα1,2, . . . , logα1,n1 , logα2,1, . . . , logαr,nr) ,

where log stands for a suitable determination of the logarithm (that is,
the corresponding branch cut avoids all the coordinates of the points Tkl

α,
l ∈ N). Such a determination exists for there are uncountably many pos-
sible branch cuts while there are only countably many points to avoid. By
assumption, we have

⟨µ , Tkl
(x)⟩ = 0

for all l ∈ Z, where we let ⟨ , ⟩ denote the usual scalar product. We recall
that, according to the notation of Section 4.1, Tkl

(x) (with parentheses)
stands for the usual product between the matrix Tkl

and the column vector
x. Let U denote the orthogonal complement to the vector µ in CN . This is
a proper subspace of CN defined over Q, which contains all vectors Tkl

(x),
l ∈ Z. Given Z ′ ⊂ Z, we let U(Z ′) denote the smallest vector subspace
of CN defined over Q and containing all Tkl

(x), l ∈ Z ′. It follows that
U(Z) ⊂ U . Furthermore, if Z ′′ ⊂ Z ′, then U(Z ′′) ⊂ U(Z ′). The subspace
U(Z) having finite dimension and Z being piecewise syndetic, there exists
a subset Z1 ⊂ Z that is piecewise syndetic, and such that for all piecewise
syndetic sets Z ′ ⊂ Z1, one has U(Z ′) = U(Z1). Note that U(Z1) is nonzero
for it contains all the vectors Tkl

(x), l ∈ Z1. Let B denote a bound for Z1

and set

E0 := {e(l,m) : l ∈ Z1, l +m ∈ Z1,m ∈ [m0,m0 +B − 1]} ,

where m0 is defined as in the first part of the proof (just before (6.5)). This
is a finite set. Let

Z2 := {l ∈ Z1 : ∃m ∈ [m0,m0 +B − 1] such that l +m ∈ Z1} .

By Property (iii) of Lemma 6.2, the set Z2 is piecewise syndetic. Now, given
e ∈ E0, we set

Ze := {l ∈ Z2 : ∃m ∈ [m0,m0+B−1] such that l+m ∈ Z1 and e(l,m) = e}

so that Z2 = ∪e∈E0Ze. Since Z2 is piecewise syndetic, Property (ii) of
Lemma 6.2 ensures the existence of e = (e1, . . . , er) ∈ E0 such that Ze is
piecewise syndetic. Furthermore, Ze ⊂ Z1. Thus we obtain that

U(Ze) = U(Z1) .

We claim that the vector space U(Z1) is invariant under Te. Indeed, since
U(Z1) = U(Ze), it is enough to prove that for any l ∈ Ze, Te(Tkl

(x)) ∈
U(Z1). Let l ∈ Ze. Then, there exists m ∈ [m0,m0+B−1] such that l+m ∈
Z1 and kl+m − kl = e. Thus Te(Tkl

(x)) = Tkl+m
(x) ∈ U(Z1), as wanted.
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Hence, U(Z1) is invariant under Te. By (6.6), there is a decomposition of
the form

U(Z1) =

r⊕
i=1

ιi(Ui) ,

where, for every i, Ui = πi(U(Z1)) ⊂ Cni is a T ei
i -invariant vector space

defined over Q. Since U(Z1) is a proper subspace of CN , there exists i,
1 ≤ i ≤ r, such that Ui is a proper subspace of Cni . This vector space
being defined over Q, it has a nonzero vector ν0 ∈ Zni in its orthogonal
complement. We thus have

(6.8) ⟨ν0 , T
eiki,l
i (xi)⟩ = 0 ,

for all l ∈ Z1, where xi := πi(x). The set Z1 being piecewise syndetic, we
infer from (6.2) that the set Z3 := {ki,l : l ∈ Z1} is also piecewise synde-
tic. By Property (iv) of Lemma 6.2, it contains arbitrarily long arithmetic
progressions. Let us consider an arithmetic progression of length ni in Z3,
say

a, a+ b, a+ 2b, . . . , a+ (ni − 1)b ,

where a, b ∈ N, b ̸= 0. Let us also consider the sequence of vector spaces

V0 ⊂ · · · ⊂ Vni−1 ⊂ ν⊥
0

defined by
Vj := VectQ

{
T eia
i (xi), . . . , T

ei(a+jb)
i (xi)

}
.

Since dimVni−1 < ni, there exists j0, 0 ≤ j0 < ni − 1, such that Vj0 =

Vj0+1. The vector space Vj0 is then invariant under T eib and we get that
⟨ν0 , T

ei(a+kb)(xi)⟩ = 0 for all k ∈ N. By (6.7), this equality can be rephrased
as (

T
ei(a+kb)
i αi

)ν0

= 1 , for all k ∈ N .

Hence αi is not Ti-independent. By Theorem 5.9, this provides a contradic-
tion with the assumption that the pair (Ti,αi) is admissible. □

Lemma 6.7. We continue with the notation and assumptions of Theorem
6.4. Let γ ∈ Q⋆ and µ be a nonzero N -tuple of integers. Then the set

Z := {l ∈ N : (Tkl
α)µ = γ}

is negligible.

Proof. We argue by contradiction, assuming that Z is piecewise syndetic.
Recall that, given two integers l,m, we set e(l,m) = kl+m − kl. It follows
from (6.2) that there exists a positive integer m0 such that e(l,m) has pos-
itive coordinates for every m ≥ m0 and all l ∈ N. Let B be a bound for Z
and set

E := {e(l,m) : l ∈ Z, l +m ∈ Z, m ∈ [m0,m0 +B − 1]} .
This is a finite set. For every e ∈ E , set

Ze :=
{
l ∈ N : (Tkl

α)µ−µTe = 1
}

and

Z ′ := {l ∈ Z : ∃m ∈ [m0,m0 +B − 1] such that l +m ∈ Z} .
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Property (iii) of Lemma 6.2 implies that Z ′ is piecewise syndetic. For every
l ∈ Z ′, there exists m ∈ [m0,m0 + B − 1] such that l + m ∈ Z, so that
e(l,m) ∈ E and

(Tkl
α)µ−µTe(l,m) =

(Tkl
α)µ(

Te(l,m)+kl
α
)µ =

(Tkl
α)µ(

Tkl+m
α
)µ =

γ

γ
= 1 .

Hence l ∈ Ze(l,m). It follows that

Z ′ ⊂
⋃
e∈E

Ze .

Property (ii) of Lemma 6.2 ensures the existence of e ∈ E such that Ze is
piecewise syndetic. Fix such a vector e ∈ E . It follows from Lemma 6.6
that µ − µTe = 0. Since the coordinates of e are nonzero, we obtain a
contradiction with the assumption that none of the eigenvalues of Ti is a
root of unity. □

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. Set

Z := {l ∈ N : g(Tkl
α) = 0} .

Let K be a number field containing the coordinates of α and MK be the set
of places of K. The assumption that the pairs (Ti,αi) are admissible allows
us to apply [24, Theorem 3] to the sequence of points (Tkl

α)l∈N. In order to
apply the result of Corvaja and Zannier, we need to prove that the following
three conditions are satisfied.

(i) There exists a finite set S ⊂ MK such that the coordinates of the
algebraic points Tkl

α are S-units.
(ii) The sequence (Tkl

α)l∈N tends to 0.
(iii) One has logH(Tkl

α) = O(− log ∥Tkl
α∥), where H is the absolute

Weil height defined in Section 4.5.
Condition (i) is easy to check. We recall that, given a finite set of places S
of K, an algebraic number β is a S-unit if |β|v = 1 for all v ∈ MK \ S. Any
β ∈ K⋆ is a S-unit for some finite set S ⊂ MK and hence the elements of any
finite set of nonzero elements of K are S-units for some finite set S ⊂ MK.
Thus, there exist a finite set S0 ⊂ MK such that all the coordinates of the
vector α are S0-units. Since the set of S0-units is a multiplicative group, the
coordinates of Tkl

α are S0-units too for all l ∈ N.
Since by assumption the pairs (Ti,αi) are admissible, Theorem 5.9 implies

that the sequence (Tkl
α)l∈N tends to 0, and thus (ii) is satisfied.

Now, let us check that (iii) holds. We infer from Lemma 6.5 that

∥Tkl
∥ = O(el) and log ∥Tkl

α∥ ≤ −cel ,

for some positive real number c and all sufficiently large integers l. On the
other hand, an easy computation using basic properties of the Weil height
gives that logH(Tkl

α) = O(∥Tkl
∥). It thus follows that

logH(Tkl
α) = O(− log ∥Tkl

α∥) ,

which shows that Condition (iii) is satisfied.
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Applying [24, Theorem 3] to the sequence of algebraic points (Tkl
α)l∈N

and to the function g(z), we obtain the existence of a finite number of nonzero
N -tuples of integers µ1, . . . ,µs and of nonzero algebraic numbers γ1, . . . , γs,
such that

Z ⊂
s⋃

i=1

Zi

where
Zi := {l ∈ N : (Tkl

α)µi = γi} .

By Lemma 6.7, the sets Zi are all negligible. It thus follows from Properties
(i) and (ii) of Lemma 6.3 that Z is also negligible, which completes the
proof. □

6.3. Existence of good sequences (kl)l∈N. Theorem 6.4 can be applied
to any sequence (kl)l∈N ⊂ Nr satisfying the asymptotic

(6.9) kl = Θl +O(1) ,

where Θ is defined as in (6.1). However, in order to prove our main result
(Theorem 7.2), we will have to choose a sequence (kl)l∈N ⊂ Nr satisfying
some additional properties. Lemma 6.8 will ensure that sequences with such
properties do exist.

Let V denote the orthogonal complement to the vector Θ in Zr. That is,

V := {µ ∈ Zr : ⟨µ,Θ⟩ = 0} .
Let V ⊥ denote the orthogonal complement to V in Zr. That is,

V ⊥ := {k ∈ Zr : ⟨k,µ⟩ = 0 for all µ ∈ V } .
We also set

(6.10) V ⊥
+ := V ⊥ ∩ Nr .

Recall that the notation k1 ≤ k2 means that the vector k2−k1 has nonneg-
ative coordinates.

Lemma 6.8. We continue with the previous notation. There exists a se-
quence (kl)l∈N with values in Nr satisfying the three following conditions.

(i) kl ∈ V ⊥
+ , ∀l ∈ N.

(ii) kl = Θl +O(1).

(iii) kl ≤ kl+1 , ∀l ∈ N.

Proof. We first note that the set V could possibly be reduced to {0}; this is
the case when the numbers

1/ log ρ(T1), . . . , 1/ log ρ(Tr)

are linearly independent over the rational numbers5. In that case, one can
simply choose

kl :=

(⌊
l

log ρ(T1)

⌋
, . . . ,

⌊
l

log ρ(Tr)

⌋)
, ∀l ∈ N .

5When r > 2, it is not known whether the pairwise multiplicative independence of the
numbers ρ(Ti) implies that the reciprocals of their logarithms are linearly independent
over Q.
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In contrast, the set V ⊥ is a nonzero Z-module. Indeed, the R-vector space
generated by V ⊥ in Rr contains the vector Θ. Let e1, . . . , es be a Z-basis of
V ⊥. For all l ∈ N, there exist real numbers λ1(l), . . . , λs(l) such that

lΘ = λ1(l)e1 + · · ·+ λs(l)es .

We deduce that

(6.11) ∥lΘ− ⌊λ1(l)⌋e1 + · · ·+ ⌊λs(l)⌋es∥ ≤
s∑

i=1

∥ei∥ .

Since all coordinates of Θ are positive, there exists a nonnegative integer l0
such that, for all l ≥ l0, the vector ⌊λ1(l)⌋e1 + · · · + ⌊λs(l)⌋es has positive
coordinates. For every l ≥ l0, set

al := ⌊λ1(l)⌋e1 + · · ·+ ⌊λs(l)⌋es ∈ V ⊥
+ .

The sequence (al)l≥l0 agrees with the asymptotic (ii), but not necessarily
with the partial order ≤. Let e :=

∑s
i=1 ∥ei∥ and let θ > 0 denote the

minimum of the coordinates of the vector Θ. If l1 ≥ l0 and l2 ≥ l1 + 2e/θ,
then (6.11) implies that al1 ≤ al2 . Set b := ⌈2e/θ⌉. Let us define the
sequence (kl)l∈N ⊂ Nr by setting

kl0+lb+j := al0+lb

for l ∈ N and 0 ≤ j < b, and kl = 0 for l < l0. Then the sequence (kl)l∈N
has all the required properties. □

7. Mahler’s method in families

In this section, we state Theorem 7.2, a general lifting theorem deal-
ing with families of Mahler systems associated with sufficiently independent
transformations. Sections 8 and 9 will be devoted to the proof of this result.
In Section 10, Theorems 3.3, 3.6, and 3.8, as well as Corollary 3.9, will be
deduced from this result.

7.1. Statement of Theorem 7.2. Let r be a positive integer. For every i,
1 ≤ i ≤ r, let us consider a Mahler system

(7.1.i)

 fi,1(zi)
...

fi,mi(zi)

 = Ai(zi)

 fi,1(Tizi)
...

fi,mi(Tizi)


where ni and mi are positive integers, zi = (zi,1, . . . , zi,ni) is a vector of
indeterminates, Ti ∈ Mni(N) with spectral radius ρ(Ti), Ai(zi) belongs
to GLmi(Q(zi)), and fi,1(zi), . . . , fi,mi(zi) belong to Q{zi}. We also let
αi ∈ (Q⋆

)ni and Xi = (Xi,1, . . . , Xi,mi) denote a vector of indeterminates.
Set z := (z1, . . . ,zr) and α := (α1, . . . ,αr).

Remark 7.1. Note that one has to replace Ai(zi) by Ai(zi)
−1 to obtain a

system as in (3.1). However, it is more natural in our proof to work with
systems written in the form (7.1.i). We recall that the notation Q(z)α stands
for the algebraic closure of Q(z) in Q{z −α}.

Theorem 7.2. We continue with the above notation and assumptions. Let
us assume that the two following conditions hold.
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(i) For every i, αi is regular w.r.t. (7.1.i) and (Ti,αi) is admissible.
(ii) ρ(T1), . . . , ρ(Tr) are pairwise multiplicatively independent.

Then for every polynomial P ∈ Q[X1, . . . ,Xr] that is homogeneous with
respect to each family of indeterminates X1, . . . ,Xr, and such that

P (f1,1(α1), . . . , fr,mr(αr)) = 0 ,

there exists a polynomial Q ∈ Q(z)α[X1, . . . ,Xr], homogeneous with respect
to each family of indeterminates X1, . . . ,Xr, and such that

Q(z, f1,1(z1), . . . , fr,mr(zr)) = 0 and Q(α,X1, . . . ,Xr) = P (X1, . . . ,Xr) .

Furthermore, if Q(z)(f1,1(z1), . . . , fr,mr(zr)) is a regular extension of Q(z),
then there exists such a polynomial Q in Q[z,X1, . . . ,Xr].

7.2. Notation. We fix now some additional notation that will be used in
the proof of Theorem 7.2, that is all along Sections 8 and 9.

From now on, we assume that the following data from Theorem 7.2 are
fixed: the Mahler systems (7.1.i), the points αi ∈ (Q⋆

)ni , 1 ≤ i ≤ r (and
thus the point α = (α1, . . . ,αr)), and a polynomial P⋆ ∈ Q[X1, . . . ,Xr]
such that

(7.2) P⋆(f1,1(α1), . . . , fr,mr(αr)) = 0 .

We set

(7.3) M :=
r∑

i=1

mi and N :=
r∑

i=1

ni.

We also set
f i(zi) :=

t(fi,1(zi), . . . , fi,mi(zi)) .

Iterating k times the system (7.1.i), one obtains the new system

(7.4.i) f i(zi) = Ai,k(zi)f i(T
k
i zi) ,

where
Ai,k(zi) := Ai(zi)Ai(Tizi) · · ·Ai(T

k−1
i zi) ∀k ≥ 1 ,

and Ai,0 := Imi . By abuse of notation, we set f i(z) := f i(zi) where z =
(z1, . . . ,zr). For every r-tuple of positive integers k = (k1, . . . , kr), one can
gather the systems (7.4.i) into a single one as follows:

(7.5)

 f1(z)
...

f r(z)

 =

 A1,k1(z1)
. . .

Ar,kr(zr)


 f1(Tkz)

...
f r(Tkz)

 ,

where Tk := T k1
1 ⊕ · · · ⊕ T kr

r . Finally, we set

f(z) := t(f1(z), . . . ,f r(z))

and we let Ak(z) denote the block diagonal matrix defined so that (7.5) can
be shortened to

(7.6) f(z) = Ak(z)f(Tkz) .
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7.2.1. The matrices Rk(z). For every i, 1 ≤ i ≤ r, we let di denote the total
degree of P⋆ with respect to the indeterminates Xi = (Xi,1, . . . , Xi,mi). Let t
denote the number of distinct vectors (µ1,1, . . . , µ1,m1 , µ2,1, . . . , µr,mr) ∈ NM

such that
µi,1 + · · ·+ µi,mi = di , ∀i, 1 ≤ i ≤ r .

We let µ1, . . . ,µt denote an enumeration of these vectors. For every i, 1 ≤
i ≤ r, let Bi denote an mi×mi matrix with coefficients in some commutative
ring R, and set B := B1 ⊕ · · · ⊕ Br. According to the notation of Section
4.1.4, given a column vector of M indeterminates X := t(X1, . . . ,Xr), we
note that (BX)µj ∈ R[X] is a homogeneous polynomial of degree di in each
set of variables Xi. We let Rj,l(B) denote the elements of R defined by

(7.7) (BX)µj =

t∑
l=1

Rj,l(B)Xµl .

We also set R(B) := (Rj,l(B))1≤j,l≤t. Let C be another M × M block
diagonal matrix. Then, it follows from (7.7) that, for every j, 1 ≤ j ≤ t,

t∑
l=1

Rj,l(BC)Xµl = (BCX)µj =
t∑

k=1

Rj,k(B)(CX)µk

=

t∑
l=1

t∑
k=1

Rj,k(B)Rk,l(C)Xµl .

Thus,

(7.8) R(BC) = R(B)R(C)

and, in particular,

(7.9) R(B)−1 = R(B−1)

when B is invertible.
Using the previous notation, we define, for every k ∈ Nr, the matrix

(7.10) Rk(z) := R(Ak(z)) ∈ Mt(Q(z)) .

One has R0(z) = It and, given k,k′ ∈ Nr, it follows from (7.8) that

(7.11) Rk+k′(z) = Rk(z)Rk′(Tkz) .

Lemma 7.3. The matrix Rk(α) is well-defined and invertible for all k ∈ Nr.

Proof. Let k ∈ Nr. Since, for each i, the point αi is assumed to be regular
with respect to Ai, the matrix Ak is well-defined and invertible at α. We
thus infer from (7.9) and (7.10) that Rk(α) is well-defined and invertible,
with inverse R(Ak(α)−1). □

7.2.2. Choice of the sequence (kl)l∈N. Since the Mahler systems (7.1.i), 1 ≤
i ≤ r, have been fixed, the associated transformations T1, . . . , Tr are fixed
too. As in Section 6, we define the vector

Θ :=

(
1

log ρ(T1)
, . . . ,

1

log ρ(Tr)

)
and then the corresponding set V ⊥

+ (cf. Section 6.3).
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Definition 7.4. We define (kl)l∈N as a fixed sequence in Nr satisfying the
three following conditions.

(i) kl ∈ V ⊥
+ , ∀l ∈ N.

(ii) kl = Θl +O(1).

(iii) kl ≤ kl+1 , ∀l ∈ N.

By Lemma 6.8, sequences satisfying the properties of Definition 7.4 do
exist, so that Definition 7.4 makes sense. This sequence will remain fixed all
along Sections 8 and 9.

8. Hilbert’s Nullstellensatz and relation matrices

In this section, we gather some preliminary results needed for proving
Theorem 7.2. In particular, we introduce the so-called relation matrices and
study some of their properties.

Let Y = (yi,j)1≤i,j≤t denote a matrix of indeterminates. Given a field K
and a nonnegative integer δ1, we let K[Y ]δ1 denote the set of polynomials of
degree at most δ1 in every indeterminate yi,j . Given two nonnegative integers
δ1 and δ2, we let K[Y , z]δ1,δ2 denote the set of polynomials P ∈ K[Y , z] of
degree at most δ1 in every indeterminate yi,j and of total degree at most δ2
in the indeterminates zi,j .

Let (kl)l∈N be the sequence of Definition 7.4. By Theorem 6.4, every
polynomial P (Y , z) ∈ Q(z)[Y ] is well-defined at the point (Rkl

(α), Tkl
α)

for all l in a full subset of N. Set
(8.1)

I := {P ∈ Q(z)[Y ] : P (Rkl
(α), Tkl

α) = 0 , ∀l in a full subset of N} .

Piecewise syndetic, negligible, and full sets were introduced in Definition 6.1.

8.1. Estimates for the dimension of certain vector spaces. Let δ1 and
δ2 be two nonnegative integers. Set I(δ1) := I ∩Q(z)[Y ]δ1 and I(δ1, δ2) :=
I ∩ Q[Y , z]δ1,δ2 . Note that I(δ1, δ2) is a Q-vector subspace of Q[Y , z]δ1,δ2 .
Let Ic(δ1, δ2) denote a complement vector space in Q[Y , z]δ1,δ2 , that is

I(δ1, δ2)⊕ Ic(δ1, δ2) = Q[Y , z]δ1,δ2 .

We recall that N = n1+ · · ·+nr is the number of distinct variables zi,j which
form the coordinates of z.

Lemma 8.1. Let d(δ1, δ2) denote the dimension of Ic(δ1, δ2). There exists
a positive real number c1(δ1), that does not depend on δ2, such that

d(δ1, δ2) ∼ c1(δ1)δ
N
2 , as δ2 tends to infinity.

Proof. Let h := (δ1 + 1)t
2 denote the number of distinct monomials of de-

gree at most δ1 in every indeterminates yi,j and let Y ν1 , . . . ,Y νh denote an
enumeration of these monomials. Let P1, . . . , Ph be polynomials in I(δ1).
Every Pi has a unique decomposition of the form

Pi(Y , z) =

h∑
j=1

pi,j(z)Y
νj ,
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where pi,j(z) ∈ Q(z), 1 ≤ i, j ≤ h. Consider the square matrix C(z) :=
(pi,j(z))1≤i,j≤h. By Theorem 6.4, C(z) is well-defined at Tkl

α for all l in a
full set Z0 ⊂ N. For every i, 1 ≤ i ≤ h, let Zi denote the set of nonnegative
integers l such that Pi(Rkl

(α), Tkl
α) = 0. Since P1, . . . , Ph ∈ I(δ1), the sets

Z1, . . . ,Zh are full. By Property (iii) of Lemma 6.3, the set Z :=
⋂h

i=0Zi is
full. For every l ∈ Z, one has

(8.2) C(Tkl
α)

 Rkl
(α)ν1

...
Rkl

(α)νh

 =

 P1(Rkl
(α), Tkl

α)
...

Ph(Rkl
(α), Tkl

α)

 = 0 .

By Lemma 7.3, the matrix Rkl
(α) is invertible. In particular it is nonzero.

Hence the vector (Rkl
(α)ν1 , . . . ,Rkl

(α)νh) is also nonzero, and we deduce
from (8.2) that detC(Tkl

α) = 0 for all l ∈ Z. Since Z is not negligible,
Theorem 6.4 implies that detC(z) = 0. Hence I(δ1) is a strict subspace
of Q(z)[Y ]δ1 , say of dimension d < h. Thus, there exist h − d linear forms
ℓ1, . . . , ℓh−d : Q(z)[Y ]δ1 → Q(z), linearly independent over Q(z) and such
that

(8.3) P ∈ I(δ1) ⇐⇒ ℓ1(P ) = · · · = ℓh−d(P ) = 0 .

For any i, 1 ≤ i ≤ h− d, we have a decomposition

ℓi

 h∑
j=1

pj(z)Y
νj

 =

h∑
j=1

bi,j(z)pj(z) .

Without any loss of generality, we can assume that bi,j(z) ∈ Q[z], 1 ≤
i ≤ h − d, 1 ≤ j ≤ h, and we let c(δ1) ≥ 0 denote the maximum of the
total degree of the polynomials bi,j(z). It follows from (8.3) that, for all
p1(z), . . . , ph(z) ∈ Q(z),

(8.4)
h∑

j=1

pj(z)Y
νj ∈ I(δ1) ⇐⇒

h∑
j=1

bi,j(z)pj(z) = 0 ∀i, 1 ≤ i ≤ h− d .

The fact that ℓ1, . . . , ℓh−d are linearly independent over Q(z) implies that,
for any q1(z), . . . , qh−d(z) ∈ Q(z),
(8.5)

h−d∑
i=1

qi(z)bi,j(z) = 0 , ∀j, 1 ≤ j ≤ h ⇐⇒ qi(z) = 0 , ∀i, 1 ≤ i ≤ h− d .

Now, let us consider a polynomial P =
∑h

j=1 pj(z)Y
νj ∈ Q[Y , z]δ1,δ2 . We

have decompositions

pj(z) =
∑

λ : |λ|≤δ2

pj,λz
λ and bi,j(z) =

∑
κ : |κ|≤c(δ1)

bi,j,κz
κ ,
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where the numbers pj,λ and bi,j,κ are algebraic for all quadruples (i, j,λ,κ).
By (8.4), we obtain that

P ∈ I(δ1, δ2) ⇐⇒(8.6)
h∑

j=1

∑
|λ|≤δ2,|κ|≤c(δ1)

λ+κ=γ

bi,j,κpj,λ = 0 , ∀(i,γ), 1 ≤ i ≤ h− d, |γ| ≤ δ2 + c(δ1) .

Let Γ(δ1, δ2) denote the set of γ ∈ NN whose coordinates are all larger than
c(δ1) and such that |γ| ≤ δ2. Let V (δ1, δ2) be the Q-vector subspace of the
dual of Q[Y , z]δ1,δ2 spanned by the linear forms

(8.7) Li,γ : P 7→
h∑

j=1

∑
|λ|≤δ2,

bi,j,γ−λpj,λ , 1 ≤ i ≤ h− d , γ ∈ Γ(δ1, δ2) ,

where we let bi,j,γ−λ = 0 if γ − λ /∈ NN or |γ − λ| > c(δ1). We infer from
(8.6) and (8.7) that

(8.8) dimV (δ1, δ2) ≤ dim Ic(δ1, δ2) ≤ dimV (δ1, δ2) +O(δN−1
2 ) ,

where the underlying constant in O depends on δ1 but not on δ2.
Now, let us estimate the dimension of V (δ1, δ2). We first prove that all

the linear forms Lγ,i, 1 ≤ i ≤ h − d, γ ∈ Γ(δ1, δ2) are linearly independent
over Q. Let qi,γ be algebraic numbers such that

h−d∑
i=1

∑
γ∈Γ(δ1,δ2)

qi,γLi,γ = 0 .

Then, for every j, 1 ≤ j ≤ h, and every λ, |λ| ≤ δ2, we have
h−d∑
i=1

∑
γ∈Γ(δ1,δ2)

qi,γbi,j,γ−λ = 0 .

Set qi(z) :=
∑

γ∈Γ(δ1,δ2) qi,γz
−γ ∈ Q(z). Then, for every j, 1 ≤ j ≤ h, we

obtain that
h−d∑
i=1

qi(z)bi,j(z) =

h−d∑
i=1

∑
γ∈Γ(δ1,δ2)

∑
|κ|≤c(δ1)

qi,γbi,j,κz
κ−γ

=
h−d∑
i=1

∑
γ∈Γ(δ1,δ2)

∑
|λ|≤δ2

qi,γbi,j,γ−λz
−λ

=
∑

|λ|≤δ2

z−λ

h−d∑
i=1

∑
γ∈Γ(δ1,δ2)

qi,γbi,j,γ−λ

 = 0 .

It follows from (8.5) that qi(z) = 0 for all i. Hence qi,γ = 0 for all (i,γ),
which proves that the linear forms Li,γ are linearly independent over Q. By
definition of V (δ1, δ2) (cf. (8.7)), we obtain that

dimV (δ1, δ2) = (h− d)× Card(Γ(δ1, δ2)) .
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Now, since the map γ 7→ γ − (c(δ1), . . . , c(δ1)) induces a bijection between
Γ(δ1, δ2) and {γ : |γ| ≤ δ2 − c(δ1)}, we have

Card(Γ(δ1, δ2)) =

(
δ2 − c(δ1) +N + 1

N

)
∼ 1

N !
δN2 , as δ2 → ∞ .

We thus obtain that

(8.9) dimV (δ1, δ2) ∼ c1(δ1)δ
N
2 ,

with c1(δ1) = (h− d)/N ! > 0 (we recall that h and d depend only on δ1 and
that d < h). Finally, we infer from (8.8) that

dim Ic(δ1, δ2) ∼ c1(δ1)δ
N
2 ,

as wanted. This ends the proof. □

Lemma 8.2. For every pair of nonnegative integers (δ1, δ2), one has

dim Ic(2δ1, δ2) ≤ 2t
2
dim Ic(δ1, δ2) .

Proof. Let P (Y , z) ∈ Q[Y , z]2δ1,δ2 . Such a polynomial has a decomposition
of the form

(8.10) P (Y , z) =

t2∑
ℓ=1

eℓ(Y )δ1Pℓ(Y , z) ,

where we let eℓ(Y ) denote the 2t
2 monomials of degree at most one in the

indeterminates yi,j , and where each Pℓ(Y , z) belongs to Q[Y , z]δ1,δ2 . If,
in such a decomposition, every polynomial Pℓ belongs to I(δ1, δ2), then P
belongs to I(2δ1, δ2). The decomposition (8.10) naturally defines a surjec-

tive linear map from
(
Q[Y , z]δ1,δ2/I(δ1, δ2)

)2t2 to Q[Y , z]2δ1,δ2/I(2δ1, δ2).
It follows that

dimQ Ic(2δ1, δ2) ≤ 2t
2
dimQ Ic(δ1, δ2) ,

as wanted. □

8.2. Nullstellensatz and relation matrices. In this section, we show how
Hilbert’s Nullstellensatz allows us to exhibit a matrix ϕ, called a relation ma-
trix, whose coordinates are all algebraic over Q(z), and which encodes the
algebraic relations over Q(z) of degree at most di in each variables between
the functions f1,1(z), . . . , fr,mr(z). These relation matrices are the corner-
stone of the proof of Theorem 7.2.

We first prove the following lemma.

Lemma 8.3. The set I is a radical ideal of Q(z)[Y ].

Proof. Checking that I is an ideal of Q(z)[Y ] is not difficult. If P1, P2 ∈
I, and if Z1 (resp. Z2) are full sets of nonnegative integers l for which
P1(Rkl

(α), Tkl
α) = 0 (resp. P2(Rkl

(α), Tkl
α) = 0), then P1 + P2 vanishes

at the points (Rkl
(α), Tkl

α) for all l ∈ Z1∩Z2. By Property (iii) of Lemma
6.3, this set is full. Hence P1 + P2 ∈ I.

Now let P1 ∈ I and P2 ∈ Q(z)[Y ]. On the one hand, P1(Rkl
(α), Tkl

α) =
0 for all l in a full set Z1, while, on the other hand, Theorem 6.4 ensures
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that P2(Y , z) is well-defined at (Rkl
(α), Tkl

α) for all nonnegative integers
l outside a negligible set Z2. We deduce that

P1(Rkl
(α), Tkl

α)P2(Rkl
(α), Tkl

α) = 0

for all l ∈ Z1 \ Z2. By Property (iv) of Lemma 6.3, this is a full set. Hence
P1P2 ∈ I.

Let P ∈ Q(z)[Y ] be such that P r ∈ I for some r. If l is a nonnegative
integer such that P (Rkl

(α), Tkl
α)r = 0, then P (Rkl

(α), Tkl
α) = 0. Hence

P ∈ I and I is a radical ideal. □

Let K denote an algebraic closure of Q(z).

Lemma 8.4. There exists a matrix ϕ ∈ GLt(K) such that

P (ϕ, z) = 0 ,

for all polynomials P ∈ I.

Proof. Let us consider the affine algebraic set V associated with the radical
ideal I. That is,

V := {ϕ ∈ Mt(K) : P (ϕ, z) = 0 , ∀P ∈ I} .

According to the weak form of Hilbert’s Nullstellensatz (see, for instance,
[34, Theorem 1.4, p. 379]), V is nonempty as soon as I is a proper ideal
of Q(z)[Y ]. But the definition of I clearly implies that nonzero constant
polynomials do not belong to I. Hence V is nonempty.

Now, let us assume by contradiction that detϕ = 0 for all ϕ in V. By
Hilbert’s Nullstellensatz (see, for instance, [34, Theorem 1.5, p. 380]), the
polynomial detY belongs to the radical of the ideal I. Hence detY ∈ I
for I is radical. Thus, detRkl

(α) = 0 for all l in a full set. This provides
a contradiction since by Lemma 7.3 the matrix Rkl

(α) is invertible for all
l in N. We thus deduce that there exists an invertible matrix ϕ in V, as
wanted. □

Definition 8.5. A matrix ϕ ∈ GLt(K) satisfying the property of Lemma
8.4 is called a relation matrix.

The next lemma plays a central role in the proof of Theorem 7.2. We
recall that the set V ⊥

+ is defined in Section 7.2.2 (see also Equality (6.10)).

Lemma 8.6. Let ϕ ∈ GLt(K) be a relation matrix. Then

P (ϕRk(z), Tkz) = 0 ,

for all P ∈ I and all k ∈ V ⊥
+ .

Proof. Since the set S of polynomials P ∈ Q[z] that does not vanish at any of
the points Tkα, k ∈ Nr is multiplicatively closed, the localization of Q[z] at
S is a Noetherian ring, say A := S−1Q[z] (see, for instance, [34, Proposition
1.6, p. 415]). The ring A is the subring of Q(z) made of the rational functions
which are well-defined at Tkα for all k ∈ Nr. Since by assumption each of
the points α1, . . . ,αr is regular with respect to the corresponding Mahler
system (7.1.i), the coefficients of the matrices Rk(z), k ∈ Nr, belong to the
ring A. With any piecewise syndetic set Z ⊂ N, we associate the set
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IZ := {P ∈ A[Y ] : P (Rkl
(α), Tkl

α) = 0 , ∀l ∈ Z} .

The proof is divided into the following seven simple results, namely Facts
1 to 7.

Fact 1. The set IZ is an ideal of A[Y ].

Let P1, P2 ∈ IZ . Then P1 + P2 vanishes at (Rkl
(α), Tkl

α) for all l ∈ Z.
Hence P1+P2 ∈ IZ . Let P1 ∈ IZ and P2 ∈ A[Y ]. Then P1(Rkl

(α), Tkl
α) =

0 for all l ∈ Z. On the other hand, by definition of A, P2(Y , z) has no pole
at (Rkl

(α), Tkl
α), l ∈ N. It follows that P1P2 vanishes at (Rkl

(α), Tkl
α)

for all l ∈ Z. Hence P1P2 ∈ IZ , which proves Fact 1.

If Z ′ is a piecewise syndetic set such that Z ′ ⊂ Z ⊂ N, one has IZ ⊂ IZ′ .
Since A is Noetherian, A[Y ] is Noetherian too and any increasing sequence
of ideals is stationary. Thus, for every piecewise syndetic set Z ⊂ N, there
exists a piecewise syndetic set Z0 ⊂ Z such that IZ1 = IZ0 for all piecewise
syndetic sets Z1 ⊂ Z0. For Facts 2 to 7, we fix such a pair of sets (Z,Z0).

Fact 2. There exist infinitely many r-tuples k ∈ V ⊥
+ such that

(8.11) Z0(k) := {l ∈ Z0 : ∃l′ ∈ Z0, kl′ − kl = k}

is a piecewise syndetic set.

Let B be a bound for Z0 and e ≥ 0 be an integer. We set

Ke := {kl′ − kl : (l, l
′) ∈ Z2

0 , l
′ − l ∈ [e, e+B − 1]} .

Since kl,kl′ ∈ V ⊥
+ and kl ≤ kl′ , Ke ⊂ V ⊥

+ . Furthermore, it follows from
Property (ii) of Definition 7.4 that Ke is finite. Consider the set

Ze := {l ∈ Z0 : ∃l′ ∈ Z0 , l
′ − l ∈ [e, e+B − 1]} .

By Property (iii) of Lemma 6.2, Ze is piecewise syndetic. Since

Ze ⊂
⋃

k∈Ke

Z0(k) ,

it follows from Property (ii) of Lemma 6.2 that at least one of the sets Z0(k),
k ∈ Ke, is piecewise syndetic. When e′ ≫ e, then Ke′∩Ke = ∅. Thus, letting
e run through N, we obtain that there exist infinitely many k ∈ V ⊥

+ such
that Z0(k) is piecewise syndetic. This proves Fact 2.

Now, let

K := {k ∈ V ⊥
+ : Z0(k) is piecewise syndetic} .

It follows from Fact 2 that K is an infinite set. Note that if k ∈ K, then the
set Z0(k) is nonempty and thus the definition of Z0(k) implies the existence
of l, l′ ∈ Z0 such that k = kl′−kl. Hence every element of K can be expressed
as the difference of two elements of the sequence (kl)l∈N. By Property (ii)
of Definition 7.4, all elements of K remain at a bounded distance from RΘ.

Fact 3. The Z-module generated by K in Zr is equal to V ⊥.
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Let W denote the Z-module generated by K in Zr. It is enough to show
that W⊥, its orthogonal complement in Zr, is equal to V . Since W ⊂ V ⊥,
we have V ⊂ W⊥. Let us prove the reverse inclusion. Let λ ∈ W⊥. Then λ
is orthogonal to all k ∈ K. Renormalizing, we have that〈

λ,
k

|k|

〉
= 0 ,

for all nonzero k ∈ K. Since K is infinite and all elements of K remain at
a bounded distance from RΘ, taking the limit along a sequence of vectors
k ∈ K whose norm tends to infinity, we deduce that λ is orthogonal to Θ.
Hence, λ ∈ V . This proves Fact 3.

Given k ∈ V ⊥
+ , we define an action from the (additive) monoid V ⊥

+ to
A[Y ] by:

σk :

{
A[Y ] → A[Y ]

P (Y , z) 7→ P (Y Rk(z), Tkz) .

Note that the map σk is well-defined. Indeed, we already observed that the
coordinates of Rk(z) belong to the ring A for all k ∈ Nr. Furthermore, it
follows from (7.11) that, for any k,k′ ∈ V ⊥

+ ,

(8.12) σk+k′ = σk ◦ σk′ .

Fact 4. For all k ∈ K, σk(IZ0) ⊂ IZ0 .

Let P ∈ IZ0 , k ∈ K, and l ∈ Z0(k). Let l′ ∈ Z0 be such that kl′ = k+kl.
Then, we have

σk(P )(Rkl
(α), Tkl

(α)) = P (Rkl
(α)Rk(Tkl

α), TkTkl
α)

= P (Rkl+k(α), Tk+kl
α)

= P (Rkl′ (α), Tkl′α)

= 0 .

Thus, σk(P ) belongs to the ideal IZ0(k). Since Z0(k) is piecewise syndetic,
IZ0(k) = IZ0 . This proves Fact 4.

Fact 5. Let P ∈ IZ0 be such that P = σk(Q) for some Q ∈ A[Y ] and
k ∈ K. Then Q ∈ IZ0 .

Consider a map π : Z0(k) → N which sends every integer l ∈ Z0(k) to
an integer l′ ∈ Z0 such that kl′ = kl + k. It follows from Property (ii) of
Definition 7.4 that |π(l) − l| is bounded. Since Z0(k) is piecewise syndetic,
we infer from Property (v) of Lemma 6.2 that the set

π(Z0(k)) = {π(l) : l ∈ Z0(k)}
is piecewise syndetic. By minimality, we obtain Iπ(Z0(k)) = IZ0 . Let l′ ∈
π(Z0(k)) and let l ∈ Z0(k) ⊂ Z0 be such that kl′ = kl + k. Then

Q(Rkl′ (α), Tkl′α) = Q(Rkl+k(α), Tk+kl
α)

= Q(Rkl
(α)Rk(Tkl

α), TkTkl
α)

= σk(Q)(Rkl
(α), Tkl

(α))

= P (Rkl
(α), Tkl

(α))

= 0 .

Thus, Q ∈ Iπ(Z0(k)) = IZ0 . This proves Fact 5.
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Fact 6. For all k ∈ V ⊥
+ , σk(IZ0) ⊂ IZ0 .

Let k ∈ V ⊥
+ and P ∈ IZ0 . By Fact 3, there is a decomposition of the form

k = a1 + · · ·+ au − au+1 − · · · − av

with a1, . . . ,av ∈ K. Using recursively Fact 4 with σa1 , . . . , σau , we de-
duce from (8.12) that σa1+···+au(P ) ∈ IZ0 . On the other hand, we have
σau+1+···+av(σk(P )) = σa1+···+au(P ) ∈ IZ0 . Using recursively Fact 5 with
σau+1 , . . . , σav and (8.12) we obtain that σk(P ) ∈ IZ0 . This proves Fact 6.

Fact 7. One has IZ0 ⊂ I.

Let l0 ∈ N denote the smallest element in Z0. Let P ∈ IZ0 and let l ≥ l0
be an integer. Properties (i) and (iii) of Definition 7.4 imply that kl0 ≤ kl

and kl0 ,kl ∈ V ⊥
+ . Hence kl−kl0 ∈ V ⊥

+ . Set Q := σkl−kl0
(P ). By Fact 6, we

obtain that Q ∈ IZ0 . Since l0 ∈ Z0, we have

P (Rkl
(α), Tkl

α) = Q(Rkl0
(α), Tkl0

α) = 0 .

Hence P vanishes at (Rkl
(α), Tkl

α), for all l ≥ l0. This proves Fact 7.

We are now ready to conclude the proof of Lemma 8.6. Let P ∈ I,
ϕ ∈ GLt(K) be a relation matrix, and k ∈ V ⊥

+ . Let b(z) ∈ Q[z] be
a nonzero polynomial such that b(z)P (Y , z) ∈ Q[z,Y ]. In particular,
b(z)P (Y , z) ∈ I ∩ A[Y ]. Let Z be the set of integers l ≥ 0 for which
b(Tkl

α)P (ϕRkl
(α), Tkl

α) = 0. Since bP ∈ I, Z is full and hence piece-
wise syndetic. There thus exists a piecewise syndetic set Z0 ⊂ Z satisfying
Facts 2 to 7. By definition, b(z)P (Y , z) ∈ IZ0 . By Fact 6, we also have
σk(bP ) ∈ IZ0 . By Fact 7, we deduce that σk(bP ) ∈ I. Then, we infer from
Lemma 8.4 that

b(Tkz)P (ϕRk(z), Tkz) = σk(bP )(ϕ, z) = 0 .

Since Tk is nonsingular and b(z) ̸= 0, we obtain P (ϕRk(z), Tkz) = 0, which
completes the proof. □

8.3. Analyticity of relation matrices. Let ϕ be a relation matrix. All
coordinates of ϕ being algebraic over Q(z), they generate a finite extension
of Q(z). Let k ⊂ K denote this extension and let γ ≥ 1 be the degree of k.
Choosing a primitive element π in k, we obtain a decomposition of the form

(8.13) ϕ =

γ−1∑
j=0

ϕj(z)π
j ,

where the matrices ϕj(z), 0 ≤ j ≤ γ − 1, have coefficients in Q(z). The
field K is a priori an abstract algebraic closure of Q(z), but we can easily
reduce the situation to the case where the coordinates of ϕ are analytic at
some suitable point Tkl0

α.

Lemma 8.7. We continue with the previous notation. There exist an integer
l0 ≥ 0, a neighborhood V of Tkl0

α, and a function φ(z) that is analytic on
V and algebraic over Q(z) such that the following properties holds.

(a) ∥Tkl0
α∥ < 1.

(b) Tkl0
α belongs to the disc of convergence of f1,1(z), . . . , fr,mr(z).
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(c) The matrix

ϕ(z) :=

γ−1∑
j=0

ϕj(z)φ(z)
j ∈ GLt(Mer(V))

is a relation matrix. That is, it satisfies Lemmas 8.4 and 8.6.
(d) For every j, 0 ≤ j ≤ γ − 1, the coordinates of the matrix ϕj(z) are

analytic on V and the matrix ϕ(Tkl0
α) is invertible.

Proof. By Theorem 5.9, liml→∞ Tkl
α = 0. This ensures that (a) and (b) are

satisfied when l0 is large enough.
Let P (z, y) ∈ Q[z, y] denote the minimal polynomial of π and let D(z) ∈

Q[z] denote the discriminant of P , seen as a polynomial in the variable y.
Since ϕ is a relation matrix, detϕ is nonzero and algebraic over Q(z). There
thus exist polynomials q0(z), . . . , qν(z) ∈ Q[z], q0(z) ̸= 0, such that

(8.14) q0(z) = q1(z) detϕ+ q2(z) detϕ
2 + · · ·+ qν(z) detϕ

ν .

Let d(z) be the least common multiple of the denominators of the coefficients
of the matrices ϕ0(z), . . . ,ϕγ−1(z). Since the polynomial D(z)q0(z)d(z) is
nonzero, Theorem 6.4 ensures the existence of a full set E ⊂ N such that

D(Tkl
α)q0(Tkl

α)d(Tkl
α) ̸= 0 , ∀l ∈ E .

Let l0 ∈ E be large enough to guarantee that (a) and (b) hold. Since
D(Tkl0

α) ̸= 0, the implicit function theorem (see, for instance, [21, Proposi-
tion 6.1, p. 138]) implies that there exists a function φ(z) that is analytic on
a neighborhood of Tkl0

α, say V0, and such that P (z, φ(z)) = 0. Note that
there is a Q(z)-isomorphism between the field Q(z, π) and Q(z, φ(z)). We
thus deduce that the matrix ϕ(z) :=

∑γ−1
j=0 ϕj(z)φ(z)

j satisfies the prop-
erties of Lemmas 8.4 and 8.6. Furthermore, as detϕ ̸= 0, we also deduce
that detϕ(z) ̸= 0. Hence ϕ(z) ∈ GLt(Mer(V0)). Finally, we deduce that
detϕ(z) also satisfies Equation (8.14). Since q0(Tkl0

α) ̸= 0, we get that
detϕ(Tkl0

α) ̸= 0. Hence the matrix ϕ(Tkl0
α) is invertible. Furthermore,

since d(Tkl0
α) ̸= 0, the coordinates of ϕj(z) are analytic on some neigh-

borhood of Tkl0
α, say V1. Finally, setting V := V0 ∩ V1, we obtain that

Properties (a)–(d) are satisfied. □

9. Proof of Theorem 7.2

We continue with the notation of Sections 7 and 8. We recall that P⋆ ∈
Q[X1, . . . ,Xr], defined in Section 7.2, is a polynomial of total degree di in
the indeterminates Xi = (Xi,1, . . . , Xi,mi) satisfying

P⋆(f1,1(α1), . . . , fr,mr(αr)) = 0 .

We recall that M = m1+ · · ·+mr is the number of functions fi,j , which also
corresponds to the number of indeterminates in X := (X1, . . . ,Xr), while
N = n1 + · · · + nr is the number of indeterminates zi,j . The monomials
Xµ1 , . . . ,Xµt , µj ∈ NM , 1 ≤ j ≤ t, are precisely those which are of total
degree di in the indeterminates Xi, for every i ∈ {1, . . . , r}. We also recall
that, according to the notation of Section 4.1.4, if

µ = (µ1,1, . . . , µ1,m1 , µ2,1, . . . , µr,mr) ∈ NM ,
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then

Xµ =
∏

1≤i≤r
1≤j≤mi

X
µi,j

i,j and f(z)µ =
∏

1≤i≤r
1≤j≤mi

fi,j(zi)
µi,j ∈ Q{z} .

Hence there exist τ1, . . . , τt ∈ Q such that

P⋆(X) =

t∑
j=1

τjX
µj .

Given a matrix of indeterminates Y := (yi,j)1≤i,j≤t, we set

(9.1) F (Y , z) :=
∑

1≤i,j≤t

τiyi,jf(z)
µj ∈ Q{z}[Y ] .

Note that F is a linear form in Y . Evaluating at (It,α), we obtain

(9.2) F (It,α) =

t∑
j=1

τjf(α)µj = P⋆(f1,1(α1), . . . , fr,mr(αr)) = 0 .

Remark 9.1. We have F (Y , z) ∈ Q[Y ,f(z)] ⊂ Q{z}[Y ]. Also, F (Y , z) can
be seen as an element of Q[Y ][[z]], as we will sometimes do in what follows.

9.1. Iterated relations. Using Equalities (7.6) and (7.7), we obtain

(9.3) f(z)µj = (Ak(z)f(Tkz))
µj =

t∑
l=1

Rj,l(Ak(z))f(Tkz)
µl ,

for every j, 1 ≤ j ≤ t. We deduce from (9.3) that

(9.4) g(z) = Rk(z)g(Tkz) ,

for all k ∈ Nr, where Rk(z) is defined as in (7.10) and

g(z) := t(f(z)µ1 , . . . ,f(z)µt) .

For every i, 1 ≤ i ≤ r, let bi(zi) ∈ Q[zi] denote the least common mul-
tiple of the denominators of the coordinates of Ai(zi). Hence the matrix
bi(zi)A(zi) has coefficients in Q[zi]. For every k = (k1, . . . , kr) ∈ Nr, we set

bk(z) :=

r∏
i=1

ki−1∏
j=0

bi(T
j
i zi)

di ,

so that the matrix bk(z)Rk(z) has coefficients in Q[z]. For future reference,
we note that for every k and k′ ∈ Nr:

(9.5) bk+k′(z) = bk(z)bk′(Tkz) .

For all k ∈ Nr, setting τ := (τ1, . . . , τt) ∈ Qt, Equality (9.4) implies the
following equality in Q{z}[Y ]:

F (Y bk(z), z) = τY bk(z)g(z)

= τY bk(z)Rk(z)g(Tkz)(9.6)
= F (Y bk(z)Rk(z), Tkz) .
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Every point αi being regular with respect to the system (7.1.i), the number
bk(α) is nonzero for all k ∈ Nr. From (9.2) and the fact that F is linear in
Y , we deduce that

(9.7) F (Rk(α), Tkα) = 0 , ∀k ∈ Nr .

9.2. The matrices Θl(z). From now on, we fix a nonnegative integer l0
and a relation matrix ϕ(z) satisfying the properties of Lemma 8.7. Set

ξ := Tkl0
α .

Properties (a) and (b) in Lemma 8.7 ensure the existence of a real num-
ber r1 such that 0 < ∥ξ∥ < r1 < 1 and such that all the power series
f1,1(z), . . . , fr,mr(z) have a radius of convergence larger than r1. Then, by
Properties (c) and (d) in Lemma 8.7, we can choose a real number r2 satis-
fying 0 < ∥ξ∥+ r2 < r1 and such that the coefficients of the matrix ϕ(z) are
analytic on the polydisc D(ξ, r2). For every l ≥ l0, we set

(9.8) Θl(z) := Rkl0
(α)ϕ(Tkl0

α)−1ϕ(z)Rkl−kl0
(z) .

By (7.11), we have Θl(ξ) = Rkl
(α), for all l ≥ l0.

Remark 9.2. By Lemma 8.7, the coefficients of Θl0(z) are analytic on the
polydisc D(ξ, r2). On the other hand, one has

(9.9) Θl+1(z) = Θl(z)Rkl+1−kl
(Tkl−kl0

z) , ∀l ≥ l0 .

This implies that, for every l ≥ l0, the coefficients of Θl(z) are analytic on
some neighborhood of ξ, that is on some polydisc D(ξ, ηl) ⊂ D(ξ, r2). Also,
the coefficients of bkl−kl0

(z)Θl(z) are analytic on the polydisc D(ξ, r2). In
what follows, we will consider expressions of the form F (Θl(z), Tkl−kl0

z) for
l ≥ l0. Formally, these are polynomials in f1,1(Tkl−kl0

z), . . . , fr,mr(Tkl−kl0
z)

and the coordinates of Θl(z). Note that Property (a) in Lemma 8.7 and
Lemma 6.8 imply that ∥Tkl

α∥ ≤ ∥Tkl0
α∥ for l ≥ l0. It follows that

F (Θl(z), Tkl−kl0
z) is analytic on D(ξ, ηl) ⊂ D(ξ, r2). In addition, we have

that F (Θl0(z), z) is analytic on D(ξ, r2). Indeed, f1,1(z), . . . , fr,mr(z) are
analytic on D(0, r1) ⊃ D(ξ, r2), while our choice of l0 ensures that the coor-
dinates of Θl0(z) are analytic on D(ξ, r2).

9.3. The key lemma. In this section, we prove the following result from
which we will deduce easily Theorem 7.2 in Section 9.4. Indeed, the identity
in Lemma 9.3 provides an algebraic relation between the functions fi,j(zi),
1 ≤ i ≤ r, 1 ≤ j ≤ mi, over an algebraic closure of Q(z) and with the same
shape that P⋆.

Lemma 9.3. One has F (Θl0(z), z) = 0.

Let us first briefly describe the general strategy used for proving this key
lemma. The scheme of the proof is classical and takes its source in the early
work of Mahler [41]. It was gradually improved and refined by Kubota [33],
Loxton and van der Poorten [38], and Ku. Nishioka [50, 51, 52]. It takes
here a more complicate shape, involving the matrices Θl. This is due to the
fact that we have to deal with a bunch of Mahler systems of the form (7.1.i)
without any restriction on the matrices Ai(zi).
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Assuming by contradiction that F (Θl0(z), z) ̸= 0, we construct, for every
triple of nonnegative integers (δ1, δ2, l), l ≥ l0, an auxiliary function of the
form

E(Θl(z), Tkl−kl0
z) =

δ1∑
j=0

Pj(Θl(z), Tkl−kl0
z)F (Θl(z), Tkl−kl0

z)j ,

where Pj(Y , z) is a polynomial of degree at most δ1 in each indeterminate
yi,j and of total degree at most δ2 in the indeterminates zi,j . Recall that
E(Θl(ξ), Tkl−kl0

ξ) = E(Rkl
(α), Tkl

α) and that

F (Θl(ξ), Tkl−kl0
ξ) = F (Rkl

(α), Tkl
α) = 0 .

Hence E(Rkl
(α), Tkl

α) = P0(Rkl
(α), Tkl

α). As our construction ensures
that P0 ̸∈ I, we have P0(Rkl

(α), Tkl
α) ̸= 0 for infinitely many integers

l, and we can use Liouville’s inequality (4.2) to find a lower bound for
E(Rkl

(α), Tkl
α). On the other hand, we have many choices for the polyno-

mials Pi in the construction of our auxiliary function. This level of freedom
is used to show that, for a good choice of such polynomials, the quantity
E(Rkl

(α), Tkl
α) is small enough. More precisely, we obtain a contradiction

between the upper and the lower bounds when the parameter δ1 is suffi-
ciently large, the parameter δ2 is sufficiently large with respect to δ1, and
the parameter l is sufficiently large with respect to δ1 and δ2.

Warning. The auxiliary function E(Θl(z), Tkl−kl0
z) can be thought of

as a simultaneous Padé approximant of type I for the first δ1 powers of
F (Θl(z), Tkl−kl0

z). However, we have to be careful: F (Θl(z), Tkl−kl0
z) is

not necessarily a power series in z. It is a linear combination of the power
series f1,1(Tkl−kl0

z), . . . , fr,mr(Tkl−kl0
z) whose coefficients are only known

to be algebraic over Q(z). We only know that it is analytic at ξ. In order
to obtain our upper bound, we will have to consider the Taylor expansion of
E(Θl(z), Tkl−kl0

z) (and other related functions) at ξ. This is a new feature
of our proof, since until now, Mahler’s method only used Taylor expansions
at 0.

In what follows, we argue by contradiction, assuming that

(9.10) F (Θl0(z), z) ̸= 0 .

We divide the proof of Lemma 9.3 into four steps.

9.3.1. First step: construction of the auxiliary function. Given a formal
power series E =

∑
λ eλ(Y )zλ ∈ Q[Y ][[z]] and an integer p > 0, we let

Ep :=
∑
|λ|<p

eλ(Y )zλ ∈ Q[Y , z]

denote the truncation of E at order p with respect to z. We recall that
the ideal I is defined at the beginning of Section 8, while the vector spaces
I(δ1, δ2) and Ic(δ1, δ2) are defined in Section 8.1. In particular, Ic(δ1, δ2) is
a vector space complement to I(δ1, δ2) in Q[Y , z]δ1,δ2 .
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Lemma 9.4. Let δ1 ≥ 0 be an integer. For all integers δ2, δ2 ≫ δ1, there
exist polynomials Pi ∈ Ic(δ1, δ2), 0 ≤ i ≤ δ1, not all zero, such that the
formal power series

E′(Y , z) :=

δ1∑
j=0

Pj(Y , z)F (Y , z)j ∈ Q[Y ][[z]]

satisfies E′
p(Θl(z), Tkl−kl0

z) = 0 for all l ≥ l0, where p =

⌊
δ
1/N
1 δ2

2(t
2+2)/N

⌋
.

Proof. Set

J (δ1, δ2) := {P ∈ Q[z,Y ] : P (Rkl0
(α)ϕ(Tkl0

α)−1Y , z) ∈ I(δ1, δ2)} .

The Q-vector spaces J (δ1, δ2) and I(δ1, δ2) have same dimension. This fol-
lows directly from the fact that the map

Q[Y , z]δ1,δ2 → Q[Y , z]δ1,δ2
P (Y , z) 7→ P (Rkl0

(α)ϕ(Tkl0
α)−1Y , z)

is an isomorphism, since the matrix Rkl0
(α)ϕ(Tkl0

α)−1 is invertible. The
latter property follows from Lemmas 7.3 and 8.7. Furthermore, we have

(9.11) P (Θl(z), Tkl−kl0
z) = 0 , ∀P ∈ J (δ1, δ2), ∀l ≥ l0 .

Indeed, if P ∈ J (δ1, δ2), then P (Rkl0
(α)ϕ(Tkl0

α)−1Y , z) ∈ I(δ1, δ2), and
Lemma 8.6 implies that

P (Rkl0
(α)ϕ(Tkl0

α)−1ϕ(z)Rk(z), Tkz) = 0 , ∀k ∈ V ⊥
+ .

For l ≥ l0, using the previous equality with k := kl − kl0 ∈ V ⊥
+ , we obtain

that
P (Rkl0

(α)ϕ(Tkl0
α)−1ϕ(z)Rkl−kl0

(z), Tkl−kl0
z) = 0 .

By (9.8), we thus have P (Θl(z), Tkl−kl0
z) = 0, which proves (9.11).

Let p be as in the lemma and let us consider the three Q-linear maps:{ ∏δ1
j=0 Ic(δ1, δ2)

(P0(Y , z), . . . , Pδ1(Y , z))y{
Q[Y ]2δ1 [[z]]

E′(Y , z) :=
∑δ1

j=0 Pj(Y , z)F (Y , z)jy{
Q[Y , z]2δ1,p−1

E′
p(Y , z)y{

Q[Y , z]2δ1,p−1/J (2δ1, p− 1)
E′

p(Y , z) mod J (2δ1, p− 1)

Note that these maps are well-defined. By Lemma 8.1, the dimension of the
Q-vector space Ic(δ1, δ2) is at least equal to c1(δ1)

2 δN2 , assuming that δ2 is
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large enough. It follows that

(9.12) dimQ

 δ1∏
j=0

Ic(δ1, δ2)

 ≥ c1(δ1)

2
(δ1 + 1)δN2 .

For every pair of nonnegative integers (n,m), set

J (n,m) := Q[Y , z]n,m/J (n,m) .

Since J (δ1, δ2) and I(δ1, δ2) have same dimension, Lemma 8.2 implies that

dimQ J (2δ1, p− 1) ≤ 2t
2
dimQ J (δ1, p− 1) .

Now, if δ2 is sufficiently large, Lemma 8.1 ensures that

dimQ J (δ1, p− 1) ≤ 2c1(δ1)p
N .

On the other hand, the choice of p ensures that

2t
2 (

2c1(δ1)p
N
)
<

c1(δ1)

2
(δ1 + 1)δN2

and (9.12) implies that

dimQ

 δ1∏
j=0

Ic(δ1, δ2)

 > dimQ
(
Q[Y , z]2δ1,p−1/J (2δ1, p− 1)

)
.

Hence the Q-linear map defined by

(P0(Y , z), . . . , Pδ1(Y , z)) 7→ E′
p(Y , z) mod J (2δ1, p− 1)

has a nontrivial kernel. We deduce the existence of polynomials P0, . . . , Pδ1

in Ic(δ1, δ2), not all zero, such that E′
p ∈ J (2δ1, p−1). By (9.11), we obtain

that E′
p(Θl(z), Tkl−kl0

z) = 0 for all l ≥ l0. This ends the proof. □

Let E′ be a formal power series satisfying the properties of Lemma 9.4
and let v0 be the smallest index such that the polynomial Pv0 is nonzero:

(9.13) v0 := min{j : 0 ≤ j ≤ δ1 and Pj ̸= 0}

Then the formal power series

(9.14) E(Y , z) :=

δ1∑
j=v0

Pj(Y , z)F (Y , z)j−v0 ∈ Q[Y ][[z]]

is the auxiliary function that we were looking for. Note that we have

(9.15) E(Y , z)F v0(Y , z) = E′(Y , z) .

9.3.2. Second step: upper bound for |E(Rkl
(α), Tkl

α)|. The aim of this sec-
tion is to prove the following proposition.

Proposition 9.5. There exists a real number c2 > 0 that does not depend
on δ1, δ2, and l,such that

|E(Rkl
(α), Tkl

α)| ≤ e−c2elδ
1/N
1 δ2 , ∀l ≫ δ2 ≫ δ1.
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This result will be deduced from three auxiliary results: Lemmas 9.6, 9.7,
and 9.8. We first set

(9.16) G(Y , z) := E′(Y , z)− E′
p(Y , z) ∈ Q{z}[Y ] ,

where p is defined as in Lemma 9.4. For every monomial Y ν appearing in
G(Y , z), the t× t matrix ν has a decomposition

ν = Ξ+Π

where Ξ has coefficients in the set {0, 1, . . . , δ1} and Π is a matrix with
nonnegative integer coefficients whose sum is at most δ1. In the definition
of E′, the polynomials Pj contribute to Ξ, while the powers of F contribute
to Π. Let s denote the number of such matrices ν and Y ν1 , . . . ,Y νs denote
an enumeration of the corresponding monomials. The sum of the coefficients
of each matrix νi is at most equal to (t2 + 1)δ1. By (9.16), there exists a
unique decomposition of the form

G(Y , z) =

s∑
i=1

∑
|λ|≥p

gλ,iz
λY νi ,

where gλ,i ∈ C. For every i, 1 ≤ i ≤ s, we define the formal power series

Gi(z) :=
∑
|λ|≥p

gλ,iz
λ ∈ C[[z]] .

We recall that the positive real numbers r1 and r2 are defined in Section 9.2.
By definition of F (Y , z), these series belong to Q[z,f(z)]. In particular,
they are analytic on some polydisc D(0, r) with r > r1. It follows that every
function Gi(Tkl−kl0

z), 1 ≤ i ≤ s, l ≥ l0, is analytic on the polydisc D(ξ, r2),
and hence has a Taylor expansion at ξ which is absolutely convergent on
D(ξ, r2):

(9.17) Gi(Tkl−kl0
z) =

∑
λ∈NN

hλ,i,l(z − ξ)λ ,

where hλ,i,l ∈ C.

Lemma 9.6. There exists a real number σ > 0 such that

|hλ,i,l| ≤ e−σelp , ∀l ≫ δ1, δ2,λ .

Proof. Since Gi(z) is analytic on some polydisc D(0, r) with r > r1, we infer
from (4.1) that there exists a real number σ1(δ1, δ2) > 0 such that

(9.18) |gλ,i| ≤ σ1(δ1, δ2)r
−|λ|
1 , ∀λ ∈ NN .

On the other hand, we claim that there exists a real number σ2 > 0 such
that

(9.19) |λTkl
| ≥ σ2e

l|λ| ∀l ∈ N, ∀λ ∈ NN .

Let us prove this claim. Write kl = (k1,l, . . . , kr,l) and λ = (λ1, . . . ,λr),
with λi a row vector of size ni. By Lemma 5.6, for each i, 1 ≤ i ≤ r, there
exists a real number σ3,i > 0, independent of λi, such that

|λiT
ki,l
i | ≥ σ3,iρ(Ti)

ki,l |λi| , ∀l ∈ N .



48 BORIS ADAMCZEWSKI AND COLIN FAVERJON

Then we infer from Property (ii) of Definition 7.4, that there exists a real
number σ4 > 0 such that ρ(Ti)

ki,l ≥ σ4e
l. Since

|λ| =
r∑

i=1

|λi| and |λTkl
| =

r∑
i=1

|λiT
ki,l
i | ,

the lower bound in (9.19) holds with σ2 := σ4min(σ3,i : 1 ≤ i ≤ r).
Thus, for every l ≥ l0, Gi(Tkl−kl0

z) can be written as

(9.20) Gi(Tkl−kl0
z) =

∑
|λ|≥σ2elp

gλ,i,lz
λ ,

with gλ,i,l ∈ C. Furthermore, this power series is absolutely convergent
on the polydisc D(0, r1). Since the matrix Tkl−kl0

is invertible and has
nonnegative integer coefficients, |µ| ≤ |µTkl−kl0

| for all µ. When λ =

µTkl−kl0
for some µ and some l ≥ l0, we deduce from (9.18) and the fact

that r1 < 1 that

|gλ,i,l| = |gµ,i| ≤ σ1(δ1, δ2)r
−|µ|
1 ≤ σ1(δ1, δ2)r

−|µTkl−kl0
|

1 = σ1(δ1, δ2)r
−|λ|
1 ,

for all i ∈ {1, . . . , s}. Since gλ,i,l = 0 when λ is not of the previous form, we
have

(9.21) |gλ,i,l| ≤ σ1(δ1, δ2)r
−|λ|
1

for all λ ∈ NN , i ∈ {1, . . . , s}, and l ≥ l0.
Since by assumption D(ξ, r2) ⊂ D(0, r1), the two power series expansions

(9.17) and (9.20) match on D(ξ, r2). Using the equality zλ = ((z− ξ)+ ξ)λ

and identifying, for every λ ∈ NN , the terms in (z−ξ)λ in (9.17) and (9.20),
we obtain that

(9.22) hλ,i,l =
∑

|γ|≥σ2elp
γ≥λ

(
γ

λ

)
gγ,i,lξ

γ−λ .

We observe that for γ = (γ1, . . . , γN ) ≥ λ = (λ1, . . . , λN ), one has

(9.23)
(
γ

λ

)
=

N∏
i=1

γi!

(γi − λi)!λi!
≤

N∏
i=1

γλi
i ≤ |γ||λ| .

Let λ ∈ NN . If l is large enough, then |λ| < σ2e
lp and we infer from (9.21),

(9.22), and (9.23) that

|hλ,i,l| ≤
∑

|γ|≥σ2elp

(
γ

λ

)
|gγ,i,l| ∥ξ∥|γ−λ|

≤
∑

|γ|≥σ2elp

|γ||λ|σ1(δ1, δ2)
(
∥ξ∥
r1

)|γ|
∥ξ∥−|λ|

≤ σ1(δ1, δ2)∥ξ∥−|λ|

 ∑
|γ|≥σ2elp

(
|γ||λ|

(
∥ξ∥
r1

)|γ|/2
)(

∥ξ∥
r1

)|γ|/2
 .
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Since ∥ξ∥ < r1, we have (∥ξ∥/r1)1/2 < 1. Thus, if l is large enough with
respect to |λ|, there exists a real number σ5 > 0 that does not depend on
δ1, δ2, λ, and l such that

|hλ,i,l| ≤ σ1(δ1, δ2)∥ξ∥−|λ|

(
σ5

(
∥ξ∥
r1

)(σ2elp)/2
)

.

Finally, we obtain that there exists a real number σ6 > 0 that does not
depend on δ1, δ2, λ, and l such that

|hλ,i,l| ≤ e−σ6elp , ∀l ≫ δ1, δ2,λ .

Setting σ := σ6, this ends the proof. □

By Remark 9.2, the monomial (bkl−kl0
(z)Θl(z))

νi is analytic on D(ξ, r2)

for every i, 1 ≤ i ≤ s, and every l ≥ l0. Multiplying by bkl−kl0
(z)(t

2+1)δ1−|νi|,
we obtain on D(ξ, r2) a Taylor expansion of the form

(9.24) bkl−kl0
(z)(t

2+1)δ1−|νi|(bkl−kl0
(z)Θl(z))

νi =
∑

λ∈NN

θλ,i,l(z − ξ)λ ,

where θλ,i,l ∈ C.

Lemma 9.7. There exists a real number κ(δ1,λ) > 0 that depends on δ1
and λ but not on l, such that

|θλ,i,l| ≤ eκ(δ1,λ)l , ∀i, 1 ≤ i ≤ s, ∀λ ∈ NN , ∀l ≥ l0 .

Proof. Given Q(z) ∈ Q[z] with total degree dQ and l ≥ 0, the polynomial
Ql(z) := Q(Tkl−kl0

z) can be converted into a polynomial in (z − ξ):

Ql(z) =
∑
λ

qλ,l(z − ξ)λ

and we claim that there exists a real number κ1(λ) > 0 that depends on λ
(and Q) but not on l such that

(9.25) |qλ,l| ≤ κ1(λ)e
|λ|l .

Let us prove this claim. By Lemma 6.5, there exists a real number κ2 > 0
such that

(9.26) |λTkl
| ≤ κ2e

l|λ| ∀l ∈ N, ∀λ ∈ NN .

Let κ3 denote the maximum of the modulus of the coefficients of Q. Then,
using (9.23), (9.26), and the equality zλ = ((z − ξ) + ξ)λ, we obtain that

|qλ,l| ≤ κ3
∑

γ : |γ|≤dQ and
γTkl−kl0

≥λ

(
γTkl−kl0

λ

)
∥ξ∥|γTkl−kl0

|−|λ|

≤ κ3
∑

γ : |γ|≤dQ

|γTkl−kl0
||λ|

≤ κ3

(
dQ +N + 1

N + 1

)
(κ2e

ldQ)
|λ| .

Setting κ1(λ) := κ3
(dQ+N+1

N+1

)
(κ2dQ)

|λ|, this proves (9.25).
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Now, set Γk(z) := bk(z)Rk(z) ∈ Mt(Q[z]) and

Γk,l(z) := Γk(Tkl−kl0
z) = bk(Tkl−kl0

z)Rk(Tkl−kl0
z) .

By Properties (ii) of Definition 7.4, the sequence (kl+1 − kl)l∈N takes its
values in a finite set. We thus deduce from our claim that, for every λ ∈ NN ,
there exists a positive real number κ4(δ1,λ) > 0, that depends on δ1 and λ
but not on l, such that the modulus of the coefficients in (z − ξ)λ for the
entries of the matrices

bkl+1−kl
(Tkl−kl0

z)(t
2+1)δ1−|νi|Γkl+1−kl,l(z)

νi , 1 ≤ i ≤ s ,

seen as polynomials in z−ξ, are at most κ4(δ1,λ)e|λ|l for any l ≥ l0. Without
any loss of generality, we can assume that κ4(δ1,λ) ≥ 1. On the other hand,
we deduce from (9.5) and (9.9) the recurrence relation

(9.27) bkl+1−kl0
(z)Θl+1(z) = bkl−kl0

(z)Θl(z)Γkl+1−kl,l(z) .

Now, for every positive integer δ1, we introduce the real numbers κ5(δ1,λ) >
0 that depend on δ1 and λ but not on l, which are recursively defined by

eκ5(δ1,λ) =

max

max1≤i≤s |θλ,i,l0 |
1
l0 ; 2κ4(δ1,0); 2

∑
γ<λ

κ4(δ1,λ− γ)eκ5(δ1,γ)+|λ−γ|


for every λ ∈ NN . We prove by induction on l ≥ l0 that

(9.28) |θλ,i,l| ≤ eκ5(δ1,λ)l , ∀i, 1 ≤ i ≤ s, ∀λ ∈ NN , ∀l ≥ l0 .

By definition of κ5(δ1,λ), Inequality (9.28) holds when l = l0. Suppose that
it holds for some l ≥ l0. Then, we infer from (9.24) and (9.27) that

|θλ,i,l+1| ≤
∑
γ≤λ

|θγ,i,l|κ4(δ1,λ− γ)e|λ−γ|l

≤ κ4(δ1,0)e
κ5(δ1,λ)l +

∑
γ<λ

κ4(δ1,λ− γ)eκ5(δ1,γ)+|λ−γ|

l

≤ 1

2
eκ5(δ1,λ)(l+1) +

1

2
eκ5(δ1,λ)l ≤ eκ5(δ1,λ)(l+1) .

Hence Inequality (9.28) holds for all l ≥ l0. Setting κ(δ1,λ) := κ5(δ1,λ),
this ends the proof. □

Now, let us observe that

bkl−kl0
(z)(t

2+1)δ1E′(Θl(z), Tkl−kl0
z)

defines an analytic function on D(ξ, r2). Then, on this polydisc, it has a
Taylor expansion

(9.29) bkl−kl0
(z)(t

2+1)δ1E′(Θl(z), Tkl−kl0
z) =

∑
λ∈NN

ϵλ,l(z − ξ)λ ,

where ϵλ,l ∈ C.
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Lemma 9.8. Let p be defined as in Lemma 9.4. There exists a real number
γ > 0 that does not depend on δ1, δ2, λ, and l, such that

|ϵλ,l| ≤ e−γelp , ∀l ≫ δ1, δ2,λ .

Proof. By (9.16), we have

G(Y , z) = E′(Y , z)− E′
p(Y , z) ∈ Q{z}[Y ]

and hence Lemma 9.4 implies that

(9.30) G(Θl(z), Tkl−kl0
z) = E′(Θl(z), Tkl−kl0

z) , ∀l ≥ l0 .

From (9.17), (9.24), (9.29), and (9.30), we deduce that
(9.31)

s∑
i=1

 ∑
λ∈NN

hλ,i,l(z − ξ)λ

 ∑
λ∈NN

θλ,i,l(z − ξ)λ

 =
∑

λ∈NN

ϵλ,l(z − ξ)λ .

Moreover, since the power series involved in (9.17) and (9.24) are absolutely
convergent on D(ξ, r2), we obtain that

s∑
i=1

 ∑
λ∈NN

hλ,i,l(z − ξ)λ

 ∑
λ∈NN

θλ,i,l(z − ξ)λ


=
∑

λ∈NN

s∑
i=1

∑
γ≤λ

hγ,i,lθλ−γ,i,l(z − ξ)λ .(9.32)

Finally, identifying the terms in (z− ξ)λ in (9.31) thanks to (9.32), we have

ϵλ,l =
s∑

i=1

∑
γ≤λ

hγ,i,lθλ−γ,i,l .

Now, we fix λ ∈ NN . We infer from Lemmas 9.6 and 9.7 that there exists a
real number γ > 0 that does not depend on δ1, δ2, λ, and l, such that

|ϵλ,l| ≤ e−γelp , ∀l ≫ δ1, δ2,λ ,

which ends the proof. □

Proof of Proposition 9.5. Let us observe that the function

bkl−kl0
(z)(t

2+1)δ1E(Θl(z), Tkl−kl0
z)

is analytic on D(ξ, r2), so it has a Taylor expansion on this polydisc of the
form

(9.33) bkl−kl0
(z)(t

2+1)δ1E(Θl(z), Tkl−kl0
z) =

∑
λ∈NN

eλ,l(z − ξ)λ ,

with eλ,l ∈ C. Let v0 be defined by (9.13). Then F (Θl0(z), z)
v0 is analytic

on D(ξ, r2), so that

(9.34) F (Θl0(z), z)
v0 =

∑
λ∈NN

aλ(z − ξ)λ ,

with aλ ∈ C. Using (9.6), we get that

F (Θl(z), Tkl−kl0
z) = F (Θl0(z), z) , ∀l ≥ l0 .
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This equality is a priori valid for z in D(ξ, ηl) (see Remark 9.2), but it
extends to D(ξ, r2) by analytic continuation. By (9.15), we thus have

(9.35) E(Θl(z), Tkl−kl0
z)F (Θl0(z), z)

v0 = E′(Θl(z), Tkl−kl0
z) ,

for all l ≥ l0 and all z ∈ D(ξ, ηl). By (9.10), F (Θl0(z), z) is nonzero and
there thus exists at least one nonzero coefficient aλ in (9.34). Let us consider
an index λ0 such that aλ0 ̸= 0 with |λ0| minimal. Multiplying both sides of
(9.35) by bkl−kl0

(z)(t
2+1)δ1 , and identifying the coefficients in (z − ξ)λ0 in

their power series expansion on D(ξ, r2) with the help of (9.29), (9.33), and
(9.34), we obtain that

e0,laλ0 = ϵλ0,l , ∀l ≥ l0 .

Since Θl(ξ) = Rkl
(α), we infer from Lemma 9.8 and the fact that p =⌊

δ
1/N
1 δ2

2(t
2+2)/N

⌋
(cf. Lemma 9.4), the existence of a real number β1 > 0 that does

not depend on δ1, δ2, and l, such that∣∣∣bkl−kl0
(ξ)(t

2+1)δ1E(Rkl
(α), Tkl

α)
∣∣∣

=
∣∣∣bkl−kl0

(ξ)(t
2+1)δ1E(Θl(ξ), Tkl−kl0

ξ)
∣∣∣

= |e0,l|(9.36)

≤ e−β1elδ
1/N
1 δ2 , ∀l ≫ δ1, δ2 .

Now, it just remains to find a lower bound for |bkl−kl0
(ξ)(t

2+1)δ1 |. By
(9.26), there exists a positive real number β2 that does not depend on l, δ1,
and δ2, such that the degree of the polynomial bkl−kl0

(z)(t
2+1)δ1 is at most

equal to β2e
lδ1. Furthermore, the height of its coefficients it at most equal

to βl
3δ1 for some positive real number β3. Thus, there exists a positive real

number β4 such that

(9.37) logH(bkl−kl0
(ξ)(t

2+1)δ1) ≤ β4e
lδ1 .

Each αi being by assumption regular w.r.t. (7.1.i), bkl−kl0
(ξ) ̸= 0 for all

l ≥ l0. Since the numbers bkl−kl0
(ξ), l ≥ l0, belong to some fixed number

field, we infer from (9.37) and Liouville’s inequality (4.2) the existence of a
real number β5 > 0 that does not depend on l, δ1, and δ2, such that

(9.38) |bkl−kl0
(ξ)|(t2+1)δ1 ≥ e−β5elδ1 , ∀l ≥ l0, ∀δ1 ∈ N .

By (9.36) and (9.38), there exists a real number β6 > 0 that does not depend
on l, δ1, and δ2, such that

|E(Rkl
(α), Tkl

α)| ≤ eβ5elδ1−β1elδ
1/N
1 δ2

≤ e−β6elδ
1/N
1 δ2 , ∀l ≫ δ2 ≫ δ1 .

Setting c2 := β6, this completes the proof. □
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9.3.3. Third step: lower bound for |E(Rkl
(α), Tkl

α)|. The aim of this sec-
tion is to prove the following proposition.

Proposition 9.9. There exists a real number c3 > 0 that does not depend
on δ1, δ2, l, and an infinite set of positive integers E such that

|E(Rkl
(α), Tkl

α)| ≥ e−c3elδ2 , ∀l ∈ E , δ2 ≥ δ1 .

Proof. Let us first recall that, by (9.7), we have

F (Rkl
(α), Tkl

α) = 0 , ∀l ∈ N .

By construction of our auxiliary function (cf. (9.14)), we deduce that

E(Rkl
(α), Tkl

α) = Pv0(Rkl
(α), Tkl

α) ,

where v0 is defined as in (9.13). Furthermore, Lemma 9.4 ensures that
Pv0 /∈ I. By definition of the ideal I (cf. (8.1)), there thus exists an infinite
set of positive integers E such that

Pv0(Rkl
(α), Tkl

α) ̸= 0 , ∀l ∈ E .

Since Pv0 has degree at most δ1 in each indeterminate yi,j , and total degree
at most δ2 in z, Liouville’s inequality (4.2) and a computation similar to
the previous one ensure the existence of a real number c3 > 0 that does not
depend on δ1, δ2, and l, such that

|E(Rkl
(α), Tkl

α)| = |Pv0(Rkl
(α), Tkl

α)| ≥ e−c3elδ2 , ∀l ∈ E , δ2 ≥ δ1 ,

as wanted. □

9.3.4. Fourth step: contradiction. By Propositions 9.5 and 9.9, we obtain
that

e−c3elδ2 ≤ |E(Rkl
(α), Tkl

α)| ≤ e−c2elδ
1/N
1 δ2 , ∀l ∈ E , l ≫ δ2 ≫ δ1 .

Finally, we deduce that
c3 ≥ c2δ

1/N
1 .

Since c2 and c3 do not depend on δ1, this inequality provides a contradiction,
as soon as δ1 is large enough. This completes the proof of Lemma 9.3. □

9.4. End of the proof of Theorem 7.2. Let us recall that d(z) ∈ Q[z]
stands for the least common multiple of the denominators of the coefficients
of the matrices ϕj(z) defined in (8.13). Hence Property (c) of Lemma 8.7 im-
plies that d(Tkl0

z)Θl0(Tkl0
z) has coefficients in Q[z, φ(Tkl0

z)], while Prop-
erty (d) of Lemma 8.7 ensures that d(Tkl0

α) ̸= 0. Let q(z) denote the
least common multiple of the denominators of the coefficients of the matrix
R−1

kl0
(z). By Lemma 7.3, we have q(α) ̸= 0.

By Lemma 9.3, we know that F (Θl0(z), z) = 0, and substituting Tkl0
z

to z, we obtain that F (Θl0(Tkl0
z), Tkl0

z) = 0. The function F (Y , z) being
linear in Y , we deduce that

F

(
bkl0

(z)d(Tkl0
z)q(z)

bkl0
(α)d(Tkl0

α)q(α)
Θl0(Tkl0

z), Tkl0
z

)
= 0 .
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Writing Θl0(Tkl0
z) = Θl0(Tkl0

z)Rkl0
(z)−1Rkl0

(z), and using (9.6), we get
that

(9.39) F

(
bkl0

(z)d(Tkl0
z)q(z)

bkl0
(α)d(Tkl0

α)q(α)
Θl0(Tkl0

z)Rkl0
(z)−1, z

)
= 0 .

Set

Q⋆(z,X) := τ

(
bkl0

(z)d(Tkl0
z)q(z)

bkl0
(α)d(Tkl0

α)q(α)
Θl0(Tkl0

z)Rkl0
(z)−1

)
V ,

where
V := t(Xµ1 , . . . ,Xµt) .

It follows that Q⋆(z,X) ∈ Q[z, φ(Tkl0
z),X]. Since φ ◦ Tkl0

is analytic at
α, we deduce that Q⋆(z,X) ∈ Q(z)α[X]. Moreover, since Θl0(Tkl0

α) =

Θl0(ξ) = Rkl0
(α), we obtain that

Q⋆(α,X) = τV =

t∑
j=1

τjX
µj = P⋆(X) .

Finally, it follows from (9.39) that

Q⋆(z,f(z)) = 0 .

This ends the first part of the proof of Theorem 7.2.
Now, let us assume that Q(z)(f(z)) is a regular extension of Q(z). Let

K be an algebraic closure of Q(z) containing φ(Tkl0
z). By [34, Chapter

VIII], Q(z)(f(z)) and K are linearly disjoint over Q(z). Let δ denote the
degree of φ(Tkl0

z) over Q(z). Since the functions φ(Tkl0
z)j , 0 ≤ j ≤ δ − 1,

are linearly independent over Q(z), they remain linearly independent over
Q(z)(f(z)). Splitting the polynomial Q⋆ as

Q⋆ =
δ−1∑
j=0

Qj(z,X)φ(Tkl0
z)j ,

where Qj(z,X) ∈ Q[z,X], we thus deduce that Qj(z,f(z)) = 0 for all j,
0 ≤ j ≤ δ − 1. Finally, setting

R⋆(z,X) :=

δ−1∑
j=0

Qj(z,X)φ(Tkl0
α)j ∈ Q[z,X] ,

we obtain that R⋆(z,f(z)) = 0 and R⋆(α,X) = P⋆(X), as wanted. □

10. Proofs of Theorems 3.3, 3.6, 3.8, and of Corollaries 3.5 and
3.9

In this section, we complete the proof of our main results. Note that we
establish Corollary 3.9 before Theorems 3.6 and 3.8. The latter are in fact
deduced from Corollary 3.9.

10.1. Proof of Theorem 3.3. There is nothing more to do. Theorem 3.3
simply corresponds to the case r = 1 of Theorem 7.2. □
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10.2. Proof of Corollary 3.5. We first note that the inequality

tr.degQ(f1(α), . . . , fm(α)) ≤ tr.degQ(z)(f1(z), . . . , fm(z))

always holds. Recall that z = (z1, . . . , zn). When n = 1, this inequality is
trivial. The general case can be proved by induction on n, arguing as in the
proof of Lemma 10.1. Let K denote the field of fractions of the ring Q(z)α.
Since K is algebraic over Q(z), we have

tr.degQ(z)(f1(z), . . . , fm(z)) = tr.degK(f1(z), . . . , fm(z)) .

It thus remains to prove that

(10.1) tr.degQ(f1(α), . . . , fm(α)) ≥ tr.degK(f1(z), . . . , fm(z)) .

We follow the same strategy as the one used for proving the Siegel–Shidlovskii
theorem in the framework of E-functions (see [27, Theorem 5.23, p. 230]).
We first replace Proposition 5.1 in [27] by the following result.

Lemma 10.1. Let us continue with the previous notation. Let us assume
that g1(z), . . . , gℓ(z) ∈ Q{z} are related by a linear T -Mahler system, that
α ∈ (Q⋆

)n is regular w.r.t. this system, and that the pair (T,α) is admissible.
Let s be the maximum number of functions among g1(z), . . . , gℓ(z) that are
linearly independent over K. Then at least s of the numbers g1(α), . . . , gℓ(α)
are linearly independent over Q.

Proof. The integer s is the dimension of the K-vector space spanned by
g1(z), . . . , gℓ(z). Let t denote the dimension of the Q-vector space spanned
by the numbers gi(α), 1 ≤ i ≤ ℓ. Hence we have to prove that t ≥ s. Since
the dimension of the dual vector spaces are respectively equal to ℓ − s and
ℓ− t, it is enough to find ℓ− t linearly independent forms in the dual of the
K-vector space spanned by g1(z), . . . , gℓ(z).

Without any loss of generality, we can assume that g1(α), . . . , gt(α) are
linearly independent over Q. Then, for every i, t < i ≤ ℓ, there exist
algebraic numbers γi,1, . . . , γi,t such that

gi(α) = γi,1g1(α) + · · ·+ γi,tgt(α) .

By Theorem 3.3, there exist pi,1(z), . . . , pi,ℓ(z) ∈ Q(z)α ⊂ K such that

pi,1(z)g1(z) + · · ·+ pi,ℓ(z)gℓ(z) = 0 ,

with pi,j(α) = −γi,j when 1 ≤ j ≤ t, pi,i(α) = 1 and pi,j(α) = 0 when
t < j ≤ ℓ and j ̸= i. Set

Li(z, X1, . . . , Xℓ) := pi,1(z)X1 + · · ·+ pi,ℓ(z)Xℓ , t < i ≤ ℓ .

Note that the linear form Li(α, X1, . . . , Xm) is equal to

Xi −
t∑

j=1

γi,jXj .

Hence the linear forms Li(α, X1, . . . , Xm), t < i ≤ ℓ, are linearly indepen-
dent over Q. We stress that it implies that the corresponding linear forms
Li(z, X1, . . . , Xℓ) are linearly independent over K.

We first prove that the linear forms

(10.2) Li(z1, α2, . . . , αn, X1, . . . , Xm), t < i ≤ ℓ ,
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are linearly independent over K. We argue by contradiction, assuming that
they are linearly dependent over K. Since these linear forms do not depend
on the variables z2, . . . , zn, it follows that they are also linearly dependent
over K∩Q{z1−α1}. Hence there exist ct+1(z1), . . . , cℓ(z1) ∈ K∩Q{z1−α1}
such that

(10.3)
ℓ∑

i=t+1

ci(z1)Li(z1, α2, . . . , αn, X1, . . . , Xm) = 0 .

Note that if some h(z1) ∈ K ∩ Q{z1 − α1} is such that h(α1) = 0 then
h(z1)/(z1 − α1) ∈ K ∩ Q{z1 − α1}. Thus, dividing (10.3) by a power of
(z1 − α1) if necessary, we can assume that not all the ci(z1) vanish at α1.
Then, specializing (10.3) at α1 we obtain the nontrivial relation

ℓ∑
i=t+1

ci(α1)Li(α1, α2, . . . , αn, X1, . . . , Xm) = 0 ,

which contradicts the fact that the forms Li(α, X1, . . . , Xm) are linearly in-
dependent over Q. Thus, the forms defined in (10.2) are linearly independent
over K, as claimed.

Now, let us show in a similar way that the linear forms

Li(z1, z2, α3, . . . , αn, X1, . . . , Xm), t < i ≤ ℓ ,

are linearly independent over K. We argue by contradiction, assuming that
they are linearly dependent over K. Since these linear forms do not depend
on the variables z3, . . . , zn, it follows that they are also linearly dependent
over K∩Q{(z1−α, z2−α2)}. Hence, there exist et+1(z1, z2), . . . , eℓ(z1, z2) ∈
K ∩Q{(z1 − α, z2 − α2)} such that

(10.4)
ℓ∑

i=t+1

ei(z1, z2)Li(z1, z2, α3, . . . , αn, X1, . . . , Xm) = 0 .

As previously, dividing (10.4) by a power of (z2 − α2) if necessary, we can
assume that not all functions ei(z1, α2) are zero, so that we derive from (10.4)
the nontrivial relation

ℓ∑
i=t+1

ei(z1, α2)Li(z1, α2, . . . , αn, X1, . . . , Xm) = 0 ,

which contradicts the fact, previously established, that the forms

Li(z1, α2, . . . , αn, X1, . . . , Xm), t < i ≤ ℓ ,

are linearly independent over K.
Continuing to argue in the same way, we obtain recursively that the ℓ− t

linear forms
Li(z1, . . . , zn, X1, . . . , Xm), t < i ≤ ℓ ,

are linearly independent over K. Thus ℓ − s ≥ ℓ − t and hence t ≥ s, as
wanted. □
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Proof of Corollary 3.5. Let D ≥ 0 be an integer. As in [27, p. 231], we let
φα(D) denote the dimension of the Q-vector space spanned by the monomials
of total degree at most D in f1(α), . . . , fm(α). We also let φz(D) denote the
dimension of the K-vector space spanned by the monomials of total degree
at most D in f1(z), . . . , fm(z). Now, we observe that the monomials of total
degree at most D in f1(z), . . . , fm(z) are also related by a linear T -Mahler
system for which α remains regular. Indeed, such a system can be obtained
by taking the system associated with the matrix ((1)⊕A(z))⊗D, that is, the
Dth power of Kronecker of the matrix (1)⊕A(z), where A(z) is defined as
in (3.1) (see [12, p. 17]). Then, we infer from Lemma 10.1 that

(10.5) φα(D) ≥ φz(D), ∀D ∈ N .

By the Hilbert-Serre Theorem (cf. [56, Theorem 42, p. 235]), for sufficiently
large D, φα(D) and φz(D) are polynomials in D whose degree are re-
spectively tr.degQ(f1(α), . . . , fm(α)) and tr.degK(f1(z), . . . , fm(z)). Hence
(10.5) implies that

tr.degQ(f1(α), . . . , fm(α)) ≥ tr.degK(f1(z), . . . , fm(z)) ,

as wanted. □

10.3. Proof of Corollary 3.9. We first need the two following simple re-
sults.

Lemma 10.2. Let z = (z1,1, . . . , z1,n1 , z2,1, . . . , zr,nr) be a tuple of n1+ · · ·+
nr distinct variables. For every i, 1 ≤ i ≤ r, let fi,1(zi), . . . , fi,mi(zi) ∈
Q[[zi]] be some power series, where zi = (zi,1, . . . , zi,ni). Then

tr.degQ(z){fi,j(zi) : 1 ≤ i ≤ r, 1 ≤ j ≤ mi} =

r∑
i=1

tr.degQ(zi)
{fi,j(zi) : 1 ≤ j ≤ mi} .

Proof. The result follows directly from the fact that the sets of variables
{z1,1, . . . , z1,n1}, . . . , {zr,1, . . . , zr,nr} are disjoint. □

Lemma 10.3. Let E1, . . . , Er,F1, . . . ,Fr be nonempty finite sets of complex
numbers such that Ei ⊂ Fi for every i, 1 ≤ i ≤ r. Let us assume that

tr.degQ

(
r⋃

i=1

Fi

)
=

r∑
i=1

tr.degQ(Fi) .

Then

tr.degQ

(
r⋃

i=1

Ei

)
=

r∑
i=1

tr.degQ(Ei) .

Proof. Suppose first that all elements of each Fi, 1 ≤ i ≤ r, are alge-
braically independent. By assumption, all elements of the set

⋃r
i=1Fi are

algebraically independent. Hence, all elements of the set
⋃r

i=1 Ei are also
algebraically independent, and the lemma is proved. Let us assume now
that some elements of the family Fi, 1 ≤ i ≤ r, are algebraically depen-
dent. For every i, we choose a subset of algebraically independent ele-
ments E ′

i ⊂ Ei such that tr.degQ(E
′
i) = tr.degQ(Ei). Then, we complete
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the set E ′
i in a set of algebraically independent elements F ′

i ⊂ Fi such that
tr.degQ(F

′
i) = tr.degQ(Fi). From the first part of the proof, we have

tr.degQ

(
r⋃

i=1

E ′
i

)
=

r∑
i=1

tr.degQ(E
′
i) .

It follows that

tr.degQ

(
r⋃

i=1

Ei

)
= tr.degQ

(
r⋃

i=1

E ′
i

)
=

r∑
i=1

tr.degQ(E
′
i) =

r∑
i=1

tr.degQ(Ei) ,

which ends the proof. □

We are now ready to prove Corollary 3.9.

Proof of Corollary 3.9. We continue with the notation of Theorems 3.6 and
3.8.

Let us first assume that the assumptions of Theorem 3.6 are satisfied. We
can gather all the linear Mahler systems (3.3.i) into a big Mahler system of
the form (3.1), where A(z) = A1(z1) ⊕ · · · ⊕ Ar(zr), z = (z1,1, . . . , zr,mr),
and T := T1 ⊕ · · · ⊕ Tr. Then, we infer from assumptions (i) and (ii) of
Theorem 3.6 and from Theorem 5.9 that the pair (T,α) is admissible and
that the point α = (α1, . . . ,αr) is regular with respect to this T -Mahler
system. Hence we can apply Corollary 3.5 to this larger system. We obtain
that

tr.degQ{fi,j(αi) : 1 ≤ i ≤ r, 1 ≤ j ≤ mi}(10.6)

= tr.degQ(z){fi,j(zi) : 1 ≤ i ≤ r, 1 ≤ j ≤ mi} .

On the other hand, applying Corollary 3.5 to the system (3.3.i), for every i,
1 ≤ i ≤ r, we deduce that
(10.7)

tr.degQ{fi,j(αi)} : 1 ≤ j ≤ mi} = tr.degQ(zi)
{fi,j(zi) : 1 ≤ j ≤ mi} .

It follows from (10.6), (10.7), and Lemma 10.2 that

tr.degQ{fi,j(αi) : 1 ≤ i ≤ r, 1 ≤ j ≤ mi}(10.8)

=

r∑
i=1

tr.degQ{fi,j(αi) : 1 ≤ j ≤ mi} .

For every i, set Fi := {fi,j(αi) : 1 ≤ j ≤ mi}. Using (10.8), we can thus
apply Lemma 10.3 to deduce that tr.degQ(E) =

∑r
i=1 tr.degQ(Ei), as wanted.

Now, let us assume that the assumptions of Theorem 3.8 are satisfied.
The proof is essentially the same. The only change occurs when establishing
Equality (10.6). We infer from assumptions (i) and (ii) of Theorem 3.8 that
we can apply Theorem 7.2. Then, using Theorem 7.2 and arguing as in the
proof of Corollary 3.5, we deduce that Equality (10.6) holds. The rest of the
proof remains unchanged. □
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10.4. Proof of Theorems 3.6 and 3.8. We continue with the notation of
Theorems 3.6 and 3.8. Note that the inclusion

(10.9)
r∑

i=1

AlgQ(Ei | E) ⊂ AlgQ(E)

is trivial. Suppose that the assumptions of either Theorem 3.6 or Theorem
3.8 hold. By Corollary 3.9, we have

(10.10) tr.degQ (E) =
r∑

i=1

tr.degQ(Ei) .

Given a prime ideal I, we let ht(I) denote its height, that is the maximum
of the integers h such that there exist primes ideals p0, . . . , ph satisfying

p0 ⊊ p1 ⊊ · · · ⊊ ph = I .

By [56, Chapter VII, Theorem 20], we have

(10.11)
ht
(
AlgQ(Ei)

)
= si − tr.degQ(Ei) , ∀i, 1 ≤ i ≤ r,

ht
(
AlgQ(E)

)
= S − tr.degQ(E) ,

where S := s1 + · · · + sr and, for every i, 1 ≤ i ≤ r, si is the number of
coordinates of the tuple Ei. Then we deduce from (10.10) and (10.11) that

ht
(
AlgQ(E)

)
=

r∑
i=1

ht
(
AlgQ(Ei)

)
.

Set I :=
∑r

i=1AlgQ(Ei | E). Then the isomorphism6

Q[X1]
/
AlgQ(E1)⊗Q · · · ⊗Q Q[Xr]

/
AlgQ(Er) ∼= Q[X]

/
I

implies that I is a prime ideal. Indeed, the tensor product of integral do-
mains, over an algebraically closed field, is an integral domain. Furthermore,
this isomorphism also gives that ht(I) =

∑r
i=1 ht(AlgQ(Ei)). It follows that

AlgQ(E) and
∑r

i=1AlgQ(Ei | E) are both prime ideals with the same height.
By (10.9) and [56, Chapter VII, §7 (2)] these two ideals are equal. This ends
the proof. □

11. Proof of Theorem 1.1

In this section, we show how to deduce Theorem 1.1 from the two purity
theorems. We first prove the following lemma.

Lemma 11.1. Let f(z) be an Mq-function and α be a nonzero algebraic
number such that f(z) is well-defined at α. Then there exists an Mq-function
g(z) such that the following properties hold.

(a) g(α) = f(α).

6See, for instance, [31, Chapter I, Exercise 3.15].
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(b) There exists a positive integer l such that g(z) is the first coordinate
of a vector solution to a ql-Mahler system, say

(11.1)

 g1(z) = g(z)
...

gm(z)

 = B(z)

 g1(z
ql)

...
gm(zq

l
)

 .

(c) The point α is regular with respect to (11.1).

Proof. We first note that if f(α) is algebraic, the lemma is trivial for we can
choose g(z) := f(α) to be constant. We assume now that f(α) is transcen-
dental. Replacing q by ql0 for some sufficiently large l0 if necessary, we can
assume without any loss of generality that f(z) is well-defined at αql for all
l ≥ 0. Using the minimal q-Mahler equation for f(z), we deduce that f(z)
is the first coordinate of some q-Mahler system, say

(11.2)

 f1(z)
...

fm(z)

 = A(z)

 f1(z
q)

...
fm(zq)

 ,

where f1(z) := f(z), . . . , fm(z) := f(zq
m−1

) are linearly independent over
Q(z) and well-defined at α. Thus, we infer from [8, Theorem 1.10] that
there exists an integer l such that the number αql is regular with respect to
the iterated system

(11.3)

 f1(z)
...

fm(z)

 = Al(z)

 f1(z
ql)

...
fm(zq

l
)

 ,

where
Al(z) := A(z)A(zq) · · ·A(zq

l−1
) .

Furthermore, [8, Theorem 1.10] also ensures that α is not a pole of the matrix
Al(z). Let (a1(z), . . . , am(z)) denote the first row of Al(z). Set

(11.4) g(z) := a1(α)f1(z
ql) + · · ·+ am(α)fm(zq

l
) .

Note that g(z) is an Mq-function for it is obtained as a linear combina-
tion over Q of Mq-functions7. Since f(α) is transcendental, the vector
(a1(α), . . . , am(α)) is nonzero. Then applying a suitable constant gauge
transformation to the Mahler system associated with the matrix Al(z

ql),
we can obtain a Mahler system which has a solution vector with g(z) as first
coordinate. Furthermore, since the point αql is regular w.r.t. (11.3), α is a
regular point w.r.t. this new system. On the other hand, we infer from (11.3)
and (11.4) that g(α) = f(α), as wanted. □

Proof of Theorem 1.1. We keep on with the notation of Theorem 1.1. We
assume that none of the numbers f1(α1), . . . , fr(αr) belong to K, so that
it remains to prove that f1(α1), . . . , fr(αr) are algebraically independent
over Q. By [8, Corollaire 1.8], our assumption implies that the numbers

7Indeed, if f(z) is an Mq-function then so is f(zq
l

).
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f1(α1), . . . , fr(αr) are all transcendental. For every i, 1 ≤ i ≤ r, we let zi
denote an indeterminate.

By Lemma 11.1, with each pair (fi, αi), we can associate an Mqi-function
gi(zi) such that

(11.5.i)

 gi,1(zi) = gi(zi)
...

gi,mi(zi)

 = Bi(zi)


gi,1

(
z
q
li
i

i

)
...

gi,mi

(
z
q
li
i

i

)
 ,

gi(αi) = fi(αi), and αi is regular w.r.t. (11.5.i).
Let us first prove Case (i) of Theorem 1.1. Let us divide the natural

numbers 1, . . . , r into s classes I1 = {i1,1, . . . , i1,ν1}, . . . , Is = {is,1, . . . , is,νs},
such that i and j belong to the same classe if and only if qi and qj are
multiplicatively dependent. Iterating each system (11.5.i) a suitable number
of times, we can assume without loss of generality that qlii = q

lj
j := ρk

whenever i and j belong to Ik. We set

Ek,i := (gi(αi)) , ∀k ∈ {1, . . . , s} , ∀i ∈ Ik ,

and then

Ek := (Ek,ik,1 , . . . , Ek,ik,νk ) = (gik,1(αik,1), . . . , gik,νk (αik,νk
)) , ∀k ∈ {1, . . . , s} .

Finally, we set
E := (E1, . . . , Es) ,

so that the coordinates of the r-tuple E are precisely g1(α1), . . . , gr(αr) (pos-
sibly in a different order).

Given k ∈ {1, . . . , s}, we consider the Mahler system in the variables
zi, i ∈ Ik, associated with the matrix ⊕i∈IkBi(zi) and the transformation
Tk = ρkIνk , which belongs to the class T for ρk ≥ 2. In this way, we have
converted our r Mahler systems in one variable into s Mahler systems, each
having respectively ν1, . . . , νs variables. Furthermore, since by assumption
the algebraic numbers α1, . . . , αr are multiplicatively independent, we deduce
that each pair

(Tk,αk := (αik,1 , . . . , αik,νk
)) , 1 ≤ k ≤ s ,

is admissible. Finally, the point αk is regular since each αi is regular w.r.t.
(11.5.i). Since, by construction, the numbers ρ(T1) = ρ1, . . . , ρ(Ts) = ρs
are pairwise multiplicatively independent, we can apply our second purity
theorem, Theorem 3.8, to these s Mahler systems. We deduce that

(11.6) AlgQ(E) =
s∑

k=1

AlgQ(Ek | E) .

Now, let us fix k ∈ {1, . . . , s}. Since the numbers αi, i ∈ Ik, are multi-
plicatively independent, we can apply our first purity theorem, Theorem 3.6,
to the νk distinct Mahler systems (11.5.i), with i ∈ Ik. For every i ∈ Ik,
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gi(αi) = fi(αi) is transcendental, so that AlgQ(Ek,i) = {0}. We thus deduce
from Theorem 3.6 that

AlgQ(Ek) =
∑
i∈Ik

AlgQ(Ek,i | Ek) = {0} .

Since this holds for every k, 1 ≤ k ≤ s, it follows from (11.6), that AlgQ(E) =
{0}. That is, f1(α1), . . . , fr(αr) are algebraically independent over Q.

Now, let us prove Case (ii) of Theorem 1.1. As previously, we associate
with each pair (fi(z), αi) a function gi(z) satisfying the conditions of Lemma
11.1. Since the natural numbers qi are pairwise multiplicatively independent,
we can apply our second purity theorem, Theorem 3.8, to the Mahler systems
associated with each gi(z) in Lemma 11.1. Setting

E := (g1(α1), . . . , gr(αr))

and Ei := (gi(αi)), 1 ≤ i ≤ r, we deduce that

AlgQ(E) =
r∑

i=1

AlgQ(Ei | E) .

Again, since by assumption gi(αi) = fi(αi) is transcendental, we get that
AlgQ(Ei | E) = {0} for every i, 1 ≤ i ≤ r. This shows that AlgQ(E) =

{0}, and we conclude, as previously, that f1(α1), . . . , fr(αr) are algebraically
independent over Q. □

11.1. Comment on Theorem 1.1. Let us just add a few words about
the algorithm mentioned in Remark 1.2. The input of the algorithm is an
Mq-function, say f(z), and an algebraic point, say α, 0 < |α| < 1. More
precisely, we assume that f(z) is given by one equation of the form (1.3) and
enough initial coefficients of its power series expansion so that it is uniquely
defined by these data. The main issue is to compute explicitly a good equation
satisfied by f(z).

From the input data, one can first compute explicitly the minimal inho-
mogeneous q-Mahler equation satisfied by f(z) (cf. [9, Algorithm 1.3]). It
takes the form

(11.7) a−1(z) + a0(z)f(z) + a1(z)f(z
q) + · · ·+ am(z)f(zq

m
) = 0

where ai(z) ∈ Q[z], −1 ≤ i ≤ m, are relatively prime and m is minimal. Let
ρ be a lower bound for the modulus of the nonzero roots of the polynomials
ai(z), −1 ≤ i ≤ m, and ℓ0 be a positive integer such that |α|qℓ0 < ρ. Such
an integer ℓ0 can be effectively computed. Furthermore, αqℓ0 is regular with
respect to the linear Mahler system associated with Equation (11.7), so that
the lifting theorem implies that the numbers

1, f(αqℓ0 ), f(αqℓ0+1
), . . . , f(αqℓ0+m−1

)

are linearly independent over Q, since the minimality of (11.7) forces the
functions 1, f(z), f(zq), . . . , f(zq

m−1
) to be linearly independent over Q(z).

Iterating ℓ0 times the linear Mahler system associated with Equation (11.7),
we obtain a new equation of the form:
(11.8)
b−1(z)+b0(z)f(z)+b1(z)f(z

qℓ0 )+b2(z)f(z
qℓ0+1

)+· · ·+bm(z)f(zq
ℓ0+m−1

) = 0 ,
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with bi(z) ∈ Q[z], −1 ≤ i ≤ m, relatively prime. Equation (11.8), which
can thus be explicitly computed, is the good equation we were looking for.
Indeed, we easily deduce from (11.8) and the linear independence over Q of

1, f(αqℓ0 ), f(αqℓ0+1
), . . . , f(αqℓ0+m−1

) ,

the following trichotomy:
(i) f(z) has a pole at α if and only if b0(α) = 0 ,
(ii) f(α) is algebraic if and only if b1(α) = · · · = bm(α) = 0 ,
(iii) f(α) is transcendental otherwise.

It follows that one can effectively determined wether f(α) is transcendental
or not. Furthermore, in the latter case, [8, Corollaire 1.8] implies that f(α)
should belong to the number field generated over Q by the coefficients of f(z)
and the point α. In the end, this shows that, in the condition of Theorem 1.1,
we can indeed determine wether or not one of the numbers fi(αi), 1 ≤ i ≤ r,
belongs to K.

12. Proof of Theorems 2.2, 2.3, and 2.4

In this section, we show how to deduce Theorems 2.2, 2.3, and 2.4 from
Theorem 1.1.

We first recall the following result due to Cobham [22]: if x is a real number
whose expansion in the integer base b ≥ 2 can be generated by a finite
automaton, then there exists an M -function f(z) with integer coefficients
such that x = f(1/b).

Proof of Theorem 2.2. Let us assume that x is a real number that is auto-
matic in the two multiplicatively independent bases b1 and b2. The result
of Cobham mentioned just above implies that there exist two M -functions
f1(z) and f2(z) with integer coefficients such that x = f1(1/b1) = f2(1/b2).
Note that the coefficients of theses functions and the points 1/b1 and 1/b2
all belong to the field Q. Since the numbers f1(1/b1) and f2(1/b2) are equal,
they are obviously algebraically dependent over Q, and then Part (i) of The-
orem 1.1 implies than one of them is rational. Hence x is rational. □

Proof of Theorem 2.3. Let b1, . . . , br ≥ 2 be multiplicatively independent in-
tegers and let us assume that for every i, 1 ≤ i ≤ r, xi is automatic in base
bi. The result of Cobham mentioned just above implies that, for every i,
1 ≤ i ≤ r, there exists an M -function fi(z) with integer coefficients such
that xi = fi(1/bi). Since the coefficients of fi(z) and the point 1/bi all be-
long to Q, we infer from [8, Corollaire 1.8] that either fi(1/bi) is rational or
it is transcendental. Now, let us assume that x1, . . . , xr are all irrational.
We thus deduce that these numbers are all transcendental. Since by assump-
tion the numbers 1/b1, . . . , 1/br are multiplicatively independent, Part (i) of
Theorem 1.1 implies that the numbers x1 = f1(1/b1), . . . , xr = fr(1/br) are
algebraically independent, as wanted. □

Proof of Theorem 2.4. Let us assume that the functions f1(z), . . . , fr(z) are
all irrational. Then, we infer from [52, Theorem 5.1.7] that they are all
transcendental over Q(z). Combining Nishioka’s theorem and [18, Lemma 6],
we deduce that there exists r > 0 such that for all algebraic numbers α, with
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0 < |α| < r, the numbers f1(α), . . . , fr(α) are all transcendental. Picking
such α and applying Part (ii) of Theorem 1.1, we obtain that the numbers
f1(α), . . . , fr(α) are algebraically independent over Q. Hence the functions
f1(z), . . . , fr(z) are algebraically independent over Q(z), as wanted. □
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