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Abstract. In a recent work [3], the authors established new results
about general linear Mahler systems in several variables from the per-
spective of transcendental number theory, such as a multivariate exten-
sion of Nishioka’s theorem. Working with functions of several variables
and with different Mahler transformations leads to a number of compli-
cations, including the need to prove a general vanishing theorem and to
use tools from ergodic Ramsey theory and Diophantine approximation
(e.g., a variant of the p-adic Schmidt subspace theorem). These compli-
cations make the proof of the main results proved in [3] rather intricate.
In this article, we describe our new approach in the special case of lin-
ear Mahler systems in one variable. This leads to a new, elementary,
and self-contained proof of Nishioka’s theorem, as well as of the lifting
theorem more recently obtained by Philippon [22] and the authors [1].
Though the general strategy remains the same as in [3], the proof turns
out to be greatly simplified. Beyond its own interest, we hope that read-
ing this article will facilitate the understanding of the proof of the main
results obtained in [3].

1. Introduction

Throughout this paper, we let q ≥ 2 denote a fixed integer. An Mq-
function is a power series f(z) ∈ Q[[z]] satisfying a linear equation of the
form

p0(z)f(z) + p1(z)f(z
q) + · · ·+ pm(z)f(z

qm) = 0 ,

where p0(z), . . . , pm(z) ∈ Q[z] are not all zero. In the study ofMq-functions,
it is often more convenient to consider, instead of linear Mahler equations,
linear systems of functional equations of the form

(1.1)

 f1(z)
...

fm(z)

 = A(z)

 f1(z
q)

...
fm(z

q)

 ,

where A(z) ∈ GLm(Q(z)) and f1(z), . . . , fm(z) ∈ Q[[z]]. Then, each power
series fi(z) is anMq-function. We recall that anMq-function is meromorphic
in the open unit disc of C (see, for instance, [9, Théorème 31]). Furthermore,
it admits the unit circle as a natural boundary, unless it is a rational function
[24, Théorème 4.3]. A point α ∈ C is said to be regular with respect to (1.1)
if the matrix A(αqk) is both well-defined and invertible for all integers k ≥ 0.

In this framework, the main aim of Mahler’s method is to transfer results
about the absence of algebraic (resp. linear) relations between the functions
f1(z), . . . , fm(z) over Q(z) to the absence of algebraic (resp. linear) rela-
tions over Q between their values at non-zero algebraic points lying in the
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open unit disc (assuming, of course, that these values are well-defined). In
1990, Ku. Nishioka [19] proved the following theorem, which is the analog of
the Siegel-Shidlovskii theorem in the theory of Siegel E-functions (see [25]).
Given a field K, a field extension L of K, and elements a1, . . . , am in L, we
let tr.degK(a1, . . . , am) denote the transcendence degree over K of the field
extension K(a1, . . . , am).

Theorem 1.1 (Nishioka’s theorem). Let f1(z), . . . , fm(z) be Mq-functions
related by a Mahler system of the form (1.1) and let α ∈ Q, 0 < |α| < 1, be
regular with respect to this system. Then

tr.degQ(f1(α), . . . , fm(α)) = tr.degQ(z)(f1(z), . . . , fm(z)) .

Nishioka’s theorem is undoubtedly a landmark result in Mahler’s method,
but it also suffers from some limitations which prevent it from covering im-
portant applications (see the discussion in Sections 1 and 2 of [1] and also
the results in [2]). For such applications, the following refinement of Nish-
ioka’s theorem, which we called lifting theorem (or théorème de permanence
in French), is needed.

Theorem 1.2 (Lifting theorem). Let f1(z), . . . , fm(z) be Mq-functions re-
lated by a Mahler system of the form (1.1) and let α ∈ Q, 0 < |α| < 1,
be regular with respect to this system. Then for any homogenous polynomial
P ∈ Q[X1, . . . , Xm] such that

P (f1(α), . . . , fm(α)) = 0 ,

there exists a polynomial P ∈ Q[z,X1, . . . , Xm], homogeneous in X1, . . . , Xm,
such that

P (z, f1(z), . . . , fm(z)) = 0 and P (α,X1, . . . , Xm) = P (X1, . . . , Xm).

Again, Theorem 1.2 has an analog in the theory of E-functions: the lifting
theorem proved by Beukers [8] using André’s theory of arithmetic Gevrey
series [5, 6]. A slightly weaker version of Theorem 1.2 was first proved by
Philippon [22]. Theorem 1.2 was then deduced in [1] from Philippon’s lifting
theorem. In [1, 22], the lifting theorem is derived from Nishioka’s theorem.
Thanks to the work of André [7], pursued by Naguy and Szamuely [17], we
now have a general approach based on a suitable Galois theory of linear
differential and difference equations that allows one to deduce theorems of
the type of Theorem 1.2 from theorems of the type of Theorem 1.1.

The proof of Nishioka’s theorem deeply relies on tools from commutative
algebra, related to elimination theory, which were introduced and developed
by Nesterenko in the framework of transcendental number theory at the end
of the 1970s (see, for instance, [18]). Recently, Fernandes [11] observed that
Nishioka’s theorem can also be derived from a general algebraic independence
criterion due to Philippon [23]. However, Philippon’s criterion is also based
on the same tools, so that, in the end, both proofs rely on the same argument.
The proof of Nishioka’s theorem has the advantage that it can be quantified
(see, for instance, [19]), leading to algebraic independence measures. Its
main deficiency is that it can hardly be generalised to Mahler systems in
several variables.



A NEW PROOF OF NISHIOKA’S THEOREM 3

In this note, we use the approach recently introduced by the authors [3] to
provide new and more elementary proofs of both Nishioka’s theorem and the
lifting theorem. This approach takes its roots in the original one initiated
by Mahler [16] and developed much later by Kubota [13], Loxton and van
der Poorten [15], and Nishioka [20, 21]. The main improvement comes from
the introduction of the so-called relation matrices whose existence is ensured
by Hilbert Nullstellensatz. In contrast with [1, 22], we first prove the lifting
theorem and then deduce Nishioka’s theorem by using a classical argument,
as in Shidlovskii’s proof of the Siegel-Shidlovskii theorem (see [25] or [10]).
Beyond its elementary aspect, this new approach has the great advantage
of being generalisable within the framework of Mahler’s method in several
variables, as has been done in [3]. We hope that reading first this article will
facilitate the understanding of the proof of the main results in [3].

2. Lifting the linear relations

We first prove Theorem 1.2 in the particular case of linear relations.

Theorem 2.1. Let f1(z), . . . , fm(z) be Mq-functions related by a Mahler
system of the form (1.1), and let α ∈ Q, 0 < |α| < 1, be regular with respect
to this system. Let L ∈ Q[X1, . . . , Xm] be a linear form such that

L(f1(α), . . . , fm(α)) = 0 .

Then, there exists L ∈ Q[z,X1, . . . , Xm], linear in X1, . . . , Xm, such that

L(z, f1(z), . . . , fm(z)) = 0 and L(α,X1, . . . , Xm) = L(X1, . . . , Xm) .

The proof of this theorem is divided into three subsections. We first
establish the existence and properties of some special matrices which can be
associated with a linear Mahler system. We call them the relation matrices.
Then, we construct an auxiliary function and use it to prove a key lemma
about the structure of the linear relations between f1(z), . . . , fm(z). Finally,
we show how this lemma allows us to lift any linear relation over Q between
f1(α), . . . , fm(α) into a linear relation over Q(z) between f1(z), . . . , fm(z).
Throughout this section, we keep the notation of Theorem 2.1.

2.1. Notation. Let d be a positive integer and R be a commutative ring.
Given an indeterminate x, we let R[[x]] denote the ring of formal power series
with coefficients in R. If R ⊂ C, we let R{x} denote the ring of convergent
power series with coefficients in R, that is those elements of R[[x]] that are
analytic in some neighborhood of the origin. Given a d-tuple of non-negative
integers k = (k1, . . . , kd), we set |k| := k1 + · · · + kd. If X1, . . . , Xd are
indeterminates, we set Xk := Xk1

1 · · ·X
kd
d . The total degree of a polynomial

in R[X1, . . . , Xd] is defined by

deg

(∑
k∈K

akX
k

)
:= max{|k| : k ∈ K , ak 6= 0} .
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Given an m× n matrix M := (mi,j) with coefficients in R and an m× n
matrix µ = (µi,j) with nonnegative integer coefficients, we set

Mµ :=
∏

1≤i≤m
1≤j≤n

m
µi,j
i,j .

We use the standard Landau notation O. We also use the notation � as
follows. Writing that some property holds for all integers λ� 1 means that
the corresponding property holds for all λ large enough; writing that some
property holds for all integers λ1 � λ2, λ3 means that the corresponding
property holds for all λ1 that is sufficiently large with respect to λ2 and λ3;
writing that some property holds for all integers λ1 � λ2 � λ3 means that
the corresponding property holds for all λ1 that is sufficiently large with
respect to λ2, assuming that λ2 is itself sufficiently large with respect to λ3.

2.2. Relation matrices. To shorten the notation, we set

f(z) := (f1(z), . . . , fm(z))
> .

For every integer k ≥ 0, we set

Ak(z) := A(z)A(zq) · · ·A(zqk−1
) ,

so that A0(z) = Im, the identity matrix of size m, A1(z) = A(z), and

(2.1) f(z) = Ak(z)f(z
qk) , ∀k ≥ 0 .

Let Y := (yi,j)1≤i,j≤m denote a matrix of indeterminates. Given a field K
and a non-negative integer δ1, we let K[Y ]δ1 denote the set of polynomials of
degree at most δ1 in each indeterminate yi,j . Given two non-negative integers
δ1 and δ2, we let K[Y , z]δ1,δ2 denote the set of polynomials P ∈ K[Y , z] of
degree at most δ1 in every indeterminate yi,j and of degree at most δ2 in z.
The identity theorem and the fact that α is a regular point with respect to
(1.1) ensure that every polynomial P ∈ Q(z)[Y ] is well-defined at the point
(Ak(α), α

qk) for all k � 1. Set

I := {P ∈ Q(z)[Y ] : P (Ak(α), α
qk) = 0 , ∀k � 1} .

2.2.1. Estimates for the dimension of certain vector spaces. Let δ1 and δ2
be two non-negative integers. Set I(δ1) := I ∩ Q(z)[Y ]δ1 and I(δ1, δ2) :=
I ∩Q[Y , z]δ1,δ2 . Note that I(δ1, δ2) is a vector subspace of Q[Y , z]δ1,δ2 , and
let I⊥(δ1, δ2) denote a complement to I(δ1, δ2) in Q[Y , z]δ1,δ2 .

Lemma 2.2. Let d(δ1, δ2) denote the dimension of I⊥(δ1, δ2) over Q. There
exists a positive integer c1(δ1), that does not depend on δ2, such that

d(δ1, δ2) ∼ c1(δ1)δ2 , as δ2 tends to infinity.

Proof. Set h := (δ1 + 1)m
2 and let ν1, . . . ,νh denote an enumeration of the

set of all matrices inMm(Z≥0) whose entries are at most δ1. Any polynomial
P ∈ Q(z)[Y ]δ1 has a unique decomposition of the form

P (Y , z) :=

h∑
j=1

pj(z)Y
νj ,
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where pj(z) ∈ Q(z), 1 ≤ j ≤ h. Since, by definition, I(δ1) does not contain
any non-zero elements of Q, it is a strict Q(z)-subspace of Q(z)[Y ]δ1 . Thus,
there exist an integer d ≥ 1 and d vectors of polynomials (bi,1(z), . . . , bi,h) ∈
Q[z]h, 1 ≤ i ≤ d, which are linearly independent over Q(z) and such that
for all p1(z), . . . , ph(z) ∈ Q(z):

(2.2)
h∑
j=1

pj(z)Y
νj ∈ I(δ1)⇔

h∑
j=1

bi,j(z)pj(z) = 0 ∀i, 1 ≤ i ≤ d .

Since these polynomials only depend on δ1 (and I), there exists δ′1 ≥ 0,
which only depends on δ1 (and I), such that

bi,j(z) =:

δ′1∑
κ=0

bi,j,κz
κ , bi,j,κ ∈ Q .

Let us consider P (Y , z) :=
∑h

j=1 pj(z)Y
νj ∈ Q[Y , z]δ1,δ2 and set

pj(z) =:
∑
λ∈Z

pj,λz
λ ,

where the numbers pj,λ belong to Q and pj,λ = 0 if λ > δ2 or λ < 0. By
(2.2), P belongs to I(δ1, δ2) if and only if

(2.3)
h∑
j=1

δ′1∑
κ=0

bi,j,κpj,γ−κ = 0 , ∀(γ, i) , 0 ≤ γ ≤ δ2 + δ′1 , 1 ≤ i ≤ d .

The number of linearly independent equations in (2.3) is equal to the di-
mension of I⊥(δ1, δ2). As δ2 tends to infinity, it is equivalent to the number
of linearly independent equations in (2.3) such that δ′1 ≤ γ ≤ δ2. When γ,
δ′1 ≤ γ ≤ δ2, is fixed, the number of linearly independent equations in (2.3)
does not depend on γ. Hence there exists a positive integer c(δ1) which does
not depend on δ2 such that

dim I⊥(δ1, δ2) ∼ c(δ1)δ2 , as δ2 tends to infinity.

Note that a more detailed argument can also be found in [4, Section A.1]. �

Lemma 2.3. For every pair of non-negative integers (δ1, δ2), one has

dim I⊥(2δ1, δ2) ≤ 2m
2
dim I⊥(δ1, δ2) .

Proof. Every P ∈ Q[Y , z]2δ1,δ2 can be decomposed as

(2.4) P (Y , z) =

2m
2∑

`=1

e`(Y )δ1P`(Y , z) ,

where we let e1(Y ), . . . , e
2m2 (Y ) denote the 2m2 distinct monomials of degree

at most 1 in each yi,j , and where the polynomials P`(Y , z) all belong to
Q[Y , z]δ1,δ2 . If each polynomial P` belongs to I(δ1, δ2) then P ∈ I(2δ1, δ2).
Hence, the decomposition (2.4) defines a linear map(

Q[Y , z]δ1,δ2/I(δ1, δ2)
)2m2

7→ Q[Y , z]2δ1,δ2/I(2δ1, δ2)
that is surjective. The result follows. �
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2.2.2. Nullstellensatz and relation matrices. In this section, we show how
Hilbert’s Nullstellensatz allows us to ensure the existence of a matrix φ,
whose entries are all algebraic over Q(z), and which we call a relation matrix.
Such a matrix encodes the linear relations over Q(z) between the functions
f1(z), . . . , fm(z) and is the cornerstone of the proof of Theorem 2.1.

We first prove the following lemma.

Lemma 2.4. The set I is a radical ideal of Q(z)[Y ].

Proof. Checking that I is an ideal of Q(z)[Y ] is not difficult. If P1, P2 ∈ I,
then P1 + P2 vanishes at (Ak(α), αq

k
) for all k � 1 and hence P1 + P2 ∈ I.

Now let P1 ∈ I and P2 ∈ Q(z)[Y ]. On the one hand, P1(Ak(α), α
qk) = 0 for

all k � 1 and P2(Y , z) is well-defined at (Ak(α), αq
k
) for k � 1. We deduce

that
P1(Ak(α), α

qk)P2(Ak(α), α
qk) = 0 ∀k � 1 .

Hence P1P2 ∈ I. Let P ∈ Q(z)[Y ] be such that P r ∈ I for some r. If k is a
non-negative integer such that P (Ak(α), αq

k
)r = 0, then P (Ak(α), αq

k
) = 0.

Hence P ∈ I and I is a radical ideal. �

Throughout this article, we let A ⊂
⋃
d≥1Q((z1/d)) denote the algebraic

closure of Q(z) in the field of Puiseux series. By the Newton-Puiseux Theo-
rem, A is algebraically closed.

Lemma 2.5. There exists a matrix φ(z) ∈ GLm(A) such that

P (φ(z), z) = 0 ,

for all polynomials P ∈ I.

Proof. Let us consider the affine algebraic set V associated with the radical
ideal I. That is,

V := {φ(z) ∈Mm(A) : P (φ(z), z) = 0 , ∀P ∈ I} .
According to the weak form of Hilbert’s Nullstellensatz (see, for instance,
[14, Theorem 1.4, p. 379]), V is non-empty as soon as I is a proper ideal of
Q(z)[Y ]. But the definition of I implies that non-zero constant polynomials
do not belong to I. Hence V is non-empty.

Now, let us assume by contradiction that detφ(z) = 0 for all φ(z) in V.
By Hilbert’s Nullstellensatz (see, for instance, [14, Theorem 1.5, p. 380]), the
polynomial detY belongs to the radical of the ideal I. Hence detY ∈ I for
I is radical. Thus, detAk(α) = 0 for k � 1. This provides a contradiction
since Ak(α) is invertible for all k ≥ 0. We thus deduce that there exists an
invertible matrix φ(z) in V, as wanted. �

Definition 2.6. A matrix φ(z) ∈ GLm(A) satisfying the property of Lemma
2.5 is called a relation matrix.

The next lemma plays a central role in the proof of Theorem 2.1.

Lemma 2.7. Let φ(z) ∈ GLm(A) be a relation matrix. Then

P
(
φ(z)Ak(z), z

qk
)
= 0 ,

for all P ∈ I and all k ≥ 0.
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Proof. Let P ∈ I, φ(z) ∈ GLm(A) be a relation matrix, and k be a non-
negative integer. Set Q(Y , z) := P (Y Ak(z), z

qk) ∈ Q(z)[Y ]. For every
`� 1, the polynomial Q(Y , αq

`
) is well-defined and we have

Q(A`(α), α
q`) = P (A`(α)Ak(α

q`), (αq
`
)q
k
) = P (Ak+`(α), α

qk+`) = 0 ,

since A`(α)Ak(αq
`
) = Ak+`(α). Hence Q ∈ I and

P (φ(z)Ak(z), z
qk) = Q(φ(z), z) = 0 ,

as wanted. �

2.2.3. Analyticity and relation matrices. We address now the question of the
analyticity of relation matrices.

Lemma 2.8. Let φ(z) ∈ GLm(A) be a relation matrix. Then the three
following properties holds for k � 1.

(a) The point αqk belongs to the disc of convergence of each of the func-
tions f1(z), . . . , fm(z).

(b) Each entry of φ(z) defines an analytic function on some neighborhood
of αqk .

(c) The matrix φ(αqk) is invertible.

Proof. Since limk→∞ α
qk = 0 and f1(z), . . . , fm(z) are analytic on some

neighborhood of 0, Property (a) holds for k � 1. Recall that an algebraic
function has only finitely many singularities and finitely many zeros. Hence,
for k � 1, αqk is neither a singularity of one of the entries of φ(z) nor a zero
of detφ(z). We deduce that Properties (b) and (c) hold for k � 1. �

2.3. The key Lemma. Let

L(X1, . . . , Xm) =:
m∑
j=1

τjXi ∈ Q[X1, . . . , Xr]

be defined as in Theorem 2.1. Set τ := (τ1, . . . , τm) ∈ Qm and X :=
(X1, . . . , Xm)

>, so that L(X) = τX. Given a matrix of indeterminates
Y := (yi,j)1≤i,j≤m, we set

F (Y , z) :=
∑
i,j

τiyi,jfj(z) = τY f(z) ∈ Q{z}[Y ] ,

where we recall that f(z) := (f1(z), . . . , fm(z))
>. Note that F is a linear

form in Y . Evaluating at (Im, α), where Im is the identity matrix of size m,
we obtain that

(2.5) F (Im, α) =
m∑
i=1

τifi(α) = L(f(α)) = 0 .

Remark 2.9. We have F (Y , z) ∈ Q[Y ,f(z)] ⊂ Q{z}[Y ]. Also, F (Y , z) can
be seen as an element of Q[Y ][[z]], as we will sometimes do in what follows.
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2.3.1. Iterated relations. For every k ≥ 0, Equality (2.1) implies the following
equality in A[Y ]:

F (Y , z) = τY f(z)

= τY Ak(z)f(z
qk)(2.6)

= F (Y Ak(z), z
qk) .

The point α being regular with respect to (1.1), we deduce from (2.5) that

(2.7) F (Ak(α), α
qk) = 0 , ∀k ≥ 0 .

2.3.2. The matrices Θk(z). From now on, we fix a relation matrix φ(z) and
a non-negative integer k0 satisfying the properties of Lemma 2.8. Set

(2.8) ξ := αq
k0
.

Item (a) in Lemma 2.8 ensures the existence of a positive real number r1 < 1
such that 0 < |ξ| < r1 and such that all the power series f1(z), . . . , fm(z)
have a radius of convergence larger than r1. Then, by Item (b) in the same
lemma, we can choose r2 > 0 satisfying 0 < |ξ|+ r2 < r1 and such that the
coefficients of the matrix φ(z) are analytic on the disc D(ξ, r2). For every
k ≥ k0, we set

(2.9) Θk(z) := Ak0(α)φ(α
qk0 )−1φ(z)Ak−k0(z)

so that we have Θk(ξ) = Ak(α), for every k ≥ k0.

Remark 2.10. By Lemma 2.8, the coefficients of Θk0(z) are analytic on the
disc D(ξ, r2). On the other hand, one has

Θk(z) = Θk−1(z)A(z
qk−1−k0

) , ∀k > k0 .

This implies that, for every k ≥ k0, the coefficients of Θk(z) are analytic
on some neighborhood of ξ, that is on some disc D(ξ, rk) ⊂ D(ξ, r2). In
what follows, we will consider the expression F (Θk(z), z

qk−k0 ). Formally, it
is a polynomial in f1(zq

k−k0 ), . . . , fm(z
qk−k0 ) and the entries of Θk(z). Note

that it also defines an analytic function on D(ξ, rk) ⊂ D(ξ, r2). In addition,
F (Θk0(z), z) is analytic on D(ξ, r2). Indeed, the functions f1(z), . . . , fm(z)
are analytic on D(0, r1) ⊃ D(ξ, r2), while our choice of k0 ensures that the
entries of Θk0(z) are analytic on D(ξ, r2).

2.3.3. The key lemma. The end of the section is devoted to proof of the
following result.

Lemma 2.11. One has F (Θk0(z), z) = 0.

In what follows, we argue by contradiction, assuming that

(2.10) F (Θk0(z), z) 6= 0 .

We divide the proof of Lemma 2.11 into the four steps (AF), (UB), (NV),
and (LB), following the classical proof scheme in transcendental number
theory. In Step (AF) we build an auxiliary function by considering some
sort of Padé approximant of type I for the first powers of F (Y , z). In Step
(UB) we compute some upper bound for the absolute value of the evaluation
of our auxiliary function at (Ak(α), α

qk), for large k, by means of analytic
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estimates. In Step (NV) we prove that our auxiliary function is non-vanishing
at (Ak(α), α

qk) for infinitely many k. In Step (LB), we provide a lower
bound for the absolute value of the evaluation of our auxiliary function at
(Ak(α), α

qk), for infinitely many k, by using Liouville’s inequality. Finally,
we show that the steps (UB) and (LB) lead to a contradiction.

Step (AF). Given a formal power series E :=
∑

λ≥0 eλ(Y )zλ ∈ Q[Y ][[z]]
and an integer p > 0, we let

Ep :=

p−1∑
λ=0

eλ(Y )zλ ∈ Q[Y , z]

denote the truncation of E at order p with respect to z. We recall that
I⊥(δ1, δ2) is a complement to I(δ1, δ2) in Q[Y , z]δ1,δ2 .

Lemma 2.12. Let δ1 ≥ 0 and δ2 � δ1 be two integers. Let p :=
⌊

δ1δ2
2m2+2

⌋
.

Then there exist polynomials Pi ∈ I⊥(δ1, δ2), 0 ≤ i ≤ δ1, not all zero, such
that the formal power series

E(Y , z) :=

δ1∑
j=0

Pj(Y , z)F (Y , z)
j ∈ Q[Y ][[z]]

satisfies Ep(Θk(z), z
qk−k0 ) = 0 for all k ≥ k0.

Proof. Set

J (δ1, δ2) := {P ∈ Q[z,Y ] : P (Ak0(α)φ(α
qk0 )−1Y , z) ∈ I(δ1, δ2)} .

The Q-vector spaces J (δ1, δ2) and I(δ1, δ2) have same dimension. This fol-
lows directly from the fact that the map

Q[Y , z]δ1,δ2 → Q[Y , z]δ1,δ2
P (Y , z) 7→ P (Ak0(α)φ(α

qk0 )−1Y , z)

is an isomorphism, the matrix Ak0(α)φ(αq
k0 )−1 being invertible. Further-

more, we have

(2.11) P (Θk(z), z
qk−k0 ) = 0 , ∀P ∈ J (δ1, δ2), ∀k ≥ k0 .

Indeed, if P ∈ J (δ1, δ2), then P (Ak0(α)φ(α
qk0 )−1Y , z) ∈ I(δ1, δ2), and

Lemma 2.7 implies that

P (Ak0(α)φ(α
qk0 )−1φ(z)Ak(z), z

qk) = 0 , ∀k ≥ 0 .

For k ≥ k0, replacing k by k − k0 in the previous equality, we obtain that

P (Ak0(α)φ(α
qk0 )−1φ(z)Ak−k0(z), z

qk−k0 ) = 0 .

By (2.9), we thus have P (Θk(z), z
qk−k0 ) = 0.
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Let p be as in the lemma and let us consider the three Q-linear maps:{ (
I⊥(δ1, δ2)

)δ1+1

(P0(Y , z), . . . , Pδ1(Y , z))y{
Q[Y ]2δ1 [[z]]

E(Y , z) :=
∑δ1

j=0 Pj(Y , z)F (Y , z)
jy{

Q[Y , z]2δ1,p−1
Ep(Y , z)y{

Q[Y , z]2δ1,p−1/J (2δ1, p− 1)
Ep(Y , z) mod J (2δ1, p− 1)

Note that these maps are well-defined. By Lemma 2.2, the dimension of the
Q-vector space I⊥(δ1, δ2) is at least equal to c1(δ1)

2 δ2, assuming that δ2 is
large enough. It follows that

(2.12) dimQ

((
I⊥(δ1, δ2)

)δ1+1
)
≥ c1(δ1)

2
(δ1 + 1)δ2 .

For every pair of non-negative integers (u, v), set

J (u, v) := Q[Y , z]u,v/J (u, v) .
Since J (δ1, δ2) and I(δ1, δ2) have same dimension, Lemma 2.3 implies that

dimQ J (2δ1, p− 1) ≤ 2m
2
dimQ J (δ1, p− 1) .

Now, if δ2 is sufficiently large, Lemma 2.2 ensures that

dimQ J (δ1, p− 1) ≤ 2c1(δ1)p .

On the other hand, the choice of p ensures that

2m
2
(2c1(δ1)p) <

c1(δ1)

2
(δ1 + 1)δ2

and (2.12) implies that

dimQ

((
I⊥(δ1, δ2)

)δ1+1
)
> dimQ

(
Q[Y , z]2δ1,p−1/J (2δ1, p− 1)

)
.

Hence the Q-linear map defined by

(P0(Y , z), . . . , Pδ1(Y , z)) 7→ Ep(Y , z) mod J (2δ1, p− 1)

has a non-trivial kernel. We deduce the existence of polynomials P0, . . . , Pδ1
in I⊥(δ1, δ2), not all zero, such that Ep ∈ J (2δ1, p−1). By (2.11), we obtain
that Ep(Θk(z), z

qk−k0 ) = 0 for all k ≥ k0. This ends the proof. �

Let E ∈ Q[Y ][[z]] be a formal power series satisfying the properties of
Lemma 2.12 and let v0 be the smallest index such that the polynomial Pv0
is non-zero. Then the formal power series

E(Y , z) :=
∑
j≥v0

Pj(Y , z)F (Y , z)
j−v0 ∈ Q[Y ][[z]]
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is the auxiliary function that we were looking for. Note that we have

(2.13) E(Y , z)F (Y , z)v0 = E(Y , z) .

Warning. The function E(Θk(z), z
qk−k0 ) can be thought of as a simultane-

ous Padé approximant of type I for the first δ1th powers of F (Θk(z), z
qk−k0 ).

However, we have to be careful: F (Θk(z), z
qk−k0 ) it is not necessarily a

power series in z. It is a linear combination of f1(zq
k−k0 ), . . . , fm(z

qk−k0 )
whose coefficients are only known to be algebraic over Q(z). We only know
that F (Θk(z), z

qk−k0 ) is analytic in some neighborhood of the point ξ.

Step (UB). The aim of this step is to prove that there exists a real number
c2 > 0 such that

(2.14) |E(Ak(α), αq
k
)| ≤ e−c2qkδ1δ2 , ∀k � δ2 � δ1 .

According to Remark 2.10, the functions E(Θk(z), z
qk−k0 ), F (Θk0(z), z)

v0 ,
and E(Θk(z), z

qk−k0 ) are all analytic on the disc D(ξ, rk). Hence they re-
spectively have power series expansions of the form

E(Θk(z), z
qk−k0 ) =:

+∞∑
λ=0

eλ,k(z − ξ)λ , eλ,k ∈ C ,(2.15)

F (Θk0(z), z)
v0 =:

+∞∑
λ=0

aλ(z − ξ)λ , aλ ∈ C ,(2.16)

E(Θk(z), z
qk−k0 ) =:

+∞∑
λ=0

ελ,k(z − ξ)λ , ελ,k ∈ C .(2.17)

We need the following result whose proof is postponed after the end of
the argument for proving our main upper bound (2.14).

Lemma 2.13. Let p be defined as in Lemma 2.12. There exists a real number
γ > 0 that does not depend on the integers δ1, δ2, λ, and k, and such that

|ελ,k| ≤ e−γq
kp , ∀k � δ2 � δ1, λ .

Using (2.6), we get that

F (Θk(z), z
qk−k0 ) = F (Θk0(z), z) , ∀k ≥ k0 .

By (2.13), we thus have

(2.18) E(Θk(z), z
qk−k0 )F (Θk0(z), z)

v0 = E(Θk(z), z
qk−k0 ) ,

for all k ≥ k0 and all z ∈ D(ξ, rk). We use now our assumption that
F (Θk0(z), z) is non-zero (see (2.10)). There thus exists at least one non-zero
coefficient aλ in (2.16). Let us consider the least integer λ0 such that aλ0 6= 0.
Identifying the coefficients of (z− ξ)λ0 in the power series expansion of both
sides of (2.18) with the help of (2.15), (2.16), and (2.17), we obtain that

(2.19) e0,kaλ0 = ελ0,k , ∀k ≥ k0 .
Since Θk(ξ) = Ak(α) (see (2.9)) and aλ0 depends only on δ1 but not on
k, we infer from Lemma 2.13, Equality (2.19), and the definition of p (see



12 BORIS ADAMCZEWSKI AND COLIN FAVERJON

Lemma 2.12), the existence of a real number c2 > 0 that does not depend
on δ1, δ2, and k, such that∣∣∣E(Ak(α), αqk)∣∣∣ =

∣∣∣E(Θk(ξ), ξ
qk−k0 )

∣∣∣
= |e0,k|
= |ελ0,k|/|aλ0 |

≤ e−c2q
kδ1δ2 , ∀k � δ2 � δ1 .

This proves the upper bound (2.14), as wanted.

Now, it remains to prove Lemma 2.13.

Proof of Lemma 2.13. Set

G(Y , z) := E(Y , z)− Ep(Y , z) ∈ Q{z}[Y ] ,

where p is defined as in Lemma 2.12. By Lemma 2.12, we have

(2.20) G(Θk(z), z
qk−k0 ) = E(Θk(z), z

qk−k0 ) , ∀k ≥ k0 .

Let ν1, . . . ,νs denote an enumeration of all the m×m matrices with coeffi-
cients in the set {0, 1, . . . , 2δ1}. There exists a unique decomposition of the
form

G(Y , z) =:

s∑
i=1

∞∑
λ=p

gλ,iz
λY νi ,

where gλ,i ∈ Q. For every i, 1 ≤ i ≤ s, we define the formal power series

Gi(z) :=
∞∑
λ=p

gλ,iz
λ ∈ Q[[z]] .

By definition of F (Y , z), these series belong to Q[z,f(z)]. In particular,
they are analytic on some disc D(0, r) with r > r1 (where r1 is defined
at the beginning of Section 2.3.2). From the Cauchy-Hadamard inequality,
there exists a positive real number γ1(δ1, δ2) such that

(2.21) |gλ,i| ≤ γ1(δ1, δ2)r−λ1 , ∀λ ≥ 0 .

For every k ≥ k0, Gi(zq
k−k0 ) can thus be written as

(2.22) Gi(z
qk−k0 ) =:

∞∑
λ=qk−k0p

gλ,i,kz
λ ,

with gλ,i,k ∈ Q. Furthermore, this power series is absolutely convergent on
the disc D(0, r1). Since r1 ≤ 1, we deduce from (2.21) that

(2.23) |gλ,i,k| ≤ γ1(δ1, δ2)r−λq
k0−k

1 ≤ γ1(δ1, δ2)r−λ1 ,

for all λ ≥ 0, i ∈ {1, . . . , s}, and k ≥ k0. On the other hand, every function
Gi(z

qk−k0 ), 1 ≤ i ≤ s, k ≥ k0, is analytic on the disc D(ξ, rk). Thus, we can
write

(2.24) Gi(z
qk−k0 ) =:

∞∑
λ=0

hλ,i,k(z − ξ)λ ,
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where hλ,i,k ∈ C. Since by assumption D(ξ, rk) ⊂ D(0, r1), the two power
series expansions (2.22) and (2.24) match on D(ξ, rk). Using the equality

(2.25) zγ = ((z − ξ) + ξ)γ =

γ∑
λ=0

(
γ

λ

)
ξγ−λ(z − ξ)λ

and identifying, for every λ ≥ 0, the coefficients of (z − ξ)λ in (2.22) and
(2.24), we deduce that

(2.26) hλ,i,k =
∑

γ≥qk−k0p
γ≥λ

(
γ

λ

)
gγ,i,kξ

γ−λ .

For γ ≥ λ, one has

(2.27)
(
γ

λ

)
=

γ!

(γ − λ)!λ!
≤ γλ .

Given λ ≥ 0, we have that λ < qk−k0p as soon as k is large enough, and
since |ξ| < r1, we infer from (2.23) and (2.26) the existence of a real number
γ2 > 0 that does not depend on δ1, δ2, λ, and k, such that

(2.28) |hλ,i,k| ≤ e−γ2q
kp , ∀k � δ1, δ2, λ .

Now, we proceed to bound the absolute value of the coefficients of the
power series expansion in z − ξ of Θk(z)

νi , 1 ≤ i ≤ s. Given a power series
Q(z) ∈ Q{z} and k ≥ 0, we write

Q(zq
k−k0

) =:

∞∑
λ=0

qλ,k(z − ξ)λ .

For all k large enough, ξqk−k0 belongs to the domain of analyticity of Q(z).
Using again (2.25) and (2.27) we obtain that, for every λ ≥ 0, |qλ,k| = O(1) as
k tends to infinity, where the underlying constant in the O notation depends
both on Q(z) and λ. Fix some λ ≥ 0. Let v ≥ 0 be an integer such that the
entries of zvA(z) have no poles at 0. The entries of zvA(z) are convergent
power series at 0, and the points ξqk−k0 belong to their domain of analyticity
for k large enough. Then, the coefficients of (z − ξ)λ in the power series
expansion in z − ξ of each of the entries of zvqk−k0A(zqk−k0 ) belong to O(1)
as k tends to infinity. Using (2.25), we write

z−vq
k−k0

= ξ−vq
k−k0

1 +

vqk−k0∑
λ=1

(
vqk−k0

λ

)
ξ−λ(z − ξ)λ

−1

= ξ−vq
k−k0

+

∞∑
λ=1

ξ−vqk−k0 λ∑
t=1

∑
λ1+···+λt=λ

t∏
i=1

(
vqk−k0

λi

)
ξ−λi

 (z − ξ)λ

=:
∞∑
λ=0

rλ,k(z − ξ)λ .
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Using (2.27), we deduce the existence of a real number γ3 > 0 which does not
depend on k and such that |rλ,k| = O(eγ3q

k
) as k tends to infinity. It follows

that the absolute value of the coefficient of (z − ξ)λ, in the power series
expansion in z− ξ of each of the entries of A(zqk−k0 ), belongs to O(eγ3qk) as
k tends to infinity, where the underlying constant in the O notation depends
on λ but not on δ1, δ2, and k.

By Remark 2.10, the monomial Θk(z)
νi is analytic on D(ξ, rk) for every

i, 1 ≤ i ≤ s, and every k ≥ k0. Thus, we can write

Θk(z)
νi =:

+∞∑
λ=0

θλ,i,k(z − ξ)λ ,(2.29)

where θλ,i,k ∈ C. Using the recurrence relation

Θk+1(z) = Θk(z)A(z
qk−k0 ) ,

we obtain the existence of a real number γ4(λ) > 0 that does not depend on
i, δ1, δ2, and k, such that the absolute value of the coefficient of (z − ξ)λ in
each of the entries of Θk(z) is at most eγ4(λ)qk . Since |νi| ≤ 2m2δ1 for each
i, there exists a real number γ5(λ) > 0 that does not depend on i, δ1, δ2,
and k, such that

(2.30) |θλ,i,k| < eγ5(λ)δ1q
k
, ∀i, 1 ≤ i ≤ s, ∀k ≥ k0 .

From (2.17), (2.20), (2.24), and (2.29), we deduce that

(2.31)
s∑
i=1

(
+∞∑
λ=0

hλ,i,k(z − ξ)λ
)(

+∞∑
λ=0

θλ,i,k(z − ξ)λ
)

=

+∞∑
λ=0

ελ,k(z − ξ)λ .

Finally, identifying the coefficents of (z−ξ)λ in both sides of (2.31), we have

ελ,k =
s∑
i=1

λ∑
γ=0

hγ,i,kθλ−γ,i,k .

Note that p � δ1 when δ2 � δ1. Inequalities (2.28) and (2.30) imply the
existence of a real number γ6 > 0 that does not depend on δ1, δ2, λ, and k,
and such that

|ελ,k| ≤ e−γ6q
kp , ∀k � δ2 � δ1, λ .

Setting γ := γ6, this ends the proof. �

Step (NV). Let us first recall that by (2.7) we have

F (Ak(α), α
qk) = 0 , ∀k ≥ 0 .

By construction of our auxiliary function, we deduce that

E(Ak(α), α
qk) = Pv0(Ak(α), α

qk) .

Furthermore, since this construction ensures that Pv0 /∈ I, there exists an
infinite set of positive integers E such that

Pv0(Ak(α), α
qk) 6= 0 , ∀k ∈ E .

Without any loss of generality, we assume that k ≥ k0 for all k ∈ E .
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Step (LB). Given an algebraic number β, we let h(β) denote the absolute
logarithmic Weil height of β (see [26, Chapter 3] for a definition). In order
to prove our lower bound, we only need the following basic properties of
the Weil height. The use of the logarithmic Weil height simplifies some
computations but any other standard notion of height would also do the job.
Given two algebraic numbers β and γ, one has (see [26, Property 3.3]):

h(β + γ) ≤ h(β) + h(γ) + log 2

h(βγ) ≤ h(β) + h(γ)(2.32)
h(βn) = |n|h(β), β 6= 0, n ∈ Z .

Let P :=
∑
k∈K akX

k ∈ Q[X1, . . . , Xn], and β1, . . . , βn ∈ Q, we deduce
from [26, Lemma 3.7] that
(2.33)

h(P (β1, . . . , βn)) ≤
n∑
i=1

log(1 + degXi(P )) +
n∑
i=1

(degXi P )h(βi) +
∑
k∈K

h(ak) .

Given a number field k, we have the fundamental Liouville inequality (see
[26, p. 82]):

(2.34) log |β| ≥ −[k : Q]h(β) , ∀β 6= 0 ∈ k .

We are going to use (2.34) to find a lower bound for |E(Ak(α), αq
k
)|. A

simple computation by induction on k shows that the height of each entry
of Ak(α) is at most γqk for some γ > 0 that does not depend on k (see [4,
Section A.2] for more details). The polynomial Pv0(Y , z) has degree at most
δ1 in each indeterminate yi,j and degree at most δ2 in z. Furthermore, its
coefficients are algebraic numbers which only depend on the parameters δ1
and δ2. Using (2.32) and (2.33), we obtain that the height of the algebraic
number Pv0(Ak(α), αq

k
) is at most cqkδ2 for some constant c that does not

depend on δ1, δ2, and k, assuming that k � δ2 ≥ δ1. Since these algebraic
numbers belong to a fixed number field, Liouville’s inequality ensures the
existence of c3 > 0 that does not depend on δ1, δ2, and k, and such that
(2.35)
|E(Ak(α), αq

k
)| = |Pv0(Ak(α), αq

k
)| ≥ e−c3qkδ2 , ∀k ∈ E , k � δ2 ≥ δ1 .

We are now ready to end the proof of our key lemma.

Proof of Lemma 2.11. By Inequalities (2.14) and (2.35), we obtain that

e−c3q
kδ2 ≤ |E(Ak(α), αq

k
)| ≤ e−c2qkδ1δ2 , ∀k ∈ E , k � δ2 � δ1 .

We deduce that
c3 ≥ c2δ1 .

Since c2 and c3 are positive numbers which do not depend on δ1, this provides
a contradiction, as soon as δ1 is large enough. �

2.4. End of the proof of Theorem 2.1. The entries of φ(z) being alge-
braic over Q(z), they generate a finite extension of Q(z). Let k ⊂ A denote
this extension and let γ ≥ 1 be the degree of k. We recall that A is the



16 BORIS ADAMCZEWSKI AND COLIN FAVERJON

algebraic closure of Q(z) in the field of Puiseux series. Choosing a primitive
element ϕ(z) in k, we obtain a decomposition of the form

(2.36) φ(z) =:

γ−1∑
j=0

φj(z)ϕ(z)
j ,

where the matrices φj(z), 0 ≤ j ≤ γ − 1, have coefficients in Q(z). Let
d(z) ∈ Q[z] denote a common denominator of the entries of the matrices
φj(z). Without any loss of generality, we can assume that in (2.8) the integer
k0 has been chosen large enough so that ϕ(z) is analytic at ξ = αq

k0 and
d(αq

k0 ) 6= 0. Let q(z) denote the least common multiple of the denominators
of the entries of the matrix A−1k0 (z). Since α is assumed to be regular with
respect to the Mahler system (1.1), we have that q(α) 6= 0.

By Lemma 2.11, we know that F (Θk0(z), z) = 0, and substituting zqk0

for z, we obtain that F (Θk0(z
qk0 ), zq

k0 ) = 0. The function F (Y , z) being
linear in Y , we deduce that

F

(
d(zq

k0 )q(z)

d(αq
k0 )q(α)

Θk0(z
qk0 ), zq

k0

)
= 0 .

Writing Θk0(z
qk0 ) = Θk0(z

qk0 )Ak0(z)
−1Ak0(z) and using (2.6), we get that

(2.37) F

(
d(zq

k0 )q(z)

d(αq
k0 )q(α)

Θk0(z
qk0 )Ak0(z)

−1, z

)
= 0 .

Now, let us consider the linear form in X1, . . . , Xn defined by:

Q(z,X) := τ

(
d(zq

k0 )q(z)

d(αq
k0 )q(α)

Θk0(z
qk0 )Ak0(z)

−1

)
X .

Thus, the coefficient of each Xi in Q(z,X) belongs to Q[z, ϕ(zq
k0 )]. Since

ϕ(zq
k0 ) is analytic at α, the coefficients of Q(z,X) are analytic at α. More-

over, since Θk0(α
qk0 ) = Θk0(ξ) = Ak0(α), we deduce that

Q(α,X) = τX = L(X) .

Finally, it follows from (2.37) that

Q(z,f(z)) = 0 .

There is only one point left to address: we have lifted the linear relation
between f1(α), . . . , fm(α) into a linear relation between f1(z), . . . , fm(z), but
this relation is over Q[z, ϕ(zq

k0 )]. Since the field Q(z,f(z)) is a regular
extension of Q(z) (see [1, Lemme 3.2]), we have that Q(z)(f(z)) and A are
linearly disjoint over Q(z) (see [14, Chapter VIII]). Let δ denote the degree of
ϕ(zq

k0 ) over Q(z), so that the functions ϕ(zqk0 )j , 0 ≤ j ≤ δ− 1, are linearly
independent over Q(z). Since Q(z)(f(z)) and A are linearly disjoint over
Q(z), these functions remain linearly independent over Q(z)(f(z)). Thus,
splitting the linear form Q as

Q =:

δ−1∑
j=0

Qj(z,X)ϕ(zq
k0
)j ,
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where Qj(z,X) ∈ Q[z,X] are linear forms, we deduce that

Qj(z,f(z)) = 0 , ∀j, 0 ≤ j ≤ δ − 1 .

Finally, setting

L(z,X) :=

δ−1∑
j=0

Qj(z,X)ϕ(αq
k0
)j ∈ Q[z,X] ,

we obtain that L(z,f(z)) = 0 and L(α,X) = L(X), as wanted. This ends
the proof of Theorem 2.1. �

3. From linear to algebraic relations

In this section, we deduce Theorem 1.2 from Theorem 2.1. The key ob-
servation is that, given Mq-functions f1(z), . . . , fm(z) related by a Mahler
system, the monomials of a given degree in f1(z), . . . , fm(z) are also related
by a Mahler system with no additional singularities.

Let us first recall some notation. Let A = (ai,j) and B be matrices with
entries in a given commutative ring, with dimension, respectively, (m,n)
and (p, q). The Kronecker product of A and B is the matrix A⊗ B, of size
(mp, nq) with block decomposition

A⊗B :=

 a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 .

If d ≥ 1 is an integer, we also set

A⊗d := A⊗ · · · ⊗A︸ ︷︷ ︸
d times

.

We will use only basic facts about the Kronecker product that can be found
in [12] and are also reproved in [4, Section A.3].

Proof of Theorem 1.2. Let d denote the total degree of P and λ1, . . . ,λt be
an enumeration of the set {λ ∈ (Z≥0)m : |λ| = d}. Then, we have

P =:
t∑

j=1

pjX
λj ,

where pj ∈ Q andX := (X1, . . . , Xm). Set f(z) := (f1(z), . . . , fm(z))
>. The

coordinates of the vector f(z)⊗d are precisely the monomials of degree d in
f1(z), . . . , fm(z), with some of them appearing several times (for example,
the product f1(z)f2(z) appears twice in f(z)⊗2). Using [12, Lemma 4.2.10]
and a straightforward induction on d, we obtain that

(3.1) f(z)⊗d = A(z)⊗df(zq)⊗d .

Since α is a regular point with respect to the system (1.1) the matrix A(z)
is well-defined and invertible at αqk for all integers k ≥ 0. The entries of the
matrix A(z)⊗d being products of the entries of A(z), the matrix A(z)⊗d is
well-defined at αqk for all integers k ≥ 0. Furthermore, since detA(αq

k
) 6= 0

we have detA(αq
k
)⊗d 6= 0 (see [12, Corollary 4.2.11]), for all integers k ≥ 0.

Hence α is a regular point with respect to the system (3.1).
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For each j, 1 ≤ j ≤ t, let Ij ⊂ {1, . . . ,md} denote the set of integers i for
which the ith coordinate of X⊗d is Xλj . For each j, we pick an integer ij
in Ij . Let Y1, . . . , Ymd be a family of indeterminates and let us consider the
linear form L defined by

L(Y1, . . . , Ymd) :=
t∑

j=1

pjYij .

We also let g1, . . . , gmd denote the coordinates of f(z)⊗d. By construction
gi(z) = f(z)

λj when i ∈ Ij . Thus,

L(g1(α), . . . , gmd(α)) =
t∑

j=1

pjgij (α) = P (f1(α), . . . , fm(α)) = 0 .

By Theorem 2.1, there exists L ∈ Q[z, Y1, . . . , Ymd ] linear in Y1, . . . , Ymd ,
such that

L(z, g1(z), . . . , gmd(z)) = 0 and L(α, Y1, . . . , Ymd) = L(Y1, . . . , Ymd) .

Write L =:
∑md

i=1 li(z)Yi, where l0(z), . . . , lmd(z) ∈ Q[z]. We deduce that

li(α) =

{
pj if i = ij for some j, 1 ≤ j ≤ t ,
0 otherwise .

Now, set

P (z,X1, . . . , Xm) :=
t∑

j=1

∑
i∈Ij

li(z)

Xλj .

On the one hand, we have

P (z, f1(z), . . . , fm(z)) =

t∑
j=1

∑
i∈Ij

li(z)

f(z)λj
=

md∑
i=1

li(z)gi(z)

= L(z, g1(z), . . . , gmd(z)) = 0 ,

while, on the other hand, we have

P (α,X) =

t∑
j=1

∑
i∈Ij

li(α)

Xλj =

t∑
j=1

pjX
λj = P (X) .

This ends the proof. �

4. Deducing Nishioka’s theorem from the lifting theorem

In this section, we show how to deduce Nishioka’s theorem from the lifting
theorem.

Proof of Theorem 1.1. We first note that the inequality

tr.degQ(f1(α), . . . , fm(α)) ≤ tr.degQ(z)(f1(z), . . . , fm(z))
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always holds. Hence we only have to prove that

(4.1) tα := tr.degQ(f1(α), . . . , fm(α)) ≥ tr.degQ(z)(f1(z), . . . , fm(z)) =: tz .

Let d ≥ 0 be an integer. We let ϕα(d) denote the dimension of the Q-vector
space spanned by the monomials of degree at most d in f1(α), . . . , fm(α).
We also let ϕz(d) denote the dimension of the Q(z)-vector space spanned
by the monomials of degree at most d in f1(z), . . . , fm(z). Note that the
functions 1, f1(z), . . . , fm(z) are related by the Mahler system of size m+1:

(4.2)


1

f1(z)
...

fm(z)

 =


1

A(z)




1
f1(z

q)
...

fm(z
q)

 .

Furthermore, the point α remains regular with respect to this new system.
Applying Theorem 1.2 to (4.2), we obtain that

(4.3) ϕα(d) ≥ ϕz(d), ∀d ≥ 0 .

By a result of Hilbert, ϕα(d) and ϕz(d) are polynomials in d of degree res-
pectively equal to tα and tz when d � 1 (see, for instance, the discussion
around the Hilbert-Serre theorem in [27, p. 232]). Thus, there exist two
positive real numbers β and γ such that

ϕα(d) ≤ βdtα and ϕz(d) ≥ γdtz , ∀d� 1 .

Using (4.3), we deduce (4.1) as wanted. �

Remark 4.1. In the proof of Theorem 1.1, we do not need the full strength
of Hilbert’s result. Suitable estimates for ϕα(d) and ϕz(d) can be easily
achieved by elementary means (see [4, Section A.4]).

Remark 4.2. At the end of our proof of Theorem 1.2, we used the fact
that the field extension Q(z, f1(z), . . . , fm(z)) is a regular extension of Q(z).
We stress that this argument is not needed to deduce Nishioka’s theorem.
Indeed, without using it, we still obtain that every Q-linear relation between
f1(α), . . . , fm(α) can be lifted into a linear relation over the algebraic closure
A of Q(z) between f1(z), . . . , fm(z). Then we could reproduce the previous
argument, just replacing Q(z) by A. We would derive the main result since

tr.degQ(z)(f1(z), . . . , fm(z)) = tr.degA(f1(z), . . . , fm(z)) ,

A being by definition algebraic over Q(z).
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