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Abstract. We prove that every algebraic number contains infinitely
many occurrences of 7/3-powers in its binary expansion. Using the
same approach, we also show that every algebraic number contains either
infinitely many occurrences of squares or infinitely many occurrences of
one of the blocks 010 or 02120 in its ternary expansion.

1. Introduction and result

The binary expansion of an algebraic irrational number such as
√

2 = 1.011010100000100111100110011001111111001110111110011 · · ·
is a source of a number of intriguing and challenging problems. In some
respects, this topic was initiated by a famous note of É. Borel [4] in 1950.
After this pioneering work, it was commonly believed that every algebraic
irrational number is—as is almost every number with respect to the Lebesgue
measure—a normal number. This belief, if true, would of course imply that
every block of digits, or equivalently, every finite word in the free monoid
A = {0, 1}∗, would occur infinitely often in their binary expansions. Despite
some recent progress on lower bounds for the number p(n) of such blocks of
a given length n (see [1]), this problem has hardly been tackled. Regarding
occurrences of particular blocks of digits, the situation is even worse. The
only known result is somewhat trivial: the words 0, 1, 01 and 10 have
to appear infinitely often in the binary expansion of an irrational number.
This is actually a straightforward consequence of the fact that an irrational
number cannot have an eventually periodic expansion. However, if we fix an
algebraic irrational number α and a (non-empty) finite word W in {0, 1}∗ \
{0, 1, 01, 10}, it is still an open problem to determine whether the block of
digits W occurs infinitely often or not in the binary expansion of α.

Instead of asking for occurrences of specific blocks of digits, we are inter-
ested here in what can be regarded as the combinatorial skeleton of binary
expansions of algebraic numbers, in the sense that we will only consider
patterns. Let us give an example of what we mean by pattern. A square is a
pattern of the form XX, where X ∈ A+ (i.e., X non-empty). For instance,
the words 00, 11 and 011 011 are different examples of squares, but all these
words reflect the same pattern XX. Since every binary word of length 4
contains a square, such a pattern is unavoidable by binary infinite words,
that is, every infinite binary word contains infinitely many occurrences of
squares. Consequently, this is also the case for the binary expansion of every
algebraic number, though we are not able to give any explicit example of
such a square. If we consider some more repetitive patterns, things become
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less obvious. Recall that an overlap is a pattern of the form xXxXx with
x ∈ A and X ∈ A∗. In 1912, Thue [9] proved the existence of infinite binary
words avoiding overlaps. More precisely, Thue suggested the following ex-
plicit example, now referred to as the Thue–Morse sequence (see the survey
paper of Allouche and Shallit [3]). The Thue–Morse sequence t = (tn)n≥0

on the alphabet {0, 1} is defined as follows: tn = 0 (respectively, tn = 1) if
the sum of the binary digits of n is even (respectively, odd). An interesting
property of the sequence t is that it is the fixed point beginning with 0 of
the binary morphism σ defined by σ(0) = 01 and σ(1) = 10. This morphism
is usually called the Thue–Morse morphism.

Before stating our result, we need to introduce some notation. The length
of a finite word W on the alphabet A, that is, the number of letters com-
posing W , is denoted by |W |. For any positive integer k, we write W k for
the word W · · ·W (the word W concatenated k times). More generally, for
any positive real number α, we denote by Wα the word W bαcW ′, where
W ′ is the prefix of W of length d(α − bαc)|W |e. Here, byc and dye denote,
respectively, the integer part and the upper integer part of the real number
y. Such a word is called a α-power. For instance, the word 011 011 011 is a
3-power or a cube, while the word 011010 011010 01 is a 7/3-power.

As a consequence of the expected normality of algebraic irrational num-
bers, every repetitive pattern Xα, with α > 1, should occur infinitely often
in their binary expansions. In this note we prove the following result, pro-
viding a very small step in this direction. Nevertheless, it seems to be the
first result of this type.

Theorem 1.1. The binary expansion of an algebraic number contains in-
finitely many occurrences of 7/3-powers.

In 1929, Mahler proved that the binary Thue–Morse number∑
n≥0

tn
2n

is transcendental. As a generalization of Mahler’s result, we quote the fol-
lowing straightforward consequence of Theorem 1.1.

Corollary 1.2. The binary expansion of an algebraic number contains in-
finitely many occurrences of overlaps.

Our proof of Theorem 1.1 relies on two recent results: on one side, a
combinatorial transcendence criterion due to Adamczewski, Bugeaud and
Luca [2], which is based on the p-adic version of the Schmidt subspace the-
orem, and, on the other side, a structure theorem for binary words avoiding
7/3-powers obtained by Karhumäki and Shallit [5]. In fact, we will see
that, quite surprisingly, infinite words avoiding 7/3-powers turn out to be
rather repetitive in a different setting. This new property gives rise to the
transcendence of the associated binary numbers.

2. Proof of Theorem 1.1

Let a = (ak)k≥1 be a sequence of elements from A, which we identify
with the infinite word a1a2 · · · . Let w > 1 be a real number. We say that a
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satisfies Condition (∗)w if there exist two sequences of finite words (Un)n≥1,
(Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnV w
n is a prefix of the word a;

(ii) The sequence (|Un|/|Vn|)n≥1 is bounded from above;
(iii) The sequence (|Vn|)n≥1 is increasing.

A sequence satisfying Condition (∗)w for some w > 1 is called a stammer-
ing sequence or a stammering word.

In [2], Adamczewski, Bugeaud and Luca proved the following result re-
garding stammering real numbers.

Theorem ABL. Let b > 1 be an integer and let a = (an)n≥0 be a stammer-
ing sequence over {0, 1, . . . , b− 1}. Then, the real number∑

n≥0

an

bn

is either rational or transcendental.

The second main ingredient in the proof of Theorem 1.1 is the following
structure theorem of Karhumäki and Shallit [5]. We mention that in the
case where 7/3-powers are replaced by overlaps, this result was proved by
Restivo and Salemi [8] .

Theorem KS. Let x be an infinite binary word avoiding 7/3-powers and let
σ denote the Thue–Morse morphism. Then there exist u ∈ {ε, 0, 1, 00, 11}
and an infinite binary word y avoiding 7/3-powers such that x = uσ(y).

We are now ready to deduce Theorem 1.1 from a simple combination of
Theorem ABL and Theorem KS.

Proof of Theorem 1.1. First, since rational numbers have eventually peri-
odic binary expansions, these expansions contain arbitrarily large powers
and a fortiori infinitely many occurrences of 7/3-powers. We thus have
only to consider algebraic irrational numbers. In virtue of Theorem ABL, it
remains to prove that infinite binary words avoiding 7/3-powers are stam-
mering words. We will deduce the latter result from Theorem KS.

Let a = (an)n≥0 be a binary sequence avoiding 7/3-powers. Let k ≥ 1 be
an integer. Applying Theorem KS k times to the infinite word a, we obtain
the following factorization:

a = u1σ(u2)σ2(u3) · · ·σk−1(uk)σk(y′),

where each ui has length at most 2 and y′ is an infinite word avoiding 7/3-
powers. Recall that every binary word of length 4 contains a square. There
thus exists a possibly empty word A of length at most 2 and a word B of
length 1 or 2 such that y′ begins with ABB. Set

Uk = u1σ(u2)σ2(u3) · · ·σk−1(uk)σk(A)

and
Vk = σk(B).
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Then, the sequence a begins with UkV
2
k . Moreover, we infer from a simple

computation that

|Uk| < 2k+2 and 2k ≤ |Vk| ≤ 2k+1.

Without loss of generality, we can assume that the sequence (|Vn|)n≥1 in-
creases (indeed, we can, if necessary, consider the increasing subsequence
(V2n)n≥1). Consequently, a satisfies Condition (∗)2 and is a stammering
sequence. This proves that the binary expansion of every algebraic num-
ber contains at least one occurrence of a 7/3-power. Since algebraicity does
not depend on the first digits of the binary expansion, this implies that
every algebraic number contains infinitely many occurrences of 7/3-powers,
concluding the proof. �

3. Comments and open problems

Questions about patterns occurring in expansions of algebraic numbers
are of course not restricted to the case of the base 2. However, even with
ternary expansions, new difficulties appear. For instance, there exist infi-
nite ternary words avoiding squares, so that we do not know whether the
ternary expansion of an algebraic number always contains infinitely many
occurrences of squares. In this direction, we remark that the approach used
for proving Theorem 1.1 leads to the following weaker result.

Theorem 3.1. The ternary expansion of an algebraic number contains ei-
ther infinitely many occurrences of squares or infinitely many occurrences of
one of the blocks 010 or 02120.

Proof. Every rational number contains infinitely many squares in its ternary
expansion, so it suffices to consider algebraic irrational numbers. To prove
the desired result it is enough to show that any ternary word that avoids
squares as well as the subwords 010 and 02120 is a stammering word.

Let a = (an)n≥0 be a ternary sequence avoiding squares as well as 010
and 02120. Define a morphism τ by τ(0) = 011, τ(1) = 01, and τ(2) = 0.
We need the following result due to Thue [9] (see Problem 2.3.7 of Lothaire
[6]): a word a avoids squares and the subwords 010 and 02120 if and only if
b = τ(a) is overlapfree.

Consider the infinite binary word b. It is overlapfree and thus a fortiori
7/3-powerfree. We may therefore apply the previous argument to show that
for every integer k ≥ 1, b begins with a prefix UkV

2
k , where |Uk| ≤ 2k+2 and

|Vk| ≥ 2k.
Observe that for any overlapfree binary word, between any two successive

occurrences of 0 there can be at most two 1’s; otherwise, we would have an
occurrence of the overlap 111. By considering the number of 1’s between
every two successive occurrences of 0, we see that the word b has a unique
factorization into the blocks 011, 01, and 0.

Let x and y be the shortest words such that xV 2
k y is a subword of b and

xV 2
k y begins and ends with 0. Now write

xV 2
k y = 01i101i2 · · · 01i`0,
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where ij ∈ {0, 1, 2} for j = 1, . . . , `. Set Wk = w1w2 . . . w`, where wj =
(2 − ij) for 1 ≤ j ≤ `. Then, Wk is a subword of a and has either the form
XaXb or bXaX, where a, b ∈ {0, 1, 2} and a 6= b.

It follows that for every k ≥ 1, there exist words Yk and Zk, and a letter
a ∈ {0, 1, 2}, such that a begins with YkZkaZk, where

|Yk| ≤ 2k+2 and |Zk| ≥
2k

3
.

Thus a satisfies Condition (∗)w for every fixed w in the interval (1, 2) pro-
vided that k > kw is sufficiently large. Consequently, a is a stammering
sequence. This concludes the proof. �

We end this note with the two following open questions regarding the
binary expansion of algebraic numbers.

Question 2.1. Is it true that the binary expansion of every algebraic number
contains arbitrarily large squares?

Given a finite word W = w1w2 · · ·wr, the reversal of W , denoted by WR,
is the word wrwr−1 · · ·w1. A palindrome is a pattern invariant by reversal.
It is either of the form XXR if its length is even, or of the form XxXR if
its length is odd.

Question 2.2. Is it true that the binary expansion of every algebraic number
contains arbitrarily large palindromes?

Not surprisingly, a positive answer is expected for both questions.
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[4] É. Borel, Sur les chiffres décimaux de
√

2 et divers problèmes de probabilités en
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