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Abstract. Let b ≥ 2 be an integer. According to a conjecture of Émile

Borel, the b-adic expansion of any irrational algebraic number behaves

in some respect ‘like a random sequence’. We give a contribution to the

following related problem: let α and α′ be irrational algebraic numbers,

prove that their b-adic expansions either have the same tail, or behave

in some respect ‘like independent random sequences’.

1. Introduction

Let b ≥ 2 be an integer. Despite some recent progress [1,2,3], the behaviour of the b-
adic expansion of every irrational algebraic number α is still rather mysterious. According
to Émile Borel [4], such an expansion should satisfy some of the same laws as do almost
all real numbers. In particular, it is expected that every algebraic real number α is normal
in base b. This means that, for any positive integer n, each one of the bn blocks of length
n on the alphabet {0, 1, . . . , b−1} should occur in the b-adic expansion of α with the same
frequency 1/bn. Thus, a particular case of Émile Borel’s conjecture essentially claims that
the b-adic expansions of

√
2 and

√
3 behave in some respect ‘like random sequences’. In

view of this, we can go a step further and ask whether these expansions behave, in some
sense, like two independent random sequences.

Let make this idea more precise. Given a real number C <
√

b, almost every pair (α, α′)
of real numbers in (0, 1) is independent in the following sense: there are only finitely many
indices n such that the prefixes of length [Cn] of the b-adic expansions of α and α′ have
a common block of length n. This easily follows from the Cantelli lemma, as shown in
Section 5 below. Motivated by Émile Borel’s conjecture, we ask whether every pair (α, α′)
of algebraic numbers, not both rational, is independent in the above sense. Observe first
that the answer is trivially negative when the b-adic expansions of α and α′ have the same
tail. However, this case excepted, we feel that the answer should probably be positive. The
main purpose of the present work is to prove a first result towards a confirmation of this
guess (see Theorem 1).

Say differently, we study how close to each other the b-adic expansions of two distinct
irrational algebraic numbers can be. In particular, our results show that if one slightly
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perturbs the b-adic expansion of an algebraic number α and gets a number α′, then α′

is transcendental, except in the trivial case when the tails of the expansions of α and α′

coincide (see Theorem 2). As a consequence, we derive a new proof of the combinatorial
transcendence criterion given in [2]. Note that this transcendence criterion was used in [1]
to prove, among other results, the so-called Cobham–Loxton–van der Poorten conjecture,
claiming that the b-adic expansion of every algebraic irrational number cannot be generated
by a finite automaton. Our proof rests on a p-adic version of the Schmidt Subspace Theorem
established by Schlickewei [6].

2. Main result

Throughout the paper, b denotes an integer at least equal to 2, and all the algebraic
numbers we consider lie in the interval (0, 1). This does not restrict the generality.

For any α in (0, 1) there is a unique sequence (ak)k≥1 of integers from {0, 1, . . . , b−1}
such that α =

∑

k≥1 ak/bk and ak is non-zero for infinitely many positive integers k. We
call this sequence the b-adic expansion of α. Sometimes, it is convenient to view it as the
infinite word a = a1a2 . . . on the alphabet {0, 1, . . . , b − 1}. In particular, for any integer
k ≥ 1, the prefix of length k of the b-adic expansion of α is the word a1 . . . ak.

We begin with three definitions.

Definition 1. Let f : Z≥1 → Z≥1 be any increasing function. The pair (α, α′) of real

numbers is called f -dependent if there exist infinitely many integers n for which the prefixes

of length f(n) of their b-adic expansions have in common a block of length n. Otherwise,

it is called f -independent.

Note that if (α, α′) denotes an f -independent pair of real numbers, and if g is an
increasing function such that f(n) ≥ g(n) for every positive integer n large enough, then
(α, α′) is also g-independent.

Definition 2. Two real numbers α and α′ are said to be equivalent if their b-adic expan-

sions have the same tail.

Definition 3. Let f : Z≥1 → Z≥1 be an increasing function. We say that f is a function

with linear growth if there exists a positive constant c such that f(n) < cn, for every

integer n.

Our main result can then be stated as follows.

Theorem 1. Let f : Z≥1 → Z≥1 be any increasing function with linear growth. Let α
and α′ be two algebraic numbers in (0, 1). Then, either α and α′ are equivalent, or the pair

(α, α′) is f -independent.

Most probably, the conclusion of Theorem 1 should remain true when f has polynomial
growth, and even when f increases more slowly than any exponential function.
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3. A useful transcendence criterion

In this Section, we present a transcendence criterion from which we will derive our
main result, namely Theorem 1.

We first introduce some notation. It is convenient to use the terminology from com-
binatorics on words. Let A be a finite set. The length of a word W on the alphabet A,
that is, the number of letters composing W , is denoted by |W |. For any positive integer
ℓ, we write W ℓ for the word W . . .W (ℓ times repeated concatenation of the word W ).
More generally, for any positive real number x, we denote by W x the word W [x]W ′, where
W ′ is the prefix of W of length ⌈(x − [x])|W |⌉. Here, and in all what follows, [y] and ⌈y⌉
denote, respectively, the integer part and the upper integer part of the real number y. Let
a = (ak)k≥1 be a sequence of elements from A, that we identify with the infinite word
a1a2 . . .

We say that a is a stammering sequence if there exist a real number w > 1 and two
sequences of finite words (Wn)n≥1, (Xn)n≥1 such that:

(i) For any n ≥ 1, the word WnXw
n is a prefix of the word a;

(ii) The sequence (|Wn|/|Xn|)n≥1 is bounded from above;

(iii) The sequence (|Xn|)n≥1 is increasing.

The main result of [2] then reads as follows.

Theorem ABL. Let a = (ak)k≥1 be a stammering sequence of integers from {0, 1, . . . , b−
1}. Then, the real number

α =

+∞
∑

k=1

ak

bk

is either rational or transcendental.

Let a = (ak)k≥1 and a′ = (a′
k)k≥1 be sequences of elements from A, that we identify

with the infinite words a1a2 . . . and a′
1a

′
2 . . ., respectively. We say that the pair (a, a′)

satisfies Condition (∗) if there exist three sequences of finite words (Un)n≥1, (U ′
n)n≥1, and

(Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnVn is a prefix of the word a;

(ii) For any n ≥ 1, the word U ′
nVn is a prefix of the word a′;

(iii) The sequences (|Un|/|Vn|)n≥1 and (|U ′
n|/|Vn|)n≥1 are bounded from above;

(iv) The sequence (|Vn|)n≥1 is increasing.

If, moreover, we add the condition

(v) The sequence (|Un| − |U ′
n|)n≥1 is unbounded,

then, we say that the pair (a, a′) satisfies Condition (∗∗).
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Theorem 2. Let a = (ak)k≥1 and a′ = (a′
k)k≥1 be sequences of integers from {0, 1, . . . , b−

1}. If the pair (a, a′) satisfies Condition (∗), then at least one of the real numbers

α :=

+∞
∑

k=1

ak

bk
, α′ :=

+∞
∑

k=1

a′
k

bk

is transcendental, or α and α′ are equivalent. Furthermore, if the pair (a, a′) satisfies

Condition (∗∗), then at least one of the real numbers α, α′ is transcendental, or they are

equivalent and both rational.

Theorem 2 implies both Theorem 1 and Theorem ABL, as shown in the next Section.
In particular, the present approach provides a new proof of Theorem ABL.

4. Proofs of Theorems 1, 2 and ABL

The proofs of our results rest on the following p-adic version [6] of the Schmidt Sub-
space Theorem [7]. Throughout the present note, the p-adic absolute value |·|p is normalized
such that |p|p = p−1.

Theorem A. Let m ≥ 2 be an integer. Let S be a finite set of places on Q containing

the infinite place. Let L1,∞, . . . , Lm,∞ be m linearly independent linear forms with real

algebraic coefficients. For any finite place v in S, let L1,v, . . . , Lm,v be m linearly indepen-

dent linear forms with integer coefficients. Let ε be a positive real number. Then, the set

of solutions x = (x1, . . . , xm) in Zm to the inequality

∏

v∈S

m
∏

i=1

|Li,v(x)|v ≤ (max{[x1|, . . . , |xm|})−ε

lies in finitely many proper subspaces of Qm.

Proof : This is a particular case of Theorem 4.1 from [6].

We first establish Theorem 2.

Proof of Theorem 2. We keep the notation of this theorem. We assume that α and α′ are
both algebraic numbers and we aim at proving that if the pair (a, a′) satifies Condition (∗)
(resp. Condition (∗∗)), then α and α′ are equivalent (resp. equivalent and both rational).

We further set |Un| = rn, |U ′
n| = r′n and |Vn| = sn, for n ≥ 1. Let dn and d′

n be the
rational integers defined by

rn+sn
∑

k=1

ak

bk
=

dn

brn+sn

and

r′

n
+sn

∑

k=1

a′
k

bk
=

d′
n

br′

n
+sn

·

The key observation is that, for any prime number p dividing b, the p-adic distance between
dn and d′

n is very small. Indeed, we have

|dn − d′
n|p ≤ |b|sn

p .
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Consider now the four linearly independent linear forms with real algebraic coefficients:

L1,∞(X1, X2, X3, X4) =αX1 − X3,

L2,∞(X1, X2, X3, X4) =α′X2 − X4,

L3,∞(X1, X2, X3, X4) =X1,

L4,∞(X1, X2, X3, X4) =X2.

Evaluating them on the integer points xn := (brn+sn , br′

n
+sn , dn, d′

n), we get that

∏

1≤j≤4

|Lj,∞(xn)| ≤ brn+r′

n
+2sn . (1)

For any prime number p dividing b, we consider the four linearly independent linear
forms with integer coefficients:

L1,p(X1, X2, X3, X4) =X1,

L2,p(X1, X2, X3, X4) =X2,

L3,p(X1, X2, X3, X4) =X3,

L4,p(X1, X2, X3, X4) =X4 − X3.

We get that
∏

p|b

∏

1≤j≤4

|Lj,p(xn)|p ≤ b−(rn+r′

n
+2sn) b−sn . (2)

It follows from (1), (2), and assumption (iii) from the definition of Condition (∗) that there
exists a positive real number ε such that

∏

1≤j≤4

|Lj,∞(xn)| ·
∏

p|b

∏

1≤j≤4

|Lj,p(xn)|p ≤ b−sn

≤ max{brn+sn , br′

n
+sn , dn, d′

n}−ε,

for every n ≥ 1.
We then infer from Theorem A that all the points xn lie in a finite number of proper

subspaces of Q4. Thus, there exist a non-zero integer quadruple (z1, z2, z3, z4) and an
infinite set of distinct positive integers N1 such that

z1b
rn+sn + z2b

r′

n
+sn + z3dn + z4d

′
n = 0, (3)

for any n in N1.
Assume first that (rn−r′n)n∈N1

is bounded. Then, there exist an integer r and infinitely
many integers n in N1 for which rn − r′n = r. Without any loss of generality, we may
assume that r ≥ 0. Consequently, there is a finite (possibly empty) word W of length r, a
sequence of finite words (Wn)n≥1, and an infinite set of distinct positive integers N2 such
that, for any n in N2, the word a begins in WWnVn, the word a′ begins in U ′

nVn, and
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|Wn| = |U ′
n| = r′n. This implies that there exist an integer ℓ and a sequence of integers

(ℓ′n)n≥1 such that

|br′

nα′ − br′

n(brα − ℓ) − ℓ′n| ≤ b−sn , for n in N2,

and, by assumption (iii) from the definition of Condition (∗), there exists a positive real
number ε such that

An :=

∣

∣

∣

∣

α′ − (brα − ℓ) − ℓ′n
br′

n

∣

∣

∣

∣

≤ 1

b(1+ε)r′

n

, for n in N2.

We then infer from Ridout’s theorem [5] that An = 0 for n large enough in N2. Indeed,
otherwise α′ − (brα − ℓ) would be transcendental which is in contradiction with the as-
sumption that α and α′ are both algebraic. Now, it follows from An = 0 (for some given
integer n) that the sequences a and a′ have the same tail.

Assume now that (rn−r′n)n∈N1
is unbounded. Without any loss of generality, we may

suppose that rn − r′n tends to infinity with n. Dividing (3) by brn+sn , we get

z1 + z2b
r′

n
−rn + z3

dn

brn+sn

+ z4b
r′

n
−rn

d′
n

br′

n
+sn

= 0. (4)

Letting n tend to infinity along N1, we infer from (4) that either α is rational, or z1 =
z3 = 0. In the latter case, we obtain that α′ is rational. Let us assume that α is rational,
the case when α′ is rational being similar.

Then, the sequence a is eventually periodic. There exist a finite (possibly empty) word
U of length m and an infinite set of distinct positive integers N3 such that, for any n in
N3, the word a begins in UVn while the word a′ begins in U ′

nVn. This implies that there
exist a rational number p/q and a sequence of integers (ℓ′n)n≥1 such that

∣

∣

∣

∣

br′

nα′ − p

q
− ℓ′n

∣

∣

∣

∣

≤ b−sn , for n in N3.

As above, we infer from Ridout’s theorem that qα′ is then rational, hence, that α′ is
rational. Consequently, the sequences a and a′ are both eventually periodic. Moreover,
since by (i), (ii) and (iv) these two sequences have arbitrarily large common factors, they
have the same tail. This achieves the proof.

Proof of Theorem 1. Let f : Z≥1 → Z≥1 be an increasing function with linear growth.
Assume that α and α′ are non-equivalent real numbers, and that the pair (α, α′) is f -
dependent. We have to prove that at least one of the numbers α, α′ is transcendental. Let
denote by a (resp. a′) the b-adic expansion of α (resp. α′). In view of Theorem 2, it is
sufficient to show that the pair (a, a′) satisfies Condition (∗).

By assumption, there exists an increasing sequence of positive integers (nk)k≥1 such
that for every k ≥ 1, the prefixes of length f(nk) of a and a′ have a common block of
length nk, that we denote by Vk. In other words, there exist two sequences (Uk)k≥1 and
(U ′

k)k≥1 such that
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(i) the word UkVk is a prefix of the word a;

(ii) the word U ′
kVk is a prefix of the word a′;

(ii’) |UkVk| ≤ f(nk) and |U ′
kVk| ≤ f(nk).

We thus infer from (ii’), |Vk| = nk, and the fact that f is a function with linear growth
that (iii) from the definition of Condition (∗) is satisfied. Furthermore, condition (iv) is
also satisfied since (nk)k≥1 is an increasing sequence. Consequently, the pair (a, a′) satisfies
Condition (∗). This ends the proof.

We end this Section with an alternative proof of Theorem ABL.

Proof of Theorem ABL. Let a = (ak)k≥1 be a stammering sequence with values in

{0, 1, . . . , b − 1} and set α =
∑+∞

k=1 ak/bk. In view of Theorem 2, it is sufficient to prove
that the pair (a, a) satisfies Condition (∗∗).

We assume that the real number w, and the sequences (Wn)n≥1 and (Xn)n≥1 occurring
in the definition of a stammering sequence are fixed. Let n ≥ 1 be an integer.

If w ≥ 2, we set Un = Wn, Vn = Xn and U ′
n = WnXn, and we easily get that the pair

(a, a) satisfies Condition (∗∗).
If 1 < w < 2, then there exists a unique prefix X ′

n of Xn such that Xw
n = XnX ′

n.
Then, we set Un = Wn, Vn = X ′

n and U ′
n = WnXn, and we easily get that the pair (a, a)

satisfies Condition (∗∗). This ends the proof.

5. A metrical appendix

In the present Section, we justify a claim from the introduction.

Proposition 1. Let b ≥ 2 be an integer. For any real number C <
√

b, almost every

pair (α, α′) of real numbers in (0, 1) is f -independent, where the function f is defined by

f(n) = [Cn] for every positive integer n.

Proof : Let n be a positive integer and let C > 1 be as above. The measure of the set
of real pairs (α, α′) having a common block of length n in the prefixes of length [Cn] of
their b-adic expansions is at most equal to C2n · b−n. Our assumption implies that the
series

∑

n≥1(b/C2)−n converges, thus, by the Cantelli lemma, almost no pair (α, α′) of
real numbers in (0, 1) is f -dependent. This proves the proposition.
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