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Abstract. — This is the second part of a work devoted to the study of linear
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1. Introduction

This is the second part of a work devoted to the study of linear Mahler sys-
tems in several variables from the perspective of transcendence and algebraic
independence. In the first part [10], we prove two main results concerning
regular singular systems: the lifting theorem [10, Theorem 2.1] and the purity
theorem [10, Theorem 2.4]. Let (f1(2),..., fm(2)) € Q{2}™ be a vector repre-
senting a solution to a regular singular Mahler system, and let & be some suit-
able algebraic point. The lifting theorem says that any homogeneous algebraic
relation over Q between the complex numbers fi(a), ..., f,(a) can be lifted to
a similar algebraic relation over Q(z) between the functions fi(2),..., fi(2).
The study of the algebraic (resp. linear) relations between the values of such
Mabhler functions can thus be reduced to the easier study of the algebraic (resp.
linear) relations between these functions. Results of this nature are a principal
goal of transcendence theory. However, we stress that easier does not necessar-
ily mean easy, and, so far, only the linear relations between Mahler functions
in one variable have been fully understood [8, 9]. The purity theorem is of
different nature. It states that values of Mahler functions associated with suf-
ficiently independent matrix transformations behave independently. Let r > 2
be an integer and, for every i, 1 <i <7, let (f;1(2),..., fim,(2)) € Q{z}™ be
a vector representing a solution to a regular singular Mahler system associated
with a matrix transformation 7;. Furthermore, let us assume that the spectral
radii of the transformations T; are pairwise multiplicatively independent. Then
the purity theorem says that the study of the algebraic relations between the
values of all these functions at suitable (possibly different) algebraic points can
be reduced to the study of each system separately. Furthermore, the latter can
be done using the lifting theorem. We emphasize that such a miracle turns out
to be a consequence of the formalism introduced by Mahler, which makes pos-
sible to deal with systems in several variables. We recall now two well-known
advantages that this formalism also offers.

(A) The first advantage of this formalism is that it allows us to deal with
the algebraic relations over Q between the values of a Mahler function at
different algebraic points. We stress that this is a natural goal of such a
theory. In the setting of Siegel E-functions, the study of an F-function
at different points can be achieved by considering different E-functions
at the same point. Indeed, if f(z) is an E-function and « is an algebraic
number, the function f(az) is still an E-function. This trick no longer
works with Mahler functions. Fortunately, the theory in several variables
allows us to overcome this deficiency. Let us give a simple example. With
the function f(z) = >_°° 22", we can associate the two variables linear
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system
1 1 0 0 1
f(z}) | = |-z 1 O [§(=1)
f(23) —2 0 1) \j(22)

The underlying transformation matrix

(3

belongs to the class M. Furthermore, the point @ = (1/2,1/3) is regu-
lar with respect to this system, and the pair (7, ) is admissible. Now,
the key point is that the transcendence of f(z) gives for free the alge-
braic independence over Q(z1, z2) of the functions §(z1) and f(22). By the
lifting theorem, we obtain that f(1/2) and f(1/3) are algebraically inde-
pendent over Q. To sum-up: transcendence results in Mahler’s method
automatically lead to algebraic independence results.

(B) The second advantage of this formalism is that it allows us to deal with the
values of a larger class of one-variable analytic functions in Q{z} obtained
via some suitable specializations of Mahler functions in several variables.
Mahler’s favorite example is the so-called Hecke-Mahler function

(e}
fu() = 3L,
n=0
where w is a quadratic irrational real number. Though the function f,(2)
is not expected to be a Mahler function, we have that f,(z) = F,(z,1),

where
niw]

oo |
Fo(21,22) = Z Z 21t 252
n1=0 n2=0
turns out to be a Mahler function in two variables. In a different direction,
Cobham [16] proved that the generating functions of morphic sequences
can always be obtained as specializations of the form F(z,z,...,z) of
multivariate Mahler functions F(zq,...,2y,).

In the direction of (A), we first show that the lifting theorem implies another
purity theorem, namely Theorem 1.1. In contrast to Theorem 2.4 of [10], it
applies to Mahler functions associated with matrix transformations having
the same spectral radius. The independence of the matrix transformations
required in Theorem 2.4 is replaced by asking for some sort of independence
for the different points at which the functions coming from each Mahler system
are evaluated.
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Theorem 1.1 (Purity—Independent points). — We continue with the no-
tation of Theorem 2.4 of the first part [10]. Let r > 2 be an integer and p > 1
be a real number. For every integer i, 1 < i < r, we consider a reqular singular
Mahler system

fi1(Tiz;) fin(z:)
(1.1.i) : = Ai(zi) :

Jim:(Tiz;) Jimi(zi)

where A;(z;) belongs to GLy,, (Q(2i)), zi := (%i1,. .-, 2in,) is a family of inde-
terminates, T; is an n; X n; matrix with non-negative integer coefficients and
with spectral radius p. For every i, 1 <1 < r, let us consider a set

& CH{firlew), .. fim (i)}
and set £ := U]_,&;. Suppose that
(i) for every i, a; € (@*)"1 is a regular point with respect to the system
(1.1.1) and the pair (T;, ;) is admissible, and
(ii) the point a = (aq, ..., a,) is T-independent, where

T
T =
T,
Then

T
Algg (&) = Algg(&i | €).

i=1
Remark 1.2. — If the matrices T1,...,7T, have different, but pairwise
multiplicatively dependent, spectral radii p;, we could pick positive integers
di,...,d, such that

dl J— — d'r
P =

and iterate each system (1.1.i) d; times, in order to apply Theorem 1.1 with
the matrices Tl-di.

In the sequel, we refer to Theorem 2.4 of [10] as the first purity theorem and
to Theorem 1.1 as the second purity theorem. We thus have at our disposal
three main theorems from which we derive our different applications. We em-
phasize that although these three results concern Mahler systems in several
variables, we mainly focus here on applications concerning analytic functions
of a single variable, according to (A) and (B). As an illustration of possible
applications in the direction of (B), we obtain for instance the following re-
sult about the values of Hecke-Mahler functions, extending theorems of Ku.
Nishioka [36] and Masser [33].
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Theorem 1.3. — Let wq,...,w, be distinct quadratic irrational real numbers
such that the quadratic fields Q(wy),...,Q(w,) are all distinct. For every i,
1<i<r,let ai,...,q;m, be distinct algebraic numbers with 0 < |oy ;| < 1.
Then the numbers

Joilaij), 1<i<r, 1<j<my,

are algebraically independent over Q.

Remark 1.4. — This result is almost the best possible, in the sense that
if wi; and w9 belong to the same quadratic number field, then there may be
some relations between the values of f,, (z) and f,,(z). For instance, if w is
a positive real number, then f,(2) + f.,(—2z) — 2fau(2?) = 0. Hence, f,,(1/2),

fw(—=1/2), and fa,(1/4) are linearly dependent over Q.

Beyond Hecke-Mabhler series, our main application concerns Mahler func-
tions in one variable. We recall that, given an integer ¢ > 2, f(z) € Q{z} is

a q-Mabhler function if there exist polynomials py(2),...,pn(z) € Q[z], not all
zero, such that

(1.2) po(2)f(2) + p1(2) f(z) + -+ pal2) f(z7) = 0.

If f(2) is g-Mahler for some ¢, we simply say that f(z) is a Mahler function. In
Section 2, we describe several problems, namely Problems 2.6, 2.8, and 2.10,
concerning expansions of natural and real numbers in integer bases. These
problems all involve the so-called automatic sequences, and all are also widely
open. They take their roots in the works of Cobham [16, 17] in the late
sixties, and of Loxton and van der Poorten |23, 27, 28, 41, 42| in the late
seventies and in the eighties. As recalled in Section 2, the generating function
associated with a g-automatic sequence is a g-Mahler function, so that, in the
end, a solution to all these problems would follow from the following general
conjecture. We recall that given complex numbers aq,...,qa, are said to be
multiplicative independent if there is no non-zero tuple of integers ny,...,n,
such that o' ---alr =

Congecture 1.5. — Let r > 2 be an integer. For every integer ¢, 1 < i <r,
we let g; > 2 be an integer, fi(z) € Q{z} be a q;-Mahler function, and a; be
an algebraic number, 0 < |o;| < 1, such that f;(z) is well-defined at o;. Then
the following properties hold.

(i) Let us assume that o, . .., o, are multiplicatively independent. Then the
numbers fi(ay), fa(aa), ..., fr(ay) are algebraically independent over Q
if and only if they are all transcendental.

(ii) Let us assume that qi,...,q, are pairwise multiplicatively independent.
Then the numbers fi(a1), fa(ae), ..., fr(ay) are algebraically independent
over Q if and only if they are all transcendental.
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Our main contribution towards Conjecture 1.5 is the following.

Definition 1.6. — A g-Mabhler function is reqular singular if it is the coor-
dinate of a vector representing a solution to a regular singular Mahler system.

Theorem 1.7. — Conjecture 1.5 is true if each f;(z) is regular singular.

Remark 1.8. — In fact, a g-Mahler function f(z) is regular singular if and
only if the Mahler system associated with the companion matrix of Equation
(1.2) is regular singular (see Remark 5.2). We stress that if pp(0)p,(0) # 0 in
Equation (1.2), the corresponding g-Mahler function f(z) is regular singular.
Thus, being regular singular is a generic property for g-Mahler functions. In a
previous paper (8], the authors provide an algorithm to determine whether or
not the numbers f;(a;) occurring in Conjecture 1.5 are transcendental. Fur-
thermore, Richardson [43, Theorem 2| provides an algorithm to determine
whether or not the algebraic numbers aq,...,qa, are multiplicatively inde-
pendent. The algebraic independence of the numbers fi(ay),..., fr(a,) in
Theorem 1.7 can thus be determined effectively.

We mention the following consequence of Theorem 1.7 related to Problems
2.6 and 2.12.

Corollary 1.9. — Let q1,qo, . ..,q, be pairwise multiplicatively independent
positive integers. For everyi, 1 <i<r, let f;(z) € Q{z} be a regular singular
gi-Mahler function that is not a rational function. Then fi(2), fa(z), ..., fr(2)
are algebraically independent over Q(z).

Unfortunately, generating functions of automatic sequences are not always
regular singular, and, consequently, Problems 2.6, 2.8, and 2.10 remain open.
However, Theorem 1.7 and Corollary 1.9 mark significant progress towards
their resolution.

This paper is organized as follows. In Section 2, we state Problems 2.6,
2.8, and 2.10, which were at the origin of our interest in Mahler’s method.
Section 3 is devoted to the proof Theorem 1.1. Theorem 1.7 and Corollary 1.9
are proved in Section 4. In Section 5, we discuss Mahler functions in several
variables, generalizing Corollary 1.9 to this wider framework. In Section 6, we
consider one-variable analytic functions obtained as specializations of Mahler
functions in several variables. We define the notion of a good specialization
and prove yet another extension of Corollary 1.9 to this setting. Applications
of our results to Hecke-Mahler series are given in Section 7. We prove there
Theorem 1.3, as well as two complementary results. In Section 8 we show,
through a final example, how our three main results can be combined together
to derive algebraic independence of values of classical Mahler functions. Similar
examples can be produced at will.
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2. Two base change problems involving finite automata

In this section, we first briefly recall some informal definitions of an au-
tomatic sequence and of an automatic set of natural numbers. We refer the
reader to the book of Allouche and Shallit [11] for more details. Then, we
describe several base change problems involving these two notions.

2.1. Automatic sequences and automatic sets. — Let ¢ > 2 be an in-
teger. An infinite sequence a = (ay)p>o is said to be g-automatic if a, is a
finite-state function of the base-q representation of n. This means that there
exists a deterministic finite automaton with output (DFAO) taking the base-q
expansion of n as input and producing the term a,, as output. We say that a
sequence is generated by a finite automaton, or for short is automatic, if it is
g-automatic for some gq.

Example 2.1. — One of the most famous example of a 2-automatic sequence
is the Thue-Morse sequence

tm = 01101001100101 - - - |,

which is defined as follows. Its nth term is equal to 0 if the sum of the binary
digits of n is even, and it is equal to 1 otherwise (see Figure 1).

0 0
1
—
G__—@D
1
FIGURE 1. A 2-automaton generating the Thue-Morse sequence.

A set £ C N is said to be g-automatic if its characteristic sequence, defined
by a, =1 if n € £ and by a,, = 0 otherwise, is a g-automatic sequence. This
means that there exists a DFAO taking the base-¢q expansion of n as input and
accepting this natural number (producing as output the symbol 1) if n belongs
to £. Otherwise, this automaton rejects n, producing as output the symbol 0.

Ezxzample 2.2. — The set {1,2,4,8,16,...} formed by the powers of 2 is a
typical example of a 2-automatic set (see Figure 2).

0,1

FIGURE 2. A 2-automaton recognizing the powers of 2.
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2.2. Expansions of natural numbers in integer bases. — The propo-
sition according to which a natural number is divisible by 9 if and only if the
sum of its digits (in decimal expansion) is itself divisible by 9 is one of the most
notorious arithmetic properties. Though sometimes more intricate, there are
similar rules about the divisibility by 2, 3,5, 11... Already in the seventieth cen-
tury, the mathematician and philosopher Pascal [39] addressed this problem
in a general setting: [ shall also set out a general method which allows one to
discover, by simple inspection of its digits, whether a number is divisible by an
arbitrary other number; this method applies not only to our decimal system of
numeration (which system rests on a convention, an unhappy one besides, and
not on a natural necessity, as the vulgar think), but it also applies without fails
to every system of numeration having for base whatever number one wishes, as
may be discovered in the following pages. In a modern terminology, the exis-
tence of such simple divisibility rules in every integer base can be reformulated
as follows.

Fact 2.3. — Let a,b be non-negative integers. Then the arithmetic progres-
sion aN + b is a g-automatic set for all integers ¢ > 2.

FIGURE 3. A 2-automaton computing n mod 7.

Beyond divisibility rules, and this is not a great surprise, there usually does
not exist any automatic test to determine the main arithmetical properties of
natural numbers. For instance, prime numbers, perfect squares, and square-
free numbers are not k-automatic sets, and this whatever the base k chosen
to represent the natural numbers. A notable exception is given by the set of
natural numbers that can be written as the sum of three squares. Indeed, it
follows from a theorem of Legendre that this set is 2-automatic (see [18]).
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The first base change problem we consider is the following one. Though
it is obvious to determine whether a binary natural number is a power of 2,
it seems more difficult to identify this property from its decimal expansion.
This intuition can be formalized by showing that the set {2" | n > 0} is 2-
automatic, while it is not 10-automatic. In 1969, Cobham [17] proved the
following fundamental theorem, solving completely the problem of the base-
dependence for all automatic sets.

Theorem 2.4 (Cobham). — Let q1 and g2 be two multiplicatively indepen-
dent natural numbers. A set & C N is both q1- and qa-automatic if and only if
it is a finite union of arithmetic progressions.

Remark 2.5. — In addition, we recall that if a set is g;-automatic, then it
is also go-automatic for all integers gs multiplicatively dependent with ¢;.

In other words, divisibility rules are the only automatic rules whose exis-
tence does not depend on the base. In more algebraic terms, we expect that
Cobham’s theorem can be strengthened as follows.

Problem 2.6. — Let ¢1 and go be two multiplicatively independent natural
numbers. Let £ be a gi-automatic set and £ be a gs-automatic set. Prove
that if the generating functions

filz) = Z 2" and  fa(z) = Z 2"

neéy neés

are both not rational, then they are algebraically independent over Q(z).

2.3. Computational complexity of real numbers, finite automata,
and base dependence. — Similar questions occur when replacing sequences
of natural numbers by real numbers. However, these are often much harder
to handle. We consider the computational complexity of real numbers with
respect to a given integer base b. The most simple class is formed by the au-
tomatic real numbers, that is, those whose base-b expansion can be generated
by a finite automaton. The analogue of Fact 2.3 reads as follows.

Fact 2.7. — For all integers b > 2, the base-b expansion of a rational number
can be generated by a finite automaton.

In this setting, the study of classical sequences of natural numbers, such as
prime numbers, perfect squares, and square-free numbers is replaced by the
study of classical irrational mathematical constants such as v/2 and «. This
is an old source of frustration for mathematicians. While these numbers have
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very simple geometric descriptions, their decimal expansions

(\/§>10 = 1.414213562373 095048 801 688 724 209 698 078 569 - - -
and
(m)1o = 3.141592653 589 793 238 462 643 383 279 502 884 197 - - -

remain totally mysterious. In this area, a major problem is to prove that none
of the numbers /2, 7, e,log 2 is automatic. This problem is still widely open,
but Bugeaud and the first author [3| proved that no algebraic irrational real
number is automatic V). On the other hand, automatic irrational real numbers,
such as the binary Thue-Morse number

(T)2 =0.011010011001011010010110011010011001 011 - - - ,

do exist. Though 7 has a simple binary expansion, its decimal expansion

()10 = 0.412454 033 640 107 597 783 361 368 258 455283 089 - - -

seems much more unpredictable. This leads us to consider our second base
change problem. Problem 2.8 below is a stronger form of Problem 7 in [11,
p. 403|. It can be thought of as the analogue of Cobham’s theorem in this
setting.

Problem 2.8. — Let b; and bs be two multiplicatively independent natural
numbers. Prove that a real number is automatic in both bases by and by if and
only if it is a rational number.

Remark 2.9. — Using some classical results about automatic sequences, it
can be shown that if a real number is automatic in base b, then it is also
automatic in all bases that are multiplicatively dependent with b.

We also consider the following much stronger version of Problem 2.8.

Problem 2.10. — Let r > 1 be an integer. Let by,...,b, be pairwise multi-
plicatively independent natural numbers, and, for every ¢, 1 < i < r, let §; be
an irrational real number whose base-b; expansion can be generated by a finite
automaton. Prove that the numbers &1, ...,&, are algebraically independent
over Q.

Problem 2.8 is only solved for » =1 in [3].

2.4. Connection with Mahler’s method. — The following fundamental
connection between finite automata and Mahler functions was noticed by Cob-
ham in 1968 [16].

1. Cassaigne and the first author [6] also proved that Liouville numbers are not automatic.
This was extended to Mahler’s U-numbers by Bugeaud and the first auhtor [5].
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(C) Let ¢ > 2 be an integer and a = (a,),>0 be a g-automatic sequence with
values in Q. Then the generating function

fa(z) := Z anz"
n=0

is a g-Mahler function.

Our main problems can thus be extended as problems concerning Mahler
functions. For instance, Property (C) led Loxton and van der Poorten (see
[42]) to conjecture the following generalization of Cobham’s theorem, which
was later proved by Bell and the first author [2].

Theorem 2.11 (A. and Bell). — Let g1 and g2 be two multiplicatively in-
dependent positive integers. A power series f(z) € Q[[z]] is both q1- and q2-
Mabhler if and only if it is a rational function.

Recently, Schifke and Singer [45, 46] give a totally different proof of Theo-
rem 2.11 based on the Galois theory of difference equations associated with the
Mabhler operators o4 : z +— z9. The great advantage of this new proof is that it
does not make use of Cobham’s theorem. Our last problem, which generalizes
Problem 2.6 and Theorem 2.11, reads as follows.

Problem 2.12. — Let r > 1 be an integer. Let q1,...,q be pairwise mul-
tiplicatively independent natural numbers, and, for every i, 1 < ¢ < r, let
fi(2) € Q[[z]] be a g;-Mahler function that is not a rational function. Prove
that fi(2),..., f-(z) are algebraically independent over Q(z).

Problem 2.12 is only solved for r = 1 (see [38, Theorem 5.1.7]). Recently, a
partial solution to the case r = 2 was obtained in [7] using the Galois theory of
parametrized difference equations. Using (C), it is easy to check that part (i)
of Conjecture 1.5 would allow us to solve Problems 2.8 and 2.10. Furthermore,
the proof of Corollary 1.9 given in Section 4 shows that part (ii) of Conjecture
1.5 would allow us to solve Problems 2.6 and 2.12.

3. Proof of Theorem 1.1

In this section, we show how to deduce our second purity theorem from the
lifting theorem. We first prove Theorem 1.1 when all the sets £ have maximal
cardinality.

Lemma 3.1. — We continue with the assumptions of Theorem 1.1. If for
every i, 1 <¢ < r, one has

Ei={fiilo), ..., fimi ()},
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then .
Algg (&) = Algg(&i | £).

i=1

Proof. — Set z := (z1,...,2,), and let us consider the block diagonal T-
Mahler system

f1,1(z1) J11(Tz1)
flmn (Zl) fl,ﬂn (Tzl)
fr,ll(zr) | fr,l(Tzr)
: Alzr) :
fr,mr (Zr) fr,mr (Tzr)

We also consider r families of indeterminates

X1 = (X171, e 7X17m1)7 e 7Xr = (erl, e ,Xan) ;
and set X := (Xy,...,X;). We are going to prove that Algg(£) C
> i1 Algg(&i | £), the converse inclusion being trivial. Let P(X) € Algg(E).

We infer from the lifting theorem that there exists a polynomial Q € Q[z, X],
such that

Qlay,...,o, X)=P(X) and Q(z, f1(z1),---, fm(2zr)) =0.
Now, since the families of variables z1, 29, ..., 2, are all disjoint, Lemma 8.2
of [10] implies that there exists a decomposition @ = Q1+ - -+ @, in Q[z, X]
such that

Q@'(Z,Xl, s aXifla fi,l(zl')’ o ’fi,mi(zi),XiJrl, o ’XT) = 0,
for every i, 1 < ¢ < r. Setting P, = Qi(aq,...,a,,X), we obtain that
P =P, +---+ P,. Furthermore, one has
Pi(le .. aXifly fi,l(ai), o ,fi,mi(ai)a Xl'+la cee aXT') — 05
for every i, 1 <14 < r. Hence, P; € Alg@(ﬁi | £), which ends the proof. O

Before proving Theorem 1.1, we need the following simple lemma about
transcendence degrees.
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Lemma 3.2. — Let&q,...,E, F1,...,Fr be non-empty finite sets of complex
numbers, such that & C F;, for every i, 1 <i <r. Let us assume that

s T
tr.degg ( ]i) = Ztr.deg@(}}).
i=1 i=1
Then
T T
tr.deggy ( €i> = ) tr.degg(&).
i=1 i=1
Proof. — We prove this lemma by using a descending induction on the size

of the sets &. When & = F; for all 4, there is nothing to prove. Let us now
assume that there exists an index i¢ such that &, C F;,, and such that the
theorem is proved for larger &, the other sets & being unchanged. Without
loss of generality, we assume that ig = 1. We pick a number ¢ € F; \ &1, and
set £ = & U{&}. We consider two different cases. First, we assume that & is
algebraic over Q(&1). Then

tr.degg(&]) = tr.degg(€1),

and, as § is also algebraic over Q (J;_, &), we deduce that

T T
tr.deggm (5{ U U &) = tr.deggy (U €i> .
i=2 i=1
By assumption, we thus obtain that

tr.deggy <O &) = tr.degg (5{ U LTJ €i>

i=1 =2

= tr.degg(&;) + Z tr.degg (&)
i=2

= Z tr.degg(&i),
i=1

as wanted. Now, we assume that ¢ is transcendental over Q(&;). Then

tr.degg(£]) = tr.degg(€1) + 1.
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By assumption, we deduce that £ is also transcendental over Q (Ui_; &). Then

tr.degg (U é}) = tr.degy <5{ U U 52‘) -1

i=1 =2

= tr.degg(&;) — 1+ Z tr.degg(&;)
i=2

= Z tr.degg (&) ,
i=1

as wanted. This ends the proof. O
Theorem 1.1 is now a direct consequence of lemmas 3.1 and 3.2.

Proof of Theorem 1.1. — Note that the inclusion

T

(3.1) > Algg(& | €) € Algg(€),

i=1
is trivial. It is thus enough to prove that > ;_, Algs(&i | €) is a prime ideal
whose height is larger than or equal to the one of Alg@(é' ). Given a prime ideal
p of a ring, we let ht(p) denote the height p, that is, the maximal length of a
chain of prime ideal included in p.

Set

E = {fi71(ai)7' .- 7fi,mi(ai)}7 1 S ? S r,
and F = U;F;. By Lemma 3.1, we know that

Algg(F) = Algg(F | F).
i=1
We stress that

(3.2) bt (Algg(F)) = Z: bt (Algg(F)) .

where Algg(F) C Q[X] and Algg(Fi) C Q[X;]. Indeed, from Krull’s height
theorem, the height of the prime ideal Alg@(g ) C Q[X] is equal to the size of
a minimal set of generators of Algg(£) in the Noetherian ring Q[X]. For every
i,1<i<wr let Pi1,...,P 5, € QX;] denote a minimal system of generators
of Algg(F;) in Q[X;]. Hence ht <Alg@(}",~)> = h;. From lemma 3.1, the family

Pia,....,Pip, P, P,
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spans Algg(F) in Q[X ], which gives that

ht <Alg@(}")> < ih‘c (Alg@(ﬂ)) .

The converse inequality is trivial. Furthermore, the height of the ideal Alg@(]: )
satisfies

(3.3) It (Alg@(}')) = m — tr.degg(F) .
Equalities (3.2) and (3.3) thus imply that

(3.4) trans.deg(F) = Ztrans.deg(}}) :
i=1

Going back to the sets &;, Lemma 3.2 now implies that

(3.5) trans.degg (£) = Z trans.degg(&;) -
i=1

It thus follows from (3.3) that

It (Alg@(5)> - Zr:ht (Alg@(&-)> .
i=1

Set Z:= > i, Algg(&: | €). Then the isomorphism

QX ] QX,] _ QIX]

Ngg(&) "9 T Rlgg(e) T 1

implies that Z is a prime ideal. Indeed, the tensor product of integral domains,
over an algebraically closed field, is an integral domain. Furthermore, ht(Z) =
>i—1 ht(Algg(&; | €)), since the dimension of the product of affine varieties is
equal to the sum of the dimension of these varieties. It follows that Alg@(é' )
and 377 Algg(&; | €) are both prime ideals with the same height. By (3.1),
these two ideals are equal. This ends the proof. O

4. Mahler functions in one variable

In this section, we consider Mahler functions in one variable. Our main aim
is to prove Theorem 1.7 and Corollary 1.9, but we start with a short discus-
sion about few general principles governing the study of these functions. The
following three fundamental principles serve as a mantra for number theorists
working in Mahler’s method.

(I) Transcendental g-Mahler functions take transcendental values at alge-
braic points.
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(IT) Algebraically independent g-Mahler functions take algebraically indepen-
dent values at algebraic points.

(ITI) Linearly independent g-Mahler functions take linearly independent values
at algebraic points.

Of course, these must be taken with a pinch of salt. For instance, if f(2) is

a transcendental g-Mahler function, so is g(z) = (2 —1/2) f(2), and g(1/2) =0
is not a transcendental number. Even more subtle counter-examples such as

o

7z =T - 2"

n=0
can be cooked up easily. However, these three principles can be rigorously
established in the following sense. Let r < 1 be a positive real number, then
there exists a finite set £ (depending on r and the corresponding g-Mahler
functions) such that Principles (I)—(III) are satisfied for all algebraic numbers
a, 0 < |a| < r, that does not belong to £. For Principles (I) this is a con-
sequences of Nishioka’s theorem, as observed by Becker [14, Lemma 6]. In
fact, his argument extends to show that Principles (II) is also a consequence of
Nishioka’s theorem (see Proposition 4.1). For Principle (III), the more recent
works of Philippon [40] and the authors [8, 9] are needed. Furthermore, the
authors [8, 9| show that the exceptional set £ in Principles (I) and (III) can
be effectively determined. In contrast, the following two additional principles,
which do not fall under the scope of Mahler’s method in one variable, have not
yet been established.

(IV) Transcendental Mahler functions take algebraically independent values
at multiplicatively independent algebraic points.

(V) Transcendental Mahler functions associated with pairwise multiplica-
tively independent transformation take algebraically independent values
at algebraic points. In particular, they are algebraically independent

over Q(z).

Again, we can make them rigorous as follows. Let r < 1 be a positive real
number, then there exists a finite set £ (depending on 7 and the corresponding
Mabhler functions, say fi(z),..., fn(2)) such that Principles IV and V are satis-
fied for all n-tuples of algebraic numbers ayq, ..., ay, with 0 < |aq], ..., |a,| <7
and aq,...,0, € €. We stress that Theorem 1.7 and Corollary 1.9 validate
Principles (IV) and (V) in the case of regular singular Mahler functions.

Proposition 4.1. — Let f1(2),..., fm(2) € Q{z} be analytic functions that
converge on a connected open set U C C. Let A CU be a set such that

tr-deg@(fl(o‘)’ i afm(a)) = tr'deg@(z)(fl(z)’ s afm(z)) s
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for all a € A. If the functions f1(z),..., fi(z) are algebraically independent
over Q(z), then the set

E={ac Al fila),..., fi(a) are algebraically dependent over Q}

has finite intersection with any compact subset of U.

Proof. — We follow the argument of Becker [14, Lemma 6]. Let us assume
that tr.deg@(z)(fl(z), ...y fm(2)) = r. By assumption, r > ¢. Reordering if
necessary, we can assume without loss of generality that fi(z),..., fr(z) are
algebraically independent over Q(z). Let us consider an integer jo > 7. Then
fjo(2) is algebraic over the field Q(z)(f1(2), ..., f(2)) and there exists a non-
trivial relation of the form

dJO
D Aigo(z fi2), - fr(2)) fi(2)' =0,
=0

where the polynomials A;;, € Qlz, X1,...,X,] are not all zero. Let ig be
such that A;, j,(2,X1,...,X,;) # 0. Since the function fi(2),..., fr(2) are
algebraically independent over Q(z), we get that A;, j, (2, f1(2),..., f+(2)) is a
non-zero function that is analytic on &. Now, let C denote a compact subset of
U. Then there exists a finite set &£, such that A, j, (o, fi(a),..., fr(a)) # 0
for all o € C\ &j,. For such «, the number fj (c) is algebraic over the field

Q(fi(e,..., fr(a)). Then for all aw € C\ UJL, &}, we have that

tr-deg@(fl(a)’ ce afm(a)) = tr'deg@(fl(o‘)’ s ’fr(a)) :

By definition of A, we deduce that tr.degg(fi(a),..., fr(@)) = r for all o €
ANC\(UJL, 1 &;). In particular, fi(a),..., fi(a) are algebraically independent
over Q. It follows that £ENC C UL, 11&; Is a finite set. This ends the proof. [

Proof of Theorem 1.7. — Let f(z) be a regular singular g-Mahler function and
a be a non-zero algebraic number such that f(z) is well-defined at a. We are
going to show that there exists a g-Mahler function g(z) such that the following
properties hold.

(a) g(a) = f(a).

(b) The function g(z) is the coordinate of a solution vector of regular singular
Mahler system

91(2) = 9(2) 91(2)

gm.(Z) gm(.zq)

(c) The point « is regular with respect to this system.
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By assumption, the function f(z) is the coordinate of a regular singular

Mahler system, say
f1(z)

(4.1) : =

fi1(z9)

fm(27)

Up to a reordering of the index, we assume without loss of generality that

fi(z) = f(2), fi(z) ...

, fr(2) are linearly independent over Q(z), and that the
functions fr41(2),..., fm(z) belong to Vect@(z){fl(z), .

, fr(2)}. Applying a

rational gauge transform to (4.1), we obtain a new Mahler system

f1(2) f1(z9)
Al (Z) AQ(Z)
fr(2) | _ fr(27)
(4.2) 0 = 0
: Ag(Z) A4(Z) :
0 0
Since the functions fi(z),..., f-(z) are linearly independent over Q(z), so are
f1(z9),..., fr(29). Hence, A3(z) is a zero matrix. The system (4.2) remains

regular singular for any rational gauge transform preserves this property. Thus,
there exist an invertible matrix ®(z) with coefficients in K = Ug>1Q{z'/9},
and a constant matrix B such that

B = d(2) ( Ai(2) | Ax(2) ) B(21) "

0 | A4(Z)
Up to a constant gauge transform, we can assume that B is a lower triangular
matrice. Hence, we obtain that

B1 | 0 (131(2(]) | CI)Q(Zq) o <I>1(z) | (I)Q(Z) Al(z) | AQ(Z)
( B3 | By ) ( ©3(27) | D4(27) > B ( D3(2) | Du(2) ) ( 0 | Aulz) ) '
Identifying the left upper squares, we get that
Bl = (131(2)141 (z)@l(zq)_l .

Hence, the system

f1(2) f1(29)
(4.3) : = A1(2) :
fr(2) fr(z7)
is regular singular. Since the functions fi(z),..., fr(z) are linearly indepen-

dent, we infer from [8, Theorem 1.10| that there exists an integer [ such that
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ql

the numbers o] is regular for the system
A(2) AT
(4.4) =AY
fr(Z) fr(qu)

where
1

AV () = A1 (2) A1 (29) - A (27,

and such that « is not a pole of Agl)(z). The definition of Agl) ensures that

this new system remains regular singular. Let (a1(z),...,a-(z)) denote the
first row of Agl)(z). Set

9(2) = ar(@)[1(e7) + -+ ar(a) (7).

Then g(z) is a constant linear combination of the functions fl(qu), cey fr(qu).
Since the point a? s regular with respect to the system (4.4), there exists a
constant gauge transform of (4.4) turning g(z) into the first coordinate of a
regular singular Mahler system with respect to which « is a regular point.
Furthermore, we infer from (4.4) that g(«) = f(«), as wanted. This ends the
first part of the proof.

Let us prove the case (i) of Theorem 1.7. We assume that, for every i,
1 <@ < r, the number f;(«;) is transcendental. With each pair (f;(2), ),
we can associate a g;-Mahler function g;(z) satisfying Conditions (a), (b), and
(c). Let us divide the natural numbers 1,...,r into s classes 71, ..., Zs so that
if ¢+ and j belong to two different classes then ¢; and ¢; are multiplicatively
independent. Iterating the systems associated with the functions g; a suitable
number of times, we can assume without loss of generality that g¢; = ¢; when
1 and j belong to the same class. Set

& = {gl(al)’---,gr(ar)}
= {fl(al)a---afr(ar)}
and & = {g;(a;) | 7 € Z;}. Then the first purity theorem implies that

S
(4.5) Algg(&) =) Algg(& | €).
i=1
Now, let us fix ¢ € {1,...,s}. We have & = {g;,(i,),-.., i ()} for some
distinct integers i1,...,%, 1 < 41,...,0; < r. Set T = ¢;I;, where we let I;
denote the identity matrix of size t. By assumption, the numbers oy, ..., a;,

are multiplicatively independent. This is equivalent to the T-independence of
the t-tuple (ay,, ..., q; ). Forevery j, 1 < j <t weset & ; = {gi(a;;)}. Now,
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we can apply the second purity theorem. We obtain that

¢
(4.6) Algg(&) = Algg(&ij | &)
j=1

By assumption, Alg@(é’i,j | &) =0forall j, 1 <j <t since f;(a;;) = gi; (i)
is transcendental. Then it follows from (4.6) that Algz(&;) = 0. Finally, (4.5)
implies that Algg(E) = {0}. In other words, the numbers fi(a1),..., fr(ar)
are algebraically independent, as wanted.

Now, we prove the case (ii) of Theorem 1.7. We assume that, for every i,
1 < i < r, the number f;(c;) is transcendental. As previously, we associate
with each pair (f;(2), ;) a function g;(z) satisfying Conditions (a), (b), and
(c). Since the natural numbers g; are pairwise multiplicatively independent,
we can apply the first purity theorem to these systems. Indeed, each system
is associated here with a one-dimensional matrix transformation 7; = (¢;) and
the spectral radius of such matrix is just ¢;. Setting

&= {91(041), s 7gr(ar)}
and & = {g;(a;)}, for every i, 1 <1i < r, we deduce that

T
Algg(€) =) Algg(& | €).
i=1
Again, Algg(E; | €) = 0 for every 4, 1 < i < r, since by assumption fi(a;) is
transcendental. This shows that Algg(€) = {0} and we conclude as previously
that the numbers fi(a1),..., fr(a,) are algebraically independent. This ends
the proof. O

Now, we prove Corollary 1.9.

Proof of corollary 1.9. — By Theorem 1.7, we just have to prove that there
exists an algebraic number «, 0 < |a| < 1, such that the functions f;(z) are
all well-defined and transcendental at a. Indeed, choosing a; = -+ = o =
Theorem 1.7 implies that the numbers fi(«a),..., f.(a) are algebraically inde-
pendent. Hence, the functions fi(z),..., fr(2) are algebraically independent.
Let i € {1,...,r}. Let p < 1 be a positive real number and let B(0, p) denote
the close complex disc of radius p. Becker [14, Lemma 6| deduced from Nish-
ioka’s theorem that there are only finitely many points a € B(0, p) such that
fi(a) is algebraic. Furthermore, the function f;(z) have only a finite number of
poles in B(0, p). So, for all but finitely many algebraic numbers « in B(0,r),
all the functions f;(z) are well-defined at o and f;(«) is transcendental. This
ends the proof. O



MAHLER’S METHOD IN SEVERAL VARIABLES II 21

5. Mahler functions in several variables

This section is devoted to Mahler functions in several variables. We first
define the notion of a regular singular 7T-Mahler function, after which we extend
Theorem 1.7 and Corollary 1.9 to this setting.

Definition 5.1. — Let z = (z1,. .., 2,) be a vector of indeterminates and let
T be n X n matrix with non-negative integer coefficients. A function f(z) €
Q{z} is a T-Mahler function if there exist polynomials pg(2), ..., p.(2) € Q[z],
not all zero, such that

po(2)f(2) + p1(2)f(T2) + -+ pu(2) f(T"2) = 0
or, equivalently, if there exists a linear T-Mahler system

fi(z) fi(Tz)
S ETEY

fnl2) fnl(T2)

with f(z) = fi(z) and A(z) € GL,,(Q(2)). A T-Mahler function is said to be
reqular singular if it is the coordinate of a vector representing a solution to a
regular singular T-Mahler system.

Remark 5.2. — Note that if f(z) is a regular singular T-Mahler function,
then every system having a solution represented by a vector of analytic func-
tions containing f(z) and whose coordinates are linearly independent over

Q(z) is also regular singular. A sketch of proof of this fact is given in the proof
of Theorem 1.7.

We first state without proof a multidimensional analogue of Theorem 1.7.
It can be proved, exactly in the same way as Theorem 1.7, by combining the
two purity theorems. Given a matrix 7', we let p(7") denote its spectral radius.

Theorem 5.3. — Let r > 2 be an integer. For every integer i, 1 < 1 < 7,
we let z; = (2i1,...,%in,) be a vector of indeterminates, T; be n; x n; matriz
that belongs to M, fi(z;) € Q{z;} be a regular singular T;-Mahler function,
and o; = (i 1,...,Qip,;) € Q™ be such that the pair (T;, i) is admissible and

o 1s reqular with respect to the underlying regular singular T;-Mahler system.
Then the following properties hold.

(i) Let us assume that the point (o, ..., e, ) is T-independent, where T =
diag(T1,...,Tr). Then fi(a1), fa(az),. .., fr(ew) are algebraically inde-
pendent over Q if and only if they are all transcendental.

(i1) Let us assume that the numbers p(Th),...,p(T;) are pairwise multiplica-
tively independent. Then fi(a1), f2(@2), ..., fr(cw) are algebraically in-
dependent over Q if and only if they are all transcendental.
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Remark 5.4. — We stress that if all the algebraic numbers «; j, 1 < i < r,
1 < j < ny, are multiplicatively independent, then the point (e, ..., ;) is
T-independent for any choice of the matrices T;.

Though Mahler method in several variables is mostly used to deal with ana-
lytic functions in one variable, some Mahler functions in several variables have
their own interest. This is the case of the generating functions of multidi-
mensional automatic sequences (see [11, Chapter 14| for a definition). More
precisely, if a = (a(n1,...,14))(n,, . .n,ene i @ d-dimensional g-automatic se-
quence with values in Q, then the generating function

falz1,...y2q4) = Z a(ni,...,ng)ztt - zy?
(n1,...,ng)EN?

is a T-Mahler function with

T:
q

Let us illustrate this fact with a simple example.

Ezxzample 5.5. — The two-dimensional Sierpinski sequence s = s(nj,ng) is
defined by s(ni,n2) = 1 if the natural numbers n; and ny have no 1 at the
same position in their ternary expansion, and by s(ni,ns) = 0 otherwise.

The name of this sequence comes from the fact that replacing 1’s with black
squares and 0’s with white squares, and suitably renormalizing, the graphic
representation of s converges (for the Hausdorff topology) to the Sierpinski
carpet. More generally, many classical fractals can be obtained by a similar
process using multidimensional automatic sequence (see for instance [11, 1]).
Figure 4 provides a finite automaton generating the sequence s. It takes as
input a pair of natural numbers (n1,ng) written in base 3 and then padding,
if necessary, the expansion of ny or ns at the beginning with 0’s to ensure that
both expansions have the same length.

Allbut [1,1] All

FIGURE 4. The Sierpinski sequence Automaton

The generating function fs(z1,22) =>_, ., s(n1, ng)zytzy? is a 3Ip-Mahler
function, where we let denote by Iy denote the 2 x 2 identity matrix. Indeed,
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it satisfies the regular singular equation

(5.1) s(z1,22) = (14 21 + 20 + 23 + 25 + 2820 4+ 2125 + 2325)s(23, 23) .

Set a(z1,20) = (1 + 21 + 22 + 23 + 25 + 2220 + 2125 + 2223). A point a =
(a1, 00) € (Q*)2 is 3I-independent if and only if a1 and ag are multiplicatively
independent. Furthermore, if c; and g are multiplicatively dependent, the
number s(a1, ag) is the value of a one-dimensional 3-Mahler function, obtained
by specializing Equation 5.1. In the end, we can prove that outside the Zariski
closed set {a(z1,22) = 0}, s(aq, az) is transcendental for all pair of algebraic
numbers with 0 < |ag|, |ag| < 1. We can also use Theorem 5.3 to prove for

instance that s(1/2,1/3) and s(1/5,1/7) are algebraically independent over Q.

We recall that Semenov [47| obtained an interesting generalization of Cob-
ham’s theorem for d-dimensional automatic sets. In this direction, we extend
Corollary 1.9 to Mahler functions in several variables.

Theorem 5.6. — Letn be a positive integer, and let Ty, ..., T, be nxn matri-
ces in M such that p(T1), ..., p(T,) are pairwise multiplicatively independent.
For every i, 1 <i <r, let fi(z) be a reqular singular T;-Mahler function that
is not a rational function. Then f1(z),..., fr(z) are algebraically independent

over Q(z).

Remark 5.7. — The case r = 1 gives that a regular singular T-Mahler func-
tion is either rational or transcendental, providing that T" belongs to M.

We are now going to prove Theorem 5.6.

Lemma 5.8. — Let Ty,...,T, be n x n matrices that belong to M. Let ¢ (z)
be a non-zero analytic function with coefficients in a number field K. There

exist some algebraic numbers B, ..., By such that, if a = (a1, ..., q,) € (K*)"
1s such that the numbers aq, ..., an, B1, ..., Bt are multiplicatively independent
and 1 < |aql,...,|an| < 1, then there exists a non-singular matriz S with

non-negative integer coefficients, such that

Y(TFSa) #0,
forallk > 1 and all i with 1 < i <.

Proof. — We let ||-|| denote the maximum norm (for both vectors with complex
coordinates and square matrices with integer coefficients). The proof is based
on Theorem 3 of [19]. This result implies that there exist a finite number
of n-tuple of integers p,,...,u;, and a finite number of algebraic numbers
B1, ..., B¢ such that
t
H(mgl — B;) =0, for infinitely many k € N
i=1
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for all sequences (xg)ren C K™ satisfying the following conditions.

(A) Y(z) = 0 for infinitely many k € N.

(B) limg 00 @ = 0.

(C) Every xj is a S-unit, for some finite set of places S over K.

(D) h(xg) = O(—log H:ckH), where we let h(-) denote the logarithmic Weil

height.
Let 9t denote the monoid generated by the matrices 71, ..., T, (with respect
to usual matrix product). Since the matrices T1, ..., T, belong to the class M,

for any S € M and 1 < i < r, we have ||T;S|| > ||S]|. Furthermore, there
are only finitely many matrices in 9t with a given norm. We can thus define
a total order > on 9 in the following way. Take S,S8" € M. If ||S]| >
[|S’]], we say that S > S, and if [|S1|| = [|S2|| = -+ = ||Skl|, we choose
an arbitrary order between these matrices. We can thus consider a sequence
(Sk)k>1 that enumerates the elements of 9t according to >. Let us consider a
point @ = (ayq,...,a,) € (K*)" such that the numbers aq,...,an, 51,..., 0
are multiplicatively independent and 1 < |aq],...,|an| < 1. Set xp = Sia,
for every positive integer k. We also choose a finite set of places S over K,
such that « is a S-unit. Then, every xj is also a S-unit. We can estimate
the logarithmic Weil height of the point x. Let pq, ..., p. denote the spectral
radii of the matrices T1,...,T,. Since T1,...,7T, belong to M, we get that

log||zk|| = O(=p{" - pi7)

where ¢; denote the number of occurrences of the matrix 7; in a decomposition
of Sk. On the other hand, we have

[1Sk]] = Ot -~ pi7) -
We refer the reader to [10, Section 3| for more details. Combining these two
estimates, we get that

hxy) < —7ylog|lzkll,
for some positive real number . Furthermore, the way we define the order >
ensures that x; — 0, as k — oco. Conditions (B) to (D) are thus satisfied. Let

us assume now that ¢ (xg) = 0, for infinitely many k. Then, there exists an
integer 7, 1 < j <t, such that

(5.2) (:I:k)“j = a“J’S’“ = ,8]',

for infinitely many integers k € N. This contradicts the fact that the numbers
A1y, Qn, B, ..., 0 are multiplicatively independent. Thus, we deduce that
there exists a positive integer kg such that ¢(xy) # 0 for all k& > ky. Set

S =Sk, -
Since TikS = S for every k € N and every i, 1 < ¢ < r, we obtain that
(T Sa) # 0,
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for all £ > 1 and all 4 with 1 <4 < r. This ends the proof. O

Recall that, for any matrix 7" of class M we set U(T') the set of algebraic
points of (Q")" for which condition (b) of definition 1.2 of the first part [10]
holds.

Lemma 5.9. — Let T be a nxn matriz of class M and let f(z) be a reqular-
singular T-Mahler function that is not a rational function. Then there exists
a Zariski closed set C of Q" that contains all points o € (@*)" such that the
pair (T, ) is admissible, o is reqular with respect to the underlying reqular
singular Mahler system, and f(a) is algebraic.

Proof. — Let (f1(2z) := f(2), f2(2),..., fm(2)) be a vector representing a so-
lution to a regular singular T-Mahler system. Let o € (@*)" satisfying the
assumptions of the lemma. The lifting theorem ensures the existence of poly-

nomials qo(2)q1(2), ..., qn(2) € Q[z], not all zero, such that

(5.3) 90(2) + q1(2)1(2) + -+ agm(2) fm(2) = 0,
(5:4) @o(e) = f(a), qi(e) =1, @2(@) =+ = gm(a) = 0.
Let us consider the Q(2)-vector space of the linear relations over Q(2) between
the power series 1, fi1(2),..., fm(2). We choose a basis of this vector space,
say (10.i(2),71.i(2),. ., "mi(2)) € Q[z]™™, 1 < i < I. Let us consider the
I x (m — 1) matrix

r1(2) o rmi(2)

R(z) = I I
roi(z) o Tm(2)

Since f1(z) = f(z) is not a rational function, the matrix R(z) has rank [. Let
A1(2),...,Apn_1_i(2) denote the minors of R(2) of rank I. If a € (Q)" is
such that f(a) is algebraic, Equalities (5.3) and (5.4) implies the existence of
a vector A(z) = (A1(2),...,N(z)) € Q[z] such that

AMa)R(a) =0.
It follows that A;(a) = 0 for every i, 1 <i <m — 1 —1[. Hence, a belongs to
the Zariski closed set

m—1-—1
C= () {«€Q" | Ai(a)=0}.
i=1
This ends the proof. O
We are now ready to prove Theorem 5.6.

Proof of Theorem 5.6. — Our strategy is to find some suitable algebraic point
a = (ai,...,a,) at which we can apply the first purity theorem in order
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to obtain the algebraic independence of the numbers f1(3),..., fr(3) where
B = Sa for some suitable matrix S with non-negative integer coefficients.

Let z = (21,...,2,) be a family of indeterminates, and T1,...,T; be n x n
matrices that belong to M and with spectral radii pq,...,p.. We consider for
each i, a T;-Mahler power series f;(z), from a system

fin(z) fin(Tiz)

(5.4.1) = Ay(2)

Fimi(2) Fimi(Ti2)

with f;(z) = fi1(z), and A;(z) € Gl,,(Q(2)). If p < 1 is a sufficiently small
positive real number, then the functions f; j(z), 1 <i < r, 1 < j < m,; are
all analytic on the open ball B(0, p). In particular, B(0,p) C U(T;) for every
i. Define, for each i, a set C; as in Lemma 5.9, and choose A(z) a polynomial
such that if A(a) # 0 for some a € B(0, p), then a does bot belong to any of
the C;. We let §(z) denote a polynomial such that « is a regular point for the
Mahler system (5.4.i) if 6(TFa) # 0 for every k > 1 and 1 <14 < r. We can
take d(z) to be the product of the determinants, and of the denominators of
the coefficients of the matrices A;(z). Set

(z) = A(2)d(2)
and let K be a number field containing the coefficients of 1 (z). We choose

a € B(0,p) N K™ as in Lemma 5.8. By Lemma 5.8, there exists a n x n
non-singular matrix S with non-negative integer coefficients such that

W(IFSer) #0,

for all kK > 1 and all ¢ with 1 < ¢ < r. Since S is non singular, and «
has multiplicatively independent coordinates, the point 3 := Sa remains T;-
independent for every i. Hence, the pair (7;,3) is admissible. Since 3 €
B(0,p), the functions f; ;(z) are all well-defined at 3. Since §(T}B3) # 0 for
every i, the point 3 is regular with respect to each system (5.4.1). We can thus
apply the first purity theorem at 8. Set & = {fi(B)}, 1 <i <r, and & = U;¢;.
We have

Algg (€)= Algg (& | €) .
=1
Since A(B) # 0, the numbers f;(3) are transcendental, so that Algg (&; [ £) =
{0} for every i. Hence, Algg (€) = {0} and the numbers f1(8),..., f(B) are
algebraically independent over Q. In particular, the functions fi(2),..., f-(2)
are algebraically independent over Q(z). This ends the proof. O
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6. Specializations of multivariate Mahler functions

As mentioned in the introduction, one interest of the multidimensional the-
ory is to enlarge the class of one-dimensional analytic functions that fall under
the scope of Mahler’s method. In this section, we define the notion of a good
T-Mahler specialization and prove an analogue of Corollary 1.9 and Theorem
5.6 for these functions. Then we discuss the connection with a nice extension
of Cobham’s theorem to morphic words obtained by Durand [21].

6.1. Good T-Mahler specializations and algebraic independence. —
Given a quadratic irrational real number w, the Hecke-Mahler series f,(z) =
Y solnw]z™ € Q{z} is a typical example of what we would like to think
about as a good Mahler specialization. Indeed, one has f, = F, o 0 where

Fo(z1,22) = 30 g ZL"WJ 211 z5? is a two-dimensional Mahler function and

no=0
— —2
- { Q- Q

z = (z1)
is a polynomial map. We consider that this specialization is good not only
because it is the composition of a Mahler function by a polynomial map, but
also because F, is a regular singular T-Mahler function for a suitable 2 x 2
matrix T € M, and for all @ € Q, 0 < |a| < 1, the pair (T, o(a)) is admissible,
and the point o(«) is regular with respect to the Mahler system associated with
F,,. These properties allow us to apply Mahler’s method in several variable to
the study of the values of f, at algebraic points. This leads us to the following
definition.

Definition 6.1. — Let z = (z1,...,2,) be a family of indeterminates and
T € M be an xn matrix. A good T-Mahler specialization is a power series of
the form f o o(z) € Q{z}, where f(z) is a regular singular T-Mahler function
and o is a map of the form

o { T - Q
z = (p1(2),...,pm(2))
where p1(2),...,pm(2) are non-zero polynomials in Q[z], and which satisfies

the following conditions.
(i) There exists a punctured neighborhood V of 0 in Q such that (7,0 (£)) is
admissible for all £ € V.
(ii) The point o(§) is regular for all £ € V.

We prove the following analogue of Corollary 1.9 and Theorem 5.6 for good
T-Mahler specializations.

Theorem 6.2. — Let Ty,...,T, be matrices in M such that p(T1), ..., p(T})
are pairwise multiplicatively independent. For every i, 1 < ¢ < r, let
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gi(z) be good T;-Mahler specialization that is not a rational function. Then
91(2), ..., gr(2) are algebraically independent over Q(z).

Theorem 6.2 is a consequence of the following lemma.

Lemma 6.3. — Let g(z) be a good T-Mahler specialization and let V be as
in Definition 6.1. Then the set

& =16€QnV|g(¢) € Q}

s finite.

Proof. — We first introduce the following notation. We let z = (z1,...,2y,)
be indeterminates, and we assume that 7' is a square matrix of size n. By
assumption, we can assume that

9(2) = foo(z) € Q{z},

where o : Q — Q", and where f(z) = fi(z) is the first coordinate of a solution
to the regular singular T-Mahler system

fi(=) fi(Tz)
(6.1) | =am |

fnl2) fnl(T2)

with A(z) € Gl,,,(Q(z)). Furthermore, there exists a punctured neighborhood
of the origin V in Q such that, for every & € V, the pair (T, 0 (¢)) is admissible,
and the point o(§) is regular with respect to the system (6.1). Following the
proof of Lemma 5.9, we are going to build a proper Zariski closed set C of V
containing every algebraic numbers £ € V such that g(¢) is algebraic, that is
such that & C C. Let us consider the Q(z)-vector space of the linear relations
over Q(z) between the power series 1, f1(2),..., fm(z). Pick a basis of this
vector space, say (ro;(2),71,;(2),...,"m;(2)) € Q=™ 1 < j < 1. We
consider the | x (m — 1) matrix

rop00(z) oo Tmioo(z)
R(z) = : :
rop00(z) -+ rmypoo(z)

Since by assumption f o o(z) = g(z) is irrational, the matrix R(z) has rank .
Let £ € &. Then the lifting theorem implies that R(£) has rank strictly less
than [. Setting C = {£ € V | rank(R(§)) < I}, we thus have that £ C C. On
the other hand, the definition of C shows that it is a one-dimensional Zariski
closed set of V), for the r; j o o(2) belong to Q[z]. Furthermore, since R(z) has
rank [, C must be a proper subset of V. As a proper one-dimensional Zariski
closed set is always finite, we obtain that &£, is a finite set. This ends the

proof. O
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Proof of Theorem 6.2. — With each function g;, we associate a T;-Mahler
function f;, a map o;, and a set V; as in Definition 6.1. We also associate a set
&y, as in Lemma 6.3. Since each V; is a punctured neighborhood of the origin
in Q, it follows that Vg := Ni_,V; is infinite. Set &€ = U;_,&,,. By Lemma 6.3,
Ep := ENV is a finite set. Thus, the set Vg \ & is not empty. Let £ € Vy \ &.
Then for every 1 < i < r, the pair (T;,0;(£)) is admissible, the point o;(&) is
regular with respect to the regular singular T;-Mahler system associated with
fi, and the number f;(0;(&)) is transcendental. Since p(T}), ..., p(T;) are pair-
wise multiplicatively independent, we can apply the first purity theorem. We
deduce that the numbers g¢1(€),...,g-(§) are algebraically independent over
Q. Hence, the power series g1 (y),...,g,(y) are algebraically independent over

Q(y). This ends the proof. O

Remark 6.4. — The proof of Theorem 6.2 shows that the same conclusion
still holds true if we replace the assumption that each V; is a punctured neigh-
borhood of the origin in Q by the weaker assumption that the set N_;V; is
infinite.

6.2. Morphic sequences, Cobham’s theorem, and specializations. —
An alphabet A is a finite set of symbols, also called letters. A finite word
over A is a finite sequence of letters in A or, equivalently, an element of A*,
the free monoid generated by A. We let denote by |W| the length of a finite
word W, that is, the number of symbols in W. If a is a letter and W a finite
word, then ||, stands for the number of occurrences of the letter a in W. A
map from A to A* naturally extends to a map from A* into itself called an
(endo)morphism. Given two alphabets A and B, a map from A to B naturally
extends to a map from A* into B* called a coding. Let ¢ > 2 be an integer. A
morphism ¢ over A is said to be g-uniform if |p(a)| = q for every letter a in
A, and simply uniform if it is g-uniform for some ¢q. A morphism ¢ over A is
said to be prolongable on a if p(a) = aW for some word W and if the length
of the word ¢"(a) tends to infinity with n. Then the word

p“(a) == lim ¢"(a) = aW (W)@ (W) - -

is the unique fixed point of ¢ that begins with a. An infinite word obtained by
iterating a prolongable morphism ¢ is said to be pure morphic. The image of
a pure morphic word under a coding is a morphic word or a morphic sequence.
A useful object associated with a morphism ¢ is the so-called incidence matriz
of ¢, denoted by M. We first need to choose an ordering of the elements of
A, say A ={ai,a,...,aq}, and then M, is defined by

Vij € {L,.oidb, (My),, = ¢(a)la; -
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The choice of the ordering has no importance. If a morphic sequence is gen-
erated by a morphism ¢ such that the spectral radius of M, is equal to p, we
say that this sequence is a p-morphic sequence. It is known that a sequence is
g-automatic if and only if it is g-morphic. A famous example of non-automatic
morphic sequence is given by the so-called Fibonacci word

¢ = 0100101001001010010100100101001001 - - - ,

which is defined as the unique fixed point of the morphism ¢ defined over {0,1}
by (0) = 01 and (1) = 0. This word is (1 4 1/5)/2-morphic. Quite recently,
Durand [21] prove the following nice generalization of Cobham’s theorem that
was open for a while: if p; and po are multiplicatively independent algebraic
numbers, a sequence that is both p;- and ps-morphic is eventually periodic.
With an infinite word a = agaq - - - over a finite alphabet, we can associate the

generating function
o
fa:i= E anz" .
n=0

Furthermore, a is eventually periodic if and only if f, is a rational function.
In the vein of Problems 2.6 and 2.12, we expect that Durand’s theorem can be
strengthened as follows.

Conjecture 6.5. — Let r > 2 be an integer. Let p1,...,p, be pairwise mul-
tiplicatively independent algebraic numbers, and, for every i, 1 < i < r, let
a; be a p;-morphic word that is not eventually periodic. Then, the generating
functions fa,(2),..., fa.(2) are algebraically independent over Q(z).

Theorem 6.2 provides a first general result towards this conjecture. Indeed,
Cobham [16] described how the generating function of any p-morphic word
can be obtained as a specialization of the form f o o, where f is a T-Mahler
functions in several variables and o(z) = (z,...,2). Furthermore, p(T) = p.
However, we stress that these specializations are not always good in the sense
of Definition 6.1, for it may happen that either T" does not belong to M or
that f is not regular singular. We give below a few examples.

FExample 6.6. — Let us consider the Baum—Sweet sequence bs. This is a
2-automatic sequence defined as follows. Its nth term is equal to 1 if the
binary expansion of n contains no block of consecutive 0’s of odd length, and
it is equal to 0 otherwise. Let ¢ denote the morphism defined by ¢(0) = 01,
(1) = 21, ¢(2) = 13, ¢(3) = 33, and 7 be the coding defined by 7(0) = 1,
7(1) = 1, 7(2) = 1, 7(3) = 0. The sequence bs is also the image by 7 of
the unique fixed point of ¢ beginning by 0. The generating function fps(2)
is a good Tp-Mahler specialization, with Tj = (2), in a somewhat trivial way.
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Indeed, fps is a regular singular 2-Mahler function, as we have

( fos(2) ) _ < 0 1 ) < fbs(zz) >
fbs(zz) 1 —=z fbs(z4) .
Furthermore, every a € Q, with 0 < |a| < 1, is regular.

Exzample 6.7. — Let us consider the Fibonacci word ¢. Setting z = (2o, 21),
Cobham’s construction leads to the Tj-Mahler system

0 (1)) -2 (2).

where
1 1 11
A(z)z(ZO 0>andT1:<1 0).

According to Cobham, we get that f,(2) = fi(z,2). Let us show that the
system (6.2) is regular singular (even if the matrix A(0) is singular). Setting

L
¢<z>=<§f§2 i L)

1 0
p=(0 ),
®(z)B = A(2)0(T1z).
Furthermore, det ®(z) # 0 for it has a nonzero coefficient in (zpz1)”" in its
generalized Laurent series expansion. It follows that the system (6.2) is regular
singular. Furthermore, we note that 77 belongs to the class M. Finally, for
every algebraic number « in the punctured open unit disk of C, the point (o, a)
is regular and Ti-independent. Hence, f,(2) is a good Ti-Mahler specialization.
We also note that p(T7) = (14 v/5)/2.

and

we obtain that

1

Ezxzample 6.8. — Let ¢ denote the binary morphism defined by ¢(0) = 0110
and (1) = 101, and let

to = (011010110101101010110101101 - - -

denote the unique fixed point of ¢ beginning with 0. Setting z = (2o, 21),
Cobham’s construction leads to the Ts-Mahler system

o (F)-am (£E).

where )
{1+ 202 21 (21
A(Z)_ ( 20+ 2021 14+ 2021 ) and Tp = ( 2 2 > ’
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According to Cobham, we get that fi,(2) = fi(z,2). Furthermore, we note
that T, belongs to the class M and that the system (6.3) is regular singular
for A(0) is the 2 x 2 identity matrix. Finally, for every algebraic number
a in the punctured open unit disk of C, the point («, ) is regular and Ts-
independent. Hence, fiy(z) is a good To-Mahler specialization. We also note

that p(Ty) = 2 + /2.

Example 6.9. — Let us give an example over a 3-letters alphabet. Let
tr = 0102010010201010201001020102 - - -

denote the Tribonacci word, that is the unique fixed point of the morphism
¢ defined by ¢(0) = 01, ¢(1) = 02, and ¢(2) = 0. Setting z = (2o, 21, 22),
Cobham’s construction leads to the T5-Mahler system

fo(z) fo(T32)
(6.4) h(z) | =AR) | Als2) |,
fa(2) fa(T32)
where
1 1 1
A(z) = 20 0 0
0 20 0
and
1 10
To=| 10 1
1 00
According to Cobham, we get that fu(z) = fi(z, 2z, 2)+2f2(z, 2, 2). Let us show

that the system (6.4) is regular singular. We first consider the inhomogeneous
Mahler equation

( h(z) =jh(Tz) + jzoz1h(T?2) + 2322 20h(T32)

. _ Zé/QZi/QZ;/Q +523/22i5/2zé/2 +jzg/22f/2zé/2 + Zél/QZI/QZS/z,
where we let j denote the unique cubic root of unity with positive imag-
inary part.  Equation (6.5) has a ramified analytic solution h(z) €
@[[Zé/z /2 _1/2

217,25’ 7]], which can be obtained as the limit of the recurrence
defined by ho(z) = 1/2 i/Qz;/Q and by
Boi1(2) =7han(T2) + j2021hn (T?2) + 2523 200 (T3 2)

1/2 1/2 1/2 = 3/2 3/2 1/2 5/2 3/2 1/2 11/2 7/2 3/2
— 29 2z +7 Zo zq Zo 2 %y —|—zO 2z

Now, let us consider the ramlﬁed Laurent polynomial
I(z) = 2’0_1/221_1/22’2_1/2+j20_1/221_1/22’§/2+j2 1/2 1/2 —1/2 +21/2 1/2 . /2
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It satisfies the inhomogeneous Mahler equation

(6.6)
JUT2) + j2onl(T?2) + 2822 21(T32) = 1(z) — Zé/2zi/2z;/2 —|—j28/2zf/2z;/2
—|—jzg/2zf/2z;/2 + 231/221/2273/2 .

Setting g(z) = I(z) + h(z), we infer from (6.5) and (6.6) that g(z) satisfies the
homogeneous T-Mahler equation

(6.7) 9(2) = jg(Tz) + jzo219(T°2) + 2321 229(T%2) .
Setting
to(2) 9(2) 9(2)
®(z) = | ti(z) J29(Tz)  jz9(Tz) ;
ta(z) Jzgz9(T?z) jziz19(T2z2)
and
1 0 0
B=[03j 0],
00 j

we then infer from (6.7) and (6.4) that
O(z)B=A(2)®(T=).

Furthermore, we can check that det®(z) # 0 for it has a nonzero coef-
ficient in (292122)”! in its generalized Laurent series expansion. Since B
is a constant matrix and since ® has coefficients in @{Zé/ 2,,2}/ 2,,2;/ 2}, this
shows that the Mahler system (6.4) is regular singular. Furthermore, T3 be-
longs to the class M. Finally, for every algebraic number « in the punc-
tured open unit disk of C, the point (o, «, ) is regular and Ts-independent.

Hence, fu(z) is a good T3-Mahler specialization. We also note that p(73) =

(1 + {’/19 +3v33 + %/19 — 3\/33) /3 is the Tribonacci number, that is the
2

unique real root of the polynomial z® — 22 — x — 1.

Example 6.10. — Let us also add two non-examples.

e Let ny denote the unique fixed point beginning with 0 of the morphism
¢ defined by ¢(0) = 012, p(1) = 12, and ¢(2) = 2. According to Cob-
ham’s construction, we obtain that the generating function fy,(2) is a
specialization of a Ty-Mahler function where

1 00
Ty=111 0
1 11

However, since p(Ty) = 1, the matrix Ty does not belong to M and we
cannot conclude that fy,(2) is a good Mahler specialization.
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e Let ny denote the unique fixed point of the morphism ¢ defined by ¢(0) =
02, p(1) = 02112, and ¢(2) = 0212. According to Cobham’s construction,
we obtain that the generating function fy,(2) is a specialization of a T5-
Mabhler function where

Ty =

—_ O =
N N —
NGRS

The spectral radius of Ty is larger than 1 for Ty is primitive, but 1 is
an eigenvalue of T5. Hence, T does not belong to M and we cannot
conclude that fy,(2) is a good Mahler specialization.

As an illustration of Theorem 6.2, we deduce the following result.

Proposition 6.11. — The power series fos(2), fo(2), fr(2), and fu(2) are
algebraically independent over Q(z).

Proof. — As already mentioned in Examples 6.6 ,6.7, 6.8, and 6.9, these gen-
erating functions are good Mahler specializations. Since none of the words bs,
¢, 1o, and tr is eventually periodic, the generating funcitons fps(2), fo(2),
fro(2), and fi(z) are all irrational. Furthermore, the corresponding spectral

radii are 2, (1 +/5)/2, 2+ V2, and <1 + Y19+ 333+ V19— 3@) /3.

These numbers are pairwise multiplicatively independent. By Theorem 6.2, it
follows that fes(2), fo(2), frwe(2), and fi(2) are algebraically independent over

Q(2). O

7. Application to Hecke—Mahler series

In this section, we prove Theorem 1.3, as well as two complementary results
about values of Hecke-Mahler series. Let w be a quadratic irrational real
number. As already mentioned in the introduction, the values of the Hecke—

Mabhler series
o0

fule) = 3 )
n=0
can be obtained as values of a T-Mahler function in two variables. The un-
derlying transformation T is related to the continued fraction expansion of the
parameter w. Mahler [29] uses this fact to prove that, for all algebraic number
a, 0 < |a| < 1, the number f(w, «) is transcendental. When considering values
of Hecke—Mabhler series at different algebraic points, there are two main results
due to Nishioka [36] and Masser [33].

Theorem 7.1 (Ku. Nishioka, 1994). — Let wy,...,w, be quadratic ir-
rational real numbers such that the quadratic fields Q(w),...,Q(w,) are all
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distinct. Let « be an algebraic number, with 0 < |o| < 1, and let ty,...,t, be
positive integers. For every i, 1 < ¢ < r, set ay = aﬁ. Then the numbers
fur(@i)y .oy fu,. (o) are algebraically independent over Q.

Theorem 7.2 (Masser, 1999). — Let w be a quadratic irrational real num-
ber and let ai,...,q, be algebraic numbers with 0 < |aql,...,|am| < 1.
Then fo(as),. .., fulam) are algebraically independent over Q if and only if
a1, ...,0y are distinct.

Thus, Theorem 1.3 is a generalization of both Theorem 7.1 and Theorem
7.2. When considering the values of Hecke-Mahler series at a single point,
Masser [33| obtained a complete result.

Theorem 7.3 (Masser, 1999). — Let wi,...,w, be quadratic irra-
tional real numbers, and let o be an algebraic number with 0 < |of < 1.
Then fo, (), ..., fo,.(a) are algebraically independent over Q if and only if
twi, ..., Fw, are distinct modulo the rational integers.

Remark 1.4 shows that a full generalization of Theorems 7.2 and 7.3 cannot
hold true. However, in addition to Theorem 1.3, we can generalize Masser’s
theorems in two different ways. The first one deals with the nature of the
possible relationships between values of Hecke-Mahler series.

Theorem 7.4. — Let wq,...,w, be quadratic irrational real numbers, and
let aq,...,ap be distinct algebraic numbers with 0 < |oq],...,|ar| < 1.
Then fo (a1),..., fu.(ar) are algebraically dependent over Q if and only if
1, fo,(a1),..., fu (o) are linearly dependent over Q.

The second one provides a complete picture when considering only two values
of Hecke-Mahler series.

Theorem 7.5. — Let wy, ws be quadratic irrational real numbers, and a1, oo
be nonzero algebraic numbers with 0 < ||, |aa| < 1. The numbers f,, (o)
and f.,(az) are algebraically dependent over Q if and only if oy = oo and
w1 = w9 mod Z.

In order to prove Theorems 1.3, 7.4, and 7.5, we first need the following
lemma that combines Lemmas 3.3 and 7.3 of [33].

Lemma 7.6. — Let w,...,w, be quadratic irrational real numbers such that
Qwi) = -+ = Q(wy), and let ay,...,q, be algebraic numbers with 0 <
laq], ... Jaw| < 1. Then there exist multiplicatively independent algebraic num-
bers B, ..., Bs, roots of unity (1, ...,(r, a postive integer h, a matriz T of class

M and of size 2s, and analytic series Fy(z) = Fi(z1,...,225), such that the
following hold.
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(i) Fi(z1,1,22,1,...,26,1) = fo,(("M!Mx)) mod Q(z), where M; is a
monomial and x = (x1,...,Ts).

(i) Fi(B) = fuw, (i) mod Q, where B := (81,1, 82,1,...,Bs,1).
(iii) Fy(z) = F;(Tz) mod Q(z).

(iv) The pair (T,3) is admissible and the point B is reqular with respect to
the regular singular Mahler Equation (iii).

Proof. — For each quadratic irrational number w we define, following section
3 of [33], a 2 x 2 matrix T'(w). This matrix belong to the class M. Let m be
an integer, we let 70" (w) denote the m-fold block of T(w). Thus, we have
T (w) € M. Furthermore, since Q(w;) = --- = Q(w,), each pair of matrices
T'(w;), T (wj) have multiplicatively dependent spectral radii. Hence, from |33,
Section 9], it follows that each matrix T'(w;) is conjugated to a positive power
of T'(wy), say T1. Then, we infer from [33, Lemma 3.3] that there exist analytic

series G1(z1,22),-..,Gr(21,22) such that for every integer ¢, 1 < ¢ < r, one
has

(7.1) Gi(zl, 22) = Gi(Tl(Zl, 2’2)) mod @(2’1, 2’2) s

and

(7.2) Gi(z,1) = fwi(zh) mod Q(z),

for some integer h > 0. We pick some numbers &1, ...,& such that {Zh = q;.
According to |27, Lemma 3] (see also [33, section 3]), we can pick multiplica-
tively independent algebraic numbers fy, ..., 85, roots of unity (i,..., (., and
monomials M, ..., M, such that

Let us denote by = (z1,...,2s), y = (Y1,...,Ys), and z = (z1,Y1,...,Ts, Ys)
some vectors of indeterminates. We claim that the power series

(7.4) Fi(z) == Gi(GiMi(z), Mi(y))
satisfy the conditions of Lemma 7.6, with T" a positive power of Tl(s). Condi-
tions (i) and (ii) follow from (7.2), (7.3), and (7.4). Let us show that Condi-

tion (iii) is satisfied. Let d be a positive integer such that ¢¢ = 1 for every i,
1 <4 < r. Since T7 has determinant 1, there exists a positive integer ¢ such

that 77 is the identity matrix modulo d. Set T' = Tl(s)é. Then, we have
Fi(Tz) = Gi(T(G:M;(), M;i(y))) mod Q(z)
and (7.1) implies that
Fy(Tz) = Fi(z) mod Q(2).
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Now, we check that Condition (iv) holds. By [33, Lemma 3.2|, the point
B = (p1,1,P2,1,...,0s,1) is T-independent. Furthermore, T belongs to the
class M, so that the pair (T,3) is admissible. Finally, since F;(z) is well
defined at T*8 for every non-negative integer k, the point 3 is regular with
respect to the regular singular Mahler equation (iii). This ends the proof. [

We are now ready to prove our three theorems on values of Hecke-Mahler
series.

Proof of Theorem 1.3. — Let us first fix an integer 4, 1 < ¢ < 7. We infer from
Lemma 7.6 that there exist multiplicatively independent algebraic numbers
Bit,---,Bis;, roots of unity (i 1,...,G.r,, a matrix T; € M of size 2s;, and
analytic series Fj j(z) = Fjj(21,...,22,), 1 < j < m;, with the following
properties.

(1) E,j(ﬁz) = fwi (aj) mod @7 where Bz = (/Bi,la 17 5@27 17 v 7ﬂi78i7 1) € @
(i) F;j(2) = F;;(Tz) mod Q(z).

(iii) The pair (T;,3;) is admissible and the point 3, is regular with respect to
the regular singular Mahler Equation (ii).

28,

With the functions F;;, 1 < j < m;, we can thus associate an almost diag-
onal Mahler system. The latter is regular singular for it is an upper triangular
system with 1 on the diagonal and the F;; are analytic at the origin. Fur-
thermore, according to [33| and [36], the spectral radius of 7; is a unit of the
ring of integers of Q(w;). It follows that the spectral radii p(T}), ..., p(T},) are
pairwise multiplicatively independent. Indeed if Ay and A9 are two quadratic
irrational real numbers, and if u; (resp. us) is a unit of Q(A1) (resp. of Q(A2)),
then w; and ug are multiplicatively independent if and only if Q(A;) # Q(\2).
This is a consequence of the facts that all units of a real quadratic field are
powers of a fundamental unit. We can thus apply the first purity theorem. We
obtain that the numbers

FZJ(B@) = fwi(ai,j)7 1<i<r, 1<j5<m,

are algebraically independent over Q if (and only if) for every integer i, 1 <
i < r, the numbers
E7j(6i)7 1< <my,
are algebraically independent over Q. But by Theorem 7.2, we already know
that the numbers
Fij(Bi) = fui(aig), 1 <j <mi,
are algebraically independent over Q. This ends the proof. O

Proof of theorem 7.4. — Using Lemma 7.6, we obtain that each of the num-
bers fy,(c;) can be obtained as the value of a regular singular Mahler functions
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Fi(z), at some admissible regular point 3;. Furthermore, these functions sat-
isfy regular singular Mahler equations of the form

Fi(z) = Fi(Tiz) + Ri(z)
where R;(z) is a rational function. Now, let us assume that the numbers
furla1),..., fo, (o) are algebraically dependent over Q. By the first purity
theorem, we obtain that there exists a subset Z C {1,...,r} such that the
numbers {f,.(o;) | i € I} are algebraically dependent over Q and such that
Q(wi) = Q(wj) for all i,j € Z . Indeed, if Q(w;) # Q(w;), then, as already
mentioned in the proof of Theorem 1.3, the spectral radii of T; and T} are
multiplicatively independent. Without loss of generality, we assume that Z =

{1,...,¢}. In that case, arguing as in the proof of Theorem 1.3, we can assume
that Ty = --- =T, and B, = --- = B, =: B. Then we can apply the lifting
theorem to these functions. We obtain that the functions Fi(z),..., Fy(z) are

algebraically dependent over Q(z). Then, we infer from [26, Theorem 2| that
there is a Q-linear combination of the Fj(z) that belongs to Q(z). It follows
that the numbers

1’F1(B)?"' ’FK(B)
are linearly dependent over Q. Since F;(8) = f..(a;), for 1 <1 < £, this ends
the proof. O

Proof of Theorem 7.5. — We only have to prove the direct implication. In-
deed, the converse implication is a direct consequence of either Theorem 7.2 or
Theorem 7.3. The case where Q(w1) # Q(w2) follows from Theorem 1.3. The
case where oy = ag follows from Theorem 7.3. Furthermore, when wy; = fws
mod Z, classical linear relationships between Hecke-Mahler series show that
one can reduce the situation to the case where w; = wy. The latter follows
from Theorem 7.2. Finally, we can assume without any loss of generality that
Q(w1) = Q(w2), w1 # twe mod Z, and a; # ag.

By Lemma 7.6, there exist a matrix T € M, a T-independent point 3 =
(B1,1,...,8s,1) € @28, roots of unity (7, (o, a positive integer h, and regular
singular T-Mahler functions Fj(z), F5(z) such that, for ¢ € {1,2}, we have

Fi(@i, 1, @, 1) = fu,(GMi(x)) mod Q(x) and
Fi(B) = fu, (@) modQ,
where Mj, Ms are monomials, and © = (x1,...,z;) (2). We claim that the

functions I} and F; are algebraically independent over Q(z). If not, we infer
from |26, Theorem 2| that there exist two algebraic numbers A1, A2, not both

(7.5)

2. In fact, ¢; is equal to the ¢! of Lemma 7.6, and M;(z) is equal to M;(z)" of Lemma
7.6.
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zero, such that

)\1F1(z) + )\QFQ(Z) S @(Z) .
Then, according to [33, Section 4|, Equality (7.5) provides positive integers
t1 < t9, such that the sequence

kwl ka

ap = A\ {t—J Cf/tl]lmk + X2 {t—J C§/t2]lt2\k
1 2

satisfies a linear recurrence with constant coefficients. Then, [33, Lemma 4.1]
implies that the sequence

kw k/t kwa k/t

Vg = A1y —— Cl/l]lt1|k+)\2 — <2/2]lt2\k
t1 to

is eventually periodic. Let us first assume that t; = t5. Let u denote a positive

integer such that ¢ = (¥ = 1. The sequence

Wk = Vput; = M1 {kuwr } + Ao {kuws }

is eventually periodic. By [33, Lemma 8.1|, we obtain that A\ = Ay = 0, a
contradiction. Thus, we have t; < t5. Choose a positive integer r such that
to | 7 and vg4, = vi for k large enough. Let p be a prime number with p > t,.
Then, for every non-negative integer ¢, to cannot divide t1p + rt1£. It follows
that
we = Vg pprne = M {(p + rOwi} 7T

Since the sequence is (wy)g>1 is eventually periodic and wy is irrational, we
obtain that Ay = 0. Hence, Ay = 0, a contradiction. Thus, the functions F;
and F, are algebraically independent over Q(z). We can gather the functions
Fi(z) and F5(z) into a single regular singular T-Mahler system. Furthermore,
the pair (7, 3) is admissible and the point 3 is regular with respect to this
system. The lifting theorem implies that the numbers F(3) and F»(3) are al-
gebraically independent. Then, we deduce from (7.5) that f,, (a1) and f., (a1)

are algebraically independent. This ends the proof. O

Remark 7.7. — In the case where a; and oy are multiplicatively independent
there is a simpler argument. Setting Fj(z1,22) = > 0 _ ZTLZIZ%J 2t 2y? i €
{1, 2}, it follows from Mahler [29] that F;(z1, z2) is a regular singular T;-Mahler

function, where T; belongs to the class M, and such that
(7.6) Fi(z,1) = fu,(2) Yie{1,2}.

Furthermore, since Q(w1) = @Q(w2), the spectral radii p(77) and p(T%) are
multiplicatively dependent. Say that p(T7)™ = p(T)™2. Since o and ay are
multiplicatively independent, the point (aq,1,as,1) is T-independent, where
we let T denote the diagonal block matrix whose blocks are T|™ and T,"2.
Thus, we can apply the second purity theorem, and we obtain that the numbers
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Fi(aq,1) = fu,(aq) and Fy(ag,1) = fu,(a2) are algebraically independent, as
desired.

8. The matryoshka dolls principle

Let us consider the following general problem. Given algebraic numbers

ai,...,a, and Mahler functions, or good specialization of Mahler functions,
say fi(2),...,fr(z), we want to determine whether or not the numbers
fila), ..., fr(a,) are algebraically independent over Q. In this section, we

illustrate how we can combine the two purity theorems and the lifting theorem
to address this problem.

Given an analytic function f(z), we let f()(z) denote the fth derivative of
the function f(z). Let us consider the generating functions fes(2), fu(2), fro(2),
and fi.(2) already introduced in Section 6.2. We also consider the generating
function fim(z) of the Thue-Morse sequence and the generating function
[pj(2) of the regular paperfolding sequence. We recall that the sequence tm is
defined in Example 2.1. Its generating function satisfies the regular singular
inhomogeneous Mahler equation of order one

(5.1 funl2) = (1= 2) fum () + 5

The regular paperfolding sequence is yet another emblematic example of a
2-automatic sequence. We recall that it can be defined as follows (see [11,
Example 5.1.6]). Let us take a rectangular piece of paper. Fold it in half
lengthwise and then fold the result in half again. Keep on this procedure ad
infinitum, taking care to make the folds always in the same direction. Unfolding
the piece of paper and marking 1 for the "hills", and 0 for the "valleys", we
obtain the regular paperfolding sequence

pf =11011001110010011101100011001001110- - - .

Its generating function satisfies the regular singular inhomogeneous Mahler
equation of order one
z

(8.2) For(2) = fos (") + = -

Now, we illustrate how to combine our three main results with the following
example.

Proposition 8.1. — The numbers

() () () () () () ()
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1 0 (L 1 o (1 o (1
fn (2) -0 (35)) o (2)- (0 () (32 3)).
are algebraically independent over Q.
Before proving Proposition 8.1, we first need the following simple lemma.
Lemma 8.2. — Let ¢ > 2 and ¢ be two natural numbers, and let f(z) be

a regular singular q-Mahler function. Then the derivative f(z)(z) s a regular
singular qg-Mahler function.

Proof. — By assumption, the function f(z) is the first coordinate of a column
vector f(z) representing a solution of a regular singular Mahler system
(8.3) f(z) = A(2) £ (=7).

Deriving this equality, we obtain the new system

(8.4) ( ff’((z)) ) = ( ﬁ'((z)) qzq_?A(Z) ) ( J{’((z?) ) '

Since system (8.3) is regular singular, there exist an invertible matrix ®(z)
with coefficients in K = Udzl@{zl/d}, and a constant matrix B, such that

(8.5) B®(27) = ®(2)A(z) .
Deriving this equality, one obtains
(8.6) 1B (29) = @' (2) A(z) + ®(2)A/(2).

Hence, combining (8.5) and (8.6), we get that

( g q(J)B ) ( zquii)q) zqq)()(zq) ) -
( zigz) z<I>O(z) > ( ﬁ'((?) qzq_?A(z) ) '

Hence, the system (8.4) is regular singular and f’(z2) is a regular-singular g-
Mabhler function. Iterating this process, we obtain that all the derivatives of
f(z) are regular singular g-Mahler function, which ends the proof. O

Proof of Proposition 8.1. — We first notice that each number in Proposition
8.1 is the value at a regular point « of a regular singular T-Mahler function
such that the pair (T, ) is admissible and T € M. For the numbers f, (1),
fo (%), and f, (%) the spectral radius of the underlying transformation 7" is
equal to (1 + v/5)/2. For the numbers fi (3) and fi () the spectral radius
of the underlying transformation 7" is equal to the tribonacci number. For the
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numbers fi, (%) and fi ( %) the spectral radius of the underlying transforma-
tion T is equal to 2 + /2. For the numbers

1 o (1 1 © (1 (1
g (3)- (40 (35)) L, o (3) (47 (7)) (22 3)),

the spectral radius of the underlying transformation 7' is equal to 2. Fur-
thermore, we stress that all these numbers are transcendental. This could be
proved by using Mahler’s method, but this also a direct consequence of the
work of Bugeaud and the first author (see for instance |3, Theorem 4]).

Applying the first purity theorem. — Since the numbers

1+v5 1+ /19 +3v33+ V19 - 333
2 3
are pairwise multiplicatively independent, we can apply the first purity theo-
rem. We deduce that the numbers in Proposition 8.1 are algebraically inde-
pendent over Q, if, and only if, the following properties hold.

,2+2 and 2,

(a) The numbers f, (%), fe (%), and fy, (%) are algebraically independent
over Q.

(b) The numbers fe (3 :
(c) The numbers fi (é) and fiy (%) are algebraically independent over Q.
(d) The numbers

1 o (1 1 © (1 (1
g (5)- (40 (35)) L, o (3) (47 (7)) (92 3)),

are algebraically independent over Q.

Applying the second purity theorem. — Now, we use the fact that all the num-
bers we consider are transcendental. Since the numbers 1/2, 1/3, and 1/5
are multiplicatively independent, the second purity implies directly that (a)
is satisfied. Since the numbers 1/2 and 1/6 are multiplicatively independent,
the second purity implies directly that (b) is satisfied. Again, since the num-
bers 1/3 and 1/7 are multiplicatively independent, the second purity implies
directly that (c) is satisfied. Finally, since the numbers 1/2, 1/10, 1/3 and 1/7
are multiplicatively independent, the second purity implies directly that (d) is
satisfied if, and only if the following properties hold.

(d;) The numbers fen (%) and fps ( %) are algebraically independent over Q.

(d2) The numbers ( ©) (L)>£>1 are algebraically independent over Q.
1

).

are algebraically independent over Q.

N= =

tm
(d3) The numbers ( fé? (
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(dg4) The numbers ( félﬁ) (%)>l>0 are algebraically independent over Q.

Applying the lifting theorem. — Let us first prove (d;). By the lifting theorem,
the result would follow if we can prove that the functions fum(z) and fps(2)
are algebraically independent over Q(z). But this can be derived from [38,
Theorem 3.5|, using that both satisfy an inhomogeneous 2-Mahler equation
of order one (see (8.1) and (8.2)). Hence, (d;) is satisfied. Properties (d2)
and (dsz) also follow from the lifting theorem once we know that fyy(z) and
fpi(2) are hypertranscendental. Again thanks to Equations (8.1) and (8.2),
this can be deduced from of a result of Ke. Nishioka [34, Theorem 3|. Hence,
(d2) and (d3) are satisfied. In order to prove (d4), we can use once again the

lifting theorem, but now we need to know that the functions < fé? (Z))l>0 and

the functions < fé? (22)>l>0 are all algebraically independent over Q. Indeed,

fos(2) satisfies a 2-Mahler equation of order two and not just an inhomogeneous
equation of order one as in the previous cases. The results we need is recently
proved by Dreyfus, Hardouin, and Roques. This is precisely Theorem 4.3 in
[20]. Hence, (d4) is satisfied. This ends the proof. O

Let us discuss briefly one difficulty that we deliberately avoid in Proposi-
tion 8.1, but that may appear in other similar examples. Let us consider the
numbers

(8.7) fem (%)  for (%) and fos (é) .

They all are the value of a 2-Mahler function and the numbers %, %, and % are
multiplicatively dependent. In such a situation, none of our three main results
can be directly used. However, we can overcome this deficiency as follows. Let
us consider the bivariate functions gem(21,22) = fem(21), gpj(21,22) = fpj(22),
and gps(21, 22) = fps(2122), s0 that

11 1 11 1 11 1
Jtm <§, §> = fem <§> > 9pf <§, g) = fpf <§> > gbs <§, §> = fos <6> .

These are T-Mahler functions where
2 0
T = ( 0 2 ) eM,
and the point (1/2,1/3) is regular and T-independent, so that we can apply
the lifting theorem. It implies that the algebraic independence over QQ between
the three numbers given in (8.7) can be obtained by proving the algebraic

independence over Q(z1, z2) of the functions
fem(21), foi(22), fos(2122), and fos(2723).
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Remark 8.3. — The trick we used in the previous example can be made more
general, as observed by Loxton and van der Poorten in [27, Lemma 3]. In fact,
we already used it in Lemma 7.6. Let fi(2),..., fr(2) be regular singular ¢-
Mabhler functions and let a4, ..., a, be distinct algebraic numbers. For every i,
1 <4 <, let us assume that f;(c;) is well-defined and that there is a regular
singular g-Mahler system

fi(2) = fia(2) fia(29)

fi2(2) fi2(27)

(8.7.) = Ai(z)

fimi(2) fim (29)
We also assume that «; is regular with respect to (8.7.i). We infer from [27,

Lemma 3] that there exist roots of unity (i, ... ,, multiplicatively independent
points f1,..., s, and monomials M, ..., M, such that

a; = GM;(B, ..., Bs), L <i<r.

h+1 h
There also exist positive integers h and [ such that ¢! - ¢! for every 4. Iter-
ating h times each system (8.7.i), we obtain a linear relation between the value
of the function f;(2) at o; and the values of the functions f;1(2),..., fim.(2)

h
at a? . Now, we consider the transformation T = ¢'I, € M, where I, denote
the s-dimensional identity matrix. We set

h . .
9ii(2) = fi; (¢ Mi(2)), 1<i<r, 1<j<my,

where z = (21,...,25). We have,
gi1(2) . gin(Tz)
: = Ai(¢ Mi(2)) :
gim"bi(z) Gi,m, (Tz)
and

h h h
9ij (5‘11 veey B ) = fij <Oé? ) -
Thus, we can apply the lifting theorem to this new system. We deduce that
if the functions g; j(2), 1 < i <r, 1 < j < my, are algebraically independent
over Q(z), then the numbers fi(ay),..., f,(a,) are algebraically independent
over Q.
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