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Abstract

We discuss combinatorial properties of a class of binary sequences generalizing Sturm
quences and obtained as a coding of an irrational rotation on the circle with respect to a part
two intervals. We give a characterization of those having a finite index in terms of a two-dimen
continued fraction like algorithm, the so-calledD-expansion. Then, we discuss powers occurrin
the beginning of these words and we prove, contrary to the Sturmian case, the existence
sequences without any non-trivial asymptotic initial repetition. We also show that any characteris
sequence (that is, obtained as the coding of the orbit of the origin) has non-trivial repetitions no
too far from the beginning and we apply this property to obtain the transcendence of the con
fractions whose partial quotients arises from such sequences when the two letters are rep
distinct positive integers.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

It seems that the question of the repetition of finite words occurring in an infi
sequence was first looked by A. Thue [33] in 1906. It was then presented as a purel
binatorial exercise without any particular application. Today, the situation is quite diff
since this problematic has been related to various fields, including the transcende
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real numbers, Diophantine approximation and quasicrystalsvia the study of the spectrum
of discrete Schrödinger operators. Numerousrecent papers deal with these interactio
as for instance [5,8,11,16,18,21]. It thus is not surprising in view of the fascinatio
ercised by Sturmian sequences since the seminal papers of M. Morse and G.A. Hedlun
[24,25] that the question of repetition of words occurring in Sturmian words has been
sidered by many authors [5,9,10,13,14,18,19,22,23,34]. In order to study this problem, a
outstanding result gives an interpretation of Sturmian sequences in terms of substi
(also calledS-adic expansion) and of the continued fraction expansion of the assoc
slope (see for instance [7] and also a more precise result in [6]).

Theorem 1. Let u be a characteristic Sturmian sequence with slopeα. If the continued
fraction expansion ofα is [0;a1 + 1, a2, . . . an, . . .], then

u = lim
n→∞ τ

a1
1 ◦ τ

a2
2 . . . τ

a2n+1
1 (1),

where substitutionsτ1 andτ2 are defined by

τ1
1 �−→ 1
2 �−→ 21

and
τ2

1 �−→ 12
2 �−→ 2

.

More generally, most of the results concerning Sturmian words can be proved by
such an expression.

In a previous paper [2], we give a similar expression for binary codings of rota
in which the role played by the continued fraction expansion is replaced in a natural w
by the so-calledD-expansion. Then, we use this representation in [1–4] to deduce d
ent dynamical and combinatorial properties for these sequences and to deal with
questions arising at once from number theory, theoretical computer science and th
cal physic. In the present paper, we discuss the problem of powers of words occur
this class of binary sequences as well as a related question concerning the transcende
of real numbers defined by their continued fraction expansions. In this direction,
been for instance proved in [5] that the real numberα := [0,1,2,1,1,2,1,2, . . .] having
the Fibonacci sequence as continued fraction expansion is transcendental. More recen
D. Roy [29–31] (see also [12]) exhibited surprising properties for similar numbers re
to an old conjecture in the study of the approximation of real numbers by algebra
tegers. The attractive work of D. Roy should motive further development in this ar
mathematics.

2. Definitions

2.1. Binary codings of rotations

Let (α,β) ∈ (0,1)2. In the following {x} will mean the fractional part of the realx.
The coding of rotation corresponding to the parameters(α,β, x) is defined as the symboli
sequenceu = (un)n�0 with value in the binary alphabet{0,1} by:



B. Adamczewski / Advances in Applied Mathematics 34 (2005) 1–29 3

oding
d,
see

llows,
said

terval
al
rigin.
t orbit

binary
m was
nterval
ed
un =
{

1 if {x + nα} ∈ [0, β),

0 otherwise.

Whenα is rational, the sequences obtained are clearly periodic, otherwise the c
of rotation is said irrational. The casesβ = α or β = 1 − α give Sturmian sequences an
more generally, the caseβ ∈ Z + αZ gives quasi-Sturmian sequences (see [28] and
Section 4 for a definition of Sturmian and quasi-Sturmian sequences). In all that fo
we only consider irrational binary codings of rotations. A binary coding of rotation is
to be non-degenerate ifβ /∈ Z + αZ. A coding of rotation is called characteristic ifx = 0.

2.2. Interval exchange transformations

Let s ∈ N, s � 2. Let σ be a permutation of the set{1,2, . . . , s} and let λ =
(λ1, λ2, . . . , λs) be a vector inRs with positive entries. Let

I = [
0, |λ|[, where|λ| =

s∑
i=1

λi, and for 1� i � s, Ii =
[∑

j<i

λj ,
∑
j�i

λj

)
.

The interval exchange transformation associated with(λ,σ ) is the mapE from I into
itself, defined as the piecewise isometry which arises from ordering the intervalsIi with
respect toσ . More precisely, ifx ∈ Ii ,

E(x) = x + ai, whereai =
∑

k<σ−1(i)

λσ(k) −
∑
k<i

λk.

We can introduce a natural coding of the orbit of a point under the action of an in
exchange transformation by assigning to each element of this orbit the index of the interv
which contains it. Such a coding is said characteristic if the starting point is the o
We say that an interval exchange transformation satisfies the i.d.o.c. (infinite distinc
condition) introduced in [20] if the orbits of its discontinuities are infinite and distinct.

2.3. TheD-expansion

In a previous paper [2], we have investigated the links between non-degenerate
codings of rotations and i.d.o.c. three-interval exchange transformations. An algorith
introduced which can be regarded as a speed-up of the Rauzy induction for three-i
exchange transformations. This algorithm is also a generalization of the classical continu
fraction algorithm. Let us introduce a map

D : [0,1) × R
∗+ −→ [0,1) × R

∗+

given by

(x, y) �−→




( {
x

y−1

}
1

y−1 − ⌊
x

y−1

⌋ ,
1

1
y−1 − ⌊

x
y−1

⌋
)

if y > 1,

({
x

1− y

}
,

y

1− y
−
⌊

x

1− y

⌋)
if y < 1,
(0,1) if y = 1.
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Given a non-degenerate codingof rotation with parameters(α,β), β > α, the associate
D-expansion is given by the sequence(an, in)n∈N which is defined as follows:

an =
⌊∣∣∣∣ xn

yn − 1

∣∣∣∣
⌋
, in =

{
1 if yn < 1,

0 if yn > 1,

where(xn, yn) =Dn(x0, y0) and

(x0, y0) =
(

1− ⌊1−β
α

⌋
α − β

1− (⌊1−β
α

⌋+ 1
)
α

,
α

1− (⌊1−β
α

⌋+ 1
)
α

)
.

For a non-degenerate coding of rotation corresponding to(α,β) ∈ [0,1)2, α > β , its
D-expansion is given by theD-expansion associated with the coding correspondin
(1 − α,1 − β). TheD-expansion of a non-degenerate coding of rotation always sat
that(an)n∈N is not eventually vanishing and that(in)n∈N is not eventually constant.

2.4. Index of an infinite word and initial critical exponent

Let w be a finite word andp a positive integer. We will denote bywp the word

wp = ww . . .w︸ ︷︷ ︸
p times

.

More generally, whenx is a positive real numberwx is the wordw�x�u, whereu is the
prefix ofw with length	(x − �x�)|ω|
. Let u be an infinite word. The index ofu, denoted
by ind(u), is defined by:

ind(u) = sup
{
x ∈ R: ∃w, wx ∈L(u)

}
.

We can also define the asymptotic index ofu, denoted by ind∗(u), by

ind∗(u) = sup
{
x ∈ R: ∀n > 0,∃w, |w| > n, wx ∈ L(u)

}
.

These definitions easily imply that ind(u) and ind∗(u) are together finite or infinite. In th
case where these quantities are both finite, we will say thatu has a finite index.

Let p be a positive integer. A wordu is saidp-power free ifwp ∈ L(u) ⇒ w = ε

and asymptoticallyp-power free if there exists an integerN such that (wp ∈ L(u) and
|w| > N ) ⇒ w = ε.

In the remainder of the paper, we will writeu ≺ w when the wordu is a prefix of the
wordw. We define the initial critical exponent of an infinite wordu by

ice(u) = sup
{
x ∈ R: ∀n > 0,∃w, |w| > n, wx ≺ u

}
.

This definition obviously implies that ice(u) � 1 for any sequenceu and we will exhibit
in the following examples of sequences without any asymptotic initial power, that is, fo
which ice is equal to 1.
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3. Main results

We present here our three main theorems (that is, Theorems 3, 8, and 10) togeth
related results already obtained in the case of Sturmian sequences.

3.1. Words with a finite index

The following characterization of Sturmian sequences with a finite index was
proved by P. Mignosi in [22] and the quantitative part of this result is due more recen
D. Vandeth [34].

Theorem 2 (Mignosi, Vandeth). Let u be a Sturmian sequence of slopeα and let(an)n�0
be its continued fraction expansion. Thenu has a finite index if and only ifα has bounded
partial quotients.

Moreover ifα has bounded partial quotients, thenu is asymptoticallykth power-free
but not asymptotically(k − 1)th power-free withk = 3+ lim sup{an: n � 0}.

The following result proved in Section 5 is an analogous of Theorem 2 in the
of non-degenerate binary codings of rotations, theD-expansion taking the place of th
classical continued fraction expansion.

Theorem 3. Let u be a non-degenerate binary coding of rotation and let(an, in)n�0 be its
D-expansion. Then,u has a finite index if and only if there exists a non-negative integeM

satisfying:

(i) an � M,
(ii) in = in+1 = · · · = in+M−1 ⇒ ∃k, n � k � n + M − 1 such thatak �= 0.

Moreover, if there exist infinitely manyn such that eitheran = M or such thatin =
in+1 = · · · = in+M−2 andak = 0, n � k � n + M − 2, thenu is asymptoticallykth power-
free but not asymptotically(k − 3)th power-free fork = M + 4.

A characterization of the non-degenerate binary codings of rotations which are lin
recurrent is given again in terms of theirD-expansion in [4]. This result together wi
Theorem 3 allows us to characterize the codings of rotations with a finite index and
are not linearly recurrent. Let us note that a Sturmian sequence has a finite index
only if it is linearly recurrent.

Corollary 4. Let u be a binary coding of rotation and let(an, in)n�0 be itsD-expansion.
Then,u has a finite index but is not linearly recurrent if and only if there exists a n
negative integerM satisfying:

(i) an � M,
(ii) in = in+1 = · · · = in+M−1 ⇒ ∃k, n � k � n + M − 1 such thatak �= 0,
(iii) ∀n > 0, ∃k such thatak+j = 0, 0� j � n.
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3.2. Words without any non-trivial asymptotic initial repetition

The study of arbitrarily long initial powers in infinite words has recently been rel
to important questions in different areas of mathematics and theoretical physic. Th
lowing combinatorial condition of transcendence is proved under the lines in [5]. The
proof is based on a famous result of W.M. Schmidt [32] on simultaneous approxim
by algebraic numbers. The method they used was first initiated in [15] and in [26,27

Theorem 5 (Allouche et al.). Let u = (un)n�0 be a sequence of positive integers tak
two different values. If the subshift generated byu is uniquely ergodic and ifice(u) > 3/2,
then the real numberα := [0, u0, u1, . . . , un, . . .] is transcendental.

In particular, this condition is used again in [5] to prove the transcendence of Stu
continued fractions.

Theorem 6 (Allouche et al.). Let u = (un)n�0 be a sequence of positive integers. Th
the real numberα := [0, u0, u1, . . . , un, . . .] is transcendental if the sequenceu is quasi-
Sturmian(the definition of quasi-Sturmiansequences is given in Section4). In particular,
the same conclusion holds whenu is a Sturmian sequence.

The key point to prove the transcendence of Sturmian continued fractions and a
study the spectrum of one-dimensional discrete Schrödinger operators with Sturm
quences as potentials in [13] is given by the following property of Sturmian sequ
obtained independently in [5,13].

Theorem 7. Any Sturmian sequence begins in arbitrarily long squares.

We will show in Section 6 as a consequence of the following result that such a
property is generally far to be true for binary codings of rotations.

Theorem 8. There exist a non-countable number of characteristic binary codings of
tions with initial critical exponent equal to1.

However, we can easily prove by using Theorem 11 and a result of W. Veech [35, p
that the presence of arbitrarily long squares at the beginning of characteristic codi
rotations is generic.

Proposition 9. For almost all parameters(α,β) (in the sense of the Lebesgue measure
the square), the corresponding characteristic coding of rotation begins in arbitrarily lo
squares.

More precisely, such a conclusion holds if there are infinitely many positive integn

such that one of the following holds:

(i) an = in = 0, (ii) in = in+1 = 0,

where(an, in)n�0 denotes theD-expansion associated with(α,β).
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3.3. Almost initial powers and an application to transcendence

Though Theorem 8 shows the impossibility of applying Theorem 5, we will prove th
characteristic codings of rotations always have non-trivial asymptotic repetitions not to
far from the beginning (see Section 7 for a definition) and we will use this property tog
with a recent result of J.L. Davison [16] to obtain the following extension of Theorem

Theorem 10. Let u = (un)n�0 be a sequence of positive integers. Then the numberα :=
[0, u0, u1, . . . , un, . . .] is transcendental if one of the following holds:

(i) the sequenceu is an irrational characteristic coding of rotation;
(ii) the sequenceu is a characteristic coding of a non-periodic three-interval excha

transformation.

The combinatorial condition of transcendence given in [16] generalizes Theorem
is recalled in Section 7 (Theorem 30). Unfortunately, our method does not allow to
the transcendence of the continued fractions associated to non-characteristic coding
rotations. This is mainly due to the fact that an explicitS-adic expression is just known fo
the characteristic sequences.

The organization of the article is as follows. In Section 4 we recall some classical de
itions on infinite words and morphisms together with theS-adic expression obtained in [2
for non-degenerated binary codings of rotations. This representation in terms of subs
tions will be the key tool in the remainder of the paper for proving our results. Section
are devoted respectively to the proofs of Theorems 3, 8, and 10.

4. Background on infinite words

4.1. Sequences and morphisms

A finite word onA is a finite sequence of letters and an infinite word onA is a sequence
of letters indexed byN. The length of a finite wordω, denoted by|ω|, is the number o
letters it is built from. The empty word,ε, is the unique word of length 0. We denote
A∗ the set of finite words onA and byAN the set of sequences onA.

Let u = (uk)k∈N be a symbolic sequence defined over the alphabetA. A factor of u is
a finite word of the formuiui+1 . . . uj , 0� i � j . If ω is a factor ofu anda a letter, then
|w|a is the number of occurrences of the lettera in the wordω. We denote byL(u) the set
of all the factors of the sequenceu. The setL(u) is called the language ofu. A sequence in
which all the factors have an infinite number of occurrences is called recurrent. When
occurrences have bounded gaps, the sequence iscalled uniformly recurrent. A sequence
said linearly recurrent (with constantK) if there exists an integerK such that for any of its
factorsω the difference between two successive occurrences is bounded byK|ω|.

We call complexity function of a finitely-valued sequenceu the function which asso
ciates with each integern the numberp(n) of different words of lengthn occurring inu.
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A sequence is called Sturmian ifp(n) = n + 1 for every integern. More generally, a non
periodic sequence is called quasi-Sturmian if there exists a positive integerc such that
p(n) � n + c for every integern.

Let u be a uniformly recurrent sequence over the alphabetA and letw be a nonempty
prefix of u. A return word tow of u is a factoru[i,k−1] (= ui . . .uk−1) of u such thati and
k are two consecutive occurrences ofw. The sequenceu can be written in a unique way a
a concatenation of return words tou. LetRu,w be the set of return words tow in u. Then
u = v0v1 . . . vi . . . , wherevi ∈ Ru,w . The fact thatu is uniformly recurrent implies tha
Ru,w is a finite set. We can therefore consider a bijective mapΛu,w fromRu,w to the finite
set{1,2, . . . ,Card(Ru,w)}, where, for definiteness, the return words are ordered acco
to their first occurrence (i.e.,Λ−1

u,w(1) is the first return wordv0, Λ−1
u,w(2) is the firstvi

which is different fromv0, and so on). The derived sequence ofu on w is the sequenc
with values in the alphabet{1,2, . . . ,Card(Ru,w)} given by

Dw(u) = Λu,w(v0)Λu,w(v1) . . .Λu,w(vi) . . . .

To such a sequence we can associate a morphismφw by

φw(i) = vi .

We obtainφw(Dw(u)) = u. The morphismφw is called the return morphism tow of u.
In the following, morphism will mean homomorphism of (free) monoid. A morph

φ such that no letter is mapped to the empty word is said to be non-erasing. A non-e
endomorphism of free monoid is called substitution. All the morphisms considered in th
remainder of the paper will be non-erasing.

4.2. AnS-adic representation of binary codings of rotations

Let k be a non-negative integer. Let us consider the two following substitutions de
by

Fk

1 �−→ 13
2 �−→ 2k+13
3 �−→ 2k3

and

Gk

1 �−→ 12k

2 �−→ 12k+1

3 �−→ 13

(1)

and letφk be the morphism defined from{1,2,3} to {1,2} by

φk

1 �−→ 1
2 �−→ 12k+1

3 �−→ 12k.

With such a notation, we have given in [2] the followingS-adic representation of cha
acteristic non-degenerate codings of rotations.
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Theorem 11. Letu be a characteristic non-degeneratecoding of rotation withD-expansion
equal to(an, in)n�0 ∈ (N × {0,1})N and letv be defined by

v = lim
n→∞

(
n∏

j=0

(
F ij

aj
◦ G1−ij

aj

)
(1)

)
,

where
∏

means the composition of morphisms from left to right. Then,v is the natural cod-
ing of an i.d.o.c. three-interval exchange and there exists an explicit non-erasing mor
φ from {1,2,3} to {1,2} such that eitheru = φ(v) or u = 1S(φ(v)), whereS denotes the
classical shift transformation.

Conversely, the following result is particularly useful to exhibit codings of rotat
or of three-interval exchanges with a prescribed property. We will use it for instan
Section 6 for proving Theorem 8.

Theorem 12. Let k be a non-negative integer and let(an, in)n�0 ∈ (N × {0,1})N, with
(an)n�0 not eventually vanishing and with(in)n�0 not eventually constant. Then, the s
quence

v = lim
n→∞

(
n∏

j=0

(
F ij

aj
◦ G1−ij

aj

)
(1)

)
,

is a natural coding of a three-interval exchange transformation and the sequenceu = φk(v)

is a characteristic coding of rotation having the sequence(an, in)n�0 asD-expansion.

5. Words with a finite index: proof of Theorem 3

Our proof of Theorem 3 follows an idea introduced in [4]. In the remainder of
section,M denotes a fixed non-negative integer. We first have to prove that any infini
quencev defined as in Theorem 11 is(M +3)th power-free when the sequence(an, in)n�0
satisfies the conditions (i) and (ii) of Theorem 3. In order to prove this point, we define
language over{1,2,3} which does not contain any(M + 3)th power and with extra con
ditions. Then, we obtain stability properties (see Lemmas 14, 16–18) for the image of
languages by the different substitutions (Fk, Gk , Fk

0 , andGk
0) used to built the sequencev.

These properties allow us to show that at each step of the construction of the sequv,
the finite prefix that we obtain does not have a(M + 3)th power as a factor, proving th
v is (M + 3)th power-free. The fact thatu is asymptotically(M + 3)th-power free finally
derives from a classical trick on derived sequences.

Let L1 be the largest language (with respect to the inclusion) defined over the alp
{1,2,3} and satisfying the following conditions:

(i) ∀ω ∈ {1,2,3}∗, ωM+3 ∈ L1 ⇒ ω = ε,
(ii) ∀ω ∈ {1,2,3}∗ and∀z ∈ {1,2,3}, (ωz)M+2ω /∈L1,
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(iii) 33 ∈ L1 ⇒ (21 /∈L1 and 22/∈L1),
(iv) 11 ∈L1 ⇒ (22 /∈ L1 and 23/∈ L1).

Let L2 be the largest language defined over the alphabet{1,2,3} and satisfying the
following conditions:

(i) ∀ω ∈ {1,2,3}∗, ωM+3 ∈ L2 ⇒ ω = ε,
(ii) ∀ω ∈ {1,2,3}∗ and∀z ∈ {1,2,3}, (ωz)M+2ω /∈L2,
(iii) 33 /∈ L2.

Let L3 be the largest language defined over the alphabet{1,2,3} and satisfying the
following conditions:

(i) ∀ω ∈ {1,2,3}∗, ωM+3 ∈ L3 ⇒ ω = ε,
(ii) ∀ω ∈ {1,2,3}∗ and∀z ∈ {1,2,3}, (ωz)M+2ω /∈L3,
(iii) 11 /∈ L3.

These three languages are clearly all included in the languageL defined over the alpha
bet{1,2,3} as the largest one satisfying the condition:

∀ω ∈ {1,2,3}∗, ωM+3 ∈L ⇒ ω = ε.

In the remainder of this section,Fk andGk denote the substitutions defined in (1).

Lemma 13. Letk be a non-negative integer,w ∈Fk(L1) andz ∈ {1,2}. Then, if3wFk(z) ∈
Fk(L1) there exists a wordw′ ∈ {1,2,3}∗ such thatw =Fk(w

′).

Proof. The proof directly comes from the definition ofFk. �
Lemma 14. Let k be a positive integer,k � M. Then

Fk(L1) ⊂ L1 ∩L2 ∩L3.

Proof. Let k be a positive integer,k � M. The fact thatk � 1 implies that the letters 1 an
3 are isolated inFk(L1). Thus,Fk(L1) satisfies the conditions (iii) and (iv) in the definitio
of L1 and the condition (iii) in the definitions ofL2 andL3.

It remains to prove that the conditions (i) and (ii) in the definition ofL1 are satisfied by
Fk(L1).

(i) Let ω ∈ {1,2,3}∗ such thatωM+3 ∈ Fk(L1). Then there exists a 3-tuple of fini
words(x, v, y), x ∈ {ε,2l3: 1� l � k}, v ∈ {1,2,3}∗, y ∈ {ε,1,2l: 1 � l � k + 1}, such
that

ω = xFk(v)y. (2)
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Moreover, the unicity of the decomposition is ensured ifv is chosen with a maxima
length and if 3 is not a prefix ofv. Let us assume thatω is a non-empty word. Two case
have to be considered.

(a) If v = ε then(xy)M+3 ∈ Fk(L1). Since|yx|3 � 1, this should imply the existence
a letterz such thatzM+2 ∈L1. A contradiction appears sincezM+2 cannot lie inL1 in
view of (ii).

(b) Let us assume thatv �= ε. Following the decomposition given in (2), we obtain th
ωM+3 = x(Fk(v)yx)M+2Fk(v)y. Sincev does not begin with a 3 and that|yx|3 � 1,
Lemma 13 implies the existence of a lettera ∈ {1,2,3} such thatyx =Fk(a). We thus
have

ωM+3 = x
(
Fk(va)

)M+2Fk(v)y = xFk

(
(va)M+2v

)
y.

The fact thatv does not begin with 3 implies that(va)M+2v ∈ L1, which gives a
contradiction with (ii). In fact, if we consider a wordu ∈ {1,2,3}∗ such thatFk(u) ∈
Fk(L1) andu does not begin with 3, thenu ∈L1.

(ii) Let ω ∈ {1,2,3}∗ and z ∈ {1,2,3} such that (ωz)M+2ω ∈ Fk(L1). Let us
consider the decomposition ofω in ω = xFk(v)y (as in (2)). Thus(ωz)M+2ω =
x(Fk(v)yzx)M+2Fk(v)y. Sincev does not begin with 3 and|yzx|3 � 2, Lemma 13 im-
plies the existence of a lettera such thatyzx =Fk(a) or the existence of two lettersa and
b such thatyzx =Fk(ab).

(a) If yzx = Fk(a), then (ωz)M+2ω = xFk((va)M+2v)y. This would imply that
(va)M+2v ∈ L1 becausev does not begin with 3, which will give a contradictio
with (ii).

(b) If yzx = Fk(ab), thenz = 3, b = 3 andx = 2k3 becausex ∈ {ε,2l3: 1� l � k} and
y ∈ {ε,1,2l: 1 � l � k + 1}. It thus follows(ωz)M+2ω = 2k3Fk((va3)M+2v)y.
(b1) If a = 1, theny = 1 and(ωz)M+2ω = 2k3Fk((v13)M+2v)13 ∈ Fk(L1) since

the letter 1 is always followed with 3; so(ωz)M+2ω = 2k3Fk((v13)M+2v1) ∈
Fk(L1). Sincev does not begin with 3,(v13)M+2v1 ∈ Fk(L1), which gives a
contradiction with (ii).

(b2) If a = 2, theny = 2k+1 and we obtain that(ωz)M+2ω = 2k3Fk((v23)M+2v2) ∈
Fk(L1) because 2k+1 is always followed with 3. Sincev does not begin with 3
it follows (v23)M+2v2 ∈Fk(L1), which gives a contradiction with (ii).

(b3) If a = 3 and sincex = 2k3 then either 3(v33)M+2v ∈ L1 or 2(v33)M+2v ∈ L1.
The first case gives a contradiction with (ii) because 3(v33)M+2v = (3v3)M+23v.
In the last case and sincev does not begin with 3, 2v should have 21 or 22 a
a factor. But since 33 should also be a factor ofL1, this gives a contradictio
with (iii). �

Lemma 15. Letk be a non-negative integer,w ∈ Gk(L1) andz ∈ {2,3}. Then, ifFk(z)w1 ∈
Fk(L1) there exists a wordw′ ∈ {1,2,3}∗ such thatw = Gk(w

′).
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Proof. It directly follows from the definition of the substitutionGk . �
Lemma 16. Let k be a positive integer,k � M. Then

Gk(L1) ⊂ L1 ∩L2 ∩L3.

Proof. This proof is similar to the one of Lemma 14. This comes from the symm
between the substitutionsFk andGk , for which the role of the letters 1 and 3 are ju
exchanged. The central place of the letter 3 in the proof of Lemma 14 is now giv
the letter 1. In order to help the reader, we recall for words inGk(L1) an analogous de
composition of the one given in (2). Letω ∈ {1,2,3}∗ such thatωM+3 ∈ Gk(L1). Then,
there exists a 3-tuple of words(x, v, y), x ∈ {ε,3,2l: 1 � l � k + 1}, v ∈ {1,2,3}∗,
y ∈ {ε,12l: 1 � l � k}, such that

ω = xGk(v)y. �
Lemma 17. Let k be a positive integer,k � M. Then

Fk
0(L2) ⊂ L1 ∩L3.

Proof. We recall that the substitutionFk
0 is defined by

Fk
0

1 �−→ 13k

2 �−→ 23k

3 �−→ 3.

This definition implies that none of the words 11, 21 or 22 lie in the languageFk
0(L2).

In particular,Fk
0(L2) satisfies the assertions (iii) and (iv) in the definition ofL1 and the

assertion (iii) in the definition ofL3.
Now, let us show that the assertions (i) and (ii) in the definitions ofL1 andL3 are

satisfied byFk
0(L2).

(i) Let ω ∈ {1,2,3}∗ such thatωM+3 ∈ Fk
0(L2). Then, there exists a triple of word

(x, v, y) with x ∈ {ε,3l: 1 � l � k + 1}, v ∈ {1,2,3}∗ and y ∈ {ε,1,13l,23l: 1 � l �
k + 1}, such that

ω = xFk(v)y. (3)

Moreover, this decomposition is unique ifv is chosen with a minimal length and if th
letter 3 is not a prefix ofv. Let us assume thatω is not reduced to the empty word. We th
have two cases to consider.

(a) If v = ε, then(xy)M+3 ∈ Fk
0(L2). If moreovery = ε, then we should have 3M+2 ∈

Fk
0(L2), which is impossible because 33/∈ L2. Sincex cannot be the empty word, w

obtain the existence of a lettera ∈ {1,2} such that eitherxy =Fk(a) or yx =Fk(a3).
0 0
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In the first case, we will obtain thataM+2 ∈L2 sincea is not equal to 3. This produce
a contradiction with (ii). In the second case, the same reasoning gives(a3)M+2a ∈L2,
hence again a contradiction with (ii).

(b) Now if v �= ε, thenωM+3 can be decomposed asωM+3 = x(Fk
0(v)yx)M+2Fk

0(v)y.
Sincev does not begin with 3 and since|yx|1+|yx|2 � 1, Lemma 13 implies the exis
tence of a lettera ∈ {1,2,3} such that eitheryx =Fk

0(a) ∈Fk
0(L2) or yx =Fk

0(a3) ∈
Fk

0(L2). In the first case, we will have(va)M+2v ∈ L2, hence a contradiction. In th
second case and sincea �= 3, we will obtain(va3)M+2va ∈ L2, which is forbidden
by (ii).

(ii) Let ω ∈ {1,2,3}∗ andz ∈ {1,2,3} such that(ωz)M+2ω ∈ Fk
0(L2). Let us conside

the decomposition ofω in ω = xFk
0(v)y. Then,(ωz)M+2ω = x(Fk

0(v)yzx)M+2Fk
0(v)y.

Sincev does not begin with 3 and since|yx|1 + |yx|2 � 2, it follows that there exists
lettera ∈ {1,2,3} such that eitheryzx = Fk

0(a) or yzx = Fk
0(a3). We now have to dea

with these two cases.

(a) If yzx =Fk
0(a), then(ωz)M+2ω = xFk

0((va)M+2v)y. We will obtain (again using th
fact that 3 is not a prefix ofv) that(va)M+2v ∈L1, hence a contradiction with (ii).

(b) If yzx = Fk
0(a3), then a �= 3 since 33/∈ L2. If y �= ε, then Fk

0((va3)M+2v)y ∈
Fk

0(L2) and thus it implies thatFk
0((va3)M+2v)Fk

0 (a) ∈ Fk
0(L2). It follows that

(va3)M+2va ∈L2, which is forbidden by definition ofL2.
If y = ε, thenx = 3k+1. The fact that 3k+1Fk

0((va3)M+2v) ∈ Fk
0(L2) thus implies

the existence of a letterb ∈ {1,2} such thatFk
0(b3)Fk

0((va3)M+2v) ∈ Fk
0(L2). We

thus deduce that(3va)M+23v ∈ L2, hence a contradiction with assertion (ii) of t
definition ofL2. �

Lemma 18. Let k be a positive integer,k � M. Then

Gk
0(L3) ⊂ L1 ∩L2.

Proof. For the reasons already exposed in the proof of Lemma 16, this proof is sim
the previous one if we exchange the roles played by the letters 1 and 3.�
Lemma 19. A uniformly recurrent sequenceu has a finite index if and only if this is the ca
for any of its derived sequences. More precisely, for any derived sequencev the following
holds:

• if v is not asymptoticallykth power-free, thenu is not asymptoticallykth power-free,
• if v is asymptoticallykth power-free, thenu is asymptotically(k + 1)th power-free.

Proof. Let u be a uniformly recurrent sequence defined over the alphabetA, let u be a
factor ofu and letv be the derived sequence ofu on u. Then there exists a morphismϕu,
called the return morphism, such thatϕu(v) = u. It thus follows that ifv is not asymptoti-
cally kth power-free, thenu is not asymptoticallykth power-free.
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Now, let r be the number of return words onu. There thus exist possibly empty b
distinct wordsv1, v2, . . . , vr , defined overA such that

ϕu

B = {1,2, . . . , r} −→ A
i �−→ uvi .

Let us assume thatu contains arbitrarily long(k + 1)th powers. Letw be a sufficiently
long word such thatwk+1 ∈ L(u). Sincew is long enough andu is uniformly recurrent,
the wordu has at least two different occurrences inw. The wordw can thus be decompose
as

w = xϕu(v)y,

wherex is a strict suffix of the image of a letter byϕu, v ∈ B is not the empty word an
wherey is a strict prefix of the image of a letter byϕu. Thus,wk = x(ϕu(v)yx)kϕu(v)y.
The fact that the set of return words is a code (see [17]) allows us to say that the
unique letteri ∈ B satisfyingyx = ϕu(i). It thus follows thatϕu((vi)k) is a factor ofu.
By definition of the derived sequences,(vi)k is a factor ofv. We thus obtain that ifv is
asymptoticallykth power-free thenu is asymptotically(k + 1)th power-free. �
Remark 20. Such a result is of course no more true if we replace arbitrarily long po
by powers.

Proof of Theorem 3. Let u be a characteristic non-degenerate coding of rotation
let (an, in)n�0 be itsD-expansion. Then as it is already mentioned in [4], there exis
sequence

v = lim
n→∞

(
n∏

j=0

(
F

i′j
a′
j

◦ G1−i′j
a′
j

)
(1)

)

such that:

(i) v is a derived sequence ofu,
(ii) there exists a non-negative integerk, such that∀n � 0, a′

n = an+k andi ′n = in+k .

Now, let us assume that for any non-negative integern:

(i) an � M,
(ii) in = in+1 = · · · = in+M−1 ⇒ ∃k, n � k � n + M − 1 such thatak �= 0.

Let us consider the following sets of substitutions:

S1 = {Fk,Gk : 1 � k � M}, S2 = {
Fk

0 : 1 � k � M
}
, and

S3 = {
Gk: 1 � k � M

}
.
0
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The condition satisfied by theD-expansion of the sequenceu ensures the existence of
unique sequence of substitutions(σn)n�0, σn ∈ S1 ∪ S2 ∪ S3 such that

v = lim
n→∞ σ0σ1 . . . σn(1) (4)

with the additional conditions

σk ∈ S2 ⇒ σk+1 /∈ S2 and σk ∈ S3 ⇒ σk+1 /∈ S3.

Then Lemmas 14, 16–18 imply that for any non-negative integern

σ0σ1 . . . σn(1) ∈ (L1 ∪L2 ∪L3) ⊂ L,

which in particular shows thatv is (M + 3)th power-free.
Moreover, if there exist infinitely manyn such that eitheran = M or in = in+1 = · · · =

in+M−2 andak = 0, n � k � n + M − 2, then at least one of the substitutionsFM , GM ,
FM

0 or GM
0 appears infinitely often in the composition (4). We thus deduce directly

the definition of these substitutions that in that casev contains arbitrarily long(M + 1)th
powers.

The proof thus follows from Lemma 19 and the previous observations.�

6. Words without initial powers: proof of Theorem 8

This section is devoted to the proof of Theorem 8. Our proof is based on an ex
construction of a class of binary codings of rotations without any asymptotic initial powe
that is, for which ice is equal to 1. These sequences are obtained by choosing s
associatedD-expansions.

The following definitions will be used in the remainder of this section. Let(ln)n�0
and(kn)n�0 be two sequences of positive integers. We define the substitutionσn over the
alphabet{1,2,3} by

σn

1 �−→ 12ln(13)kn

2 �−→ 12ln+1(13)kn

3 �−→ 13.

It thus follows thatσn = Gln ◦Fkn

0 , where the substitutionsGk andFk are defined in (1)

Let us consider the substitutionψn =∏n−1
k=0 σk (we recall that

∏
means the composition o

morphisms from left to right). Our goal is now to study the initial critical exponent of th
sequencev = limn→∞ ψn(1). In what follows, we will also have to consider the sequen
vl defined by

vl = lim
n→∞

(
n−1∏

σk

)
(1).
k=l
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Thus,ψl(vl) = v.

Remark 21. By definition ofσn, ψn(w) ≺ v impliesw ≺ vn.

Lemma 22. Letk be a positive integer and letVk be the prefix of lengthk of the sequencev.
Let us assume thatVk admits the following decomposition: ∃(u,w) ∈ {1,2,3}∗, ∃(a, b) ∈
{1,2,3}2, a �= b such that

(i) Vk = uawu,
(ii) Vk+1 = Vkb.

Then, eithera = 1 andb = 2 or a = 2 andb = 3.

Proof. The cases (a = 1, b = 3) and (a = 3, b = 1) can be suppressed since we ea
verify that 11/∈ L(v).

Let us assume thata = 2 andb = 1. It thus follows thatu cannot be the empty word
begins with the letter 1 and admits the word 12l0 as a suffix. This implies the existence
a wordu1 such thatu = σ1(u1)12l0 and of a wordw1 such thatw = 2(13)k0σ0(w1). Then,
Vk = σ0(u12w1u1) and it derives from 21 thatu12w1u1 should be a prefix ofv1 satisfying
the assumptions required forVk and with a smaller length. By iterating this process,
obtain a contradiction.

The case wherea = 3 andb = 2 is similar. �
Lemma 23. Let k be a positive integer such thatVk satisfies the assumptions required
Lemma22. If moreovera = 1 andb = 2, then there exists a positive integern and a word
m ∈ {1,2,3}∗ such that:

(i) 3(13)kn−1 ≺ m,
(ii) u = ψn(12ln)ψn−1(12ln−1) . . .ψ1(12l1)12l0,
(iii) w = 3(13)k0−1ψ1(3(13)k1−1) . . .ψn−1(3(13)kn−1−1)ψn(m).

Proof. Sincea = 1 andb = 2, the word 12l0 is a suffix ofu and the word 3(13)k0−1 is
a prefix ofw. This implies the existence of a wordu1 such thatu = σ0(u1)12l0 and of a
word w1 such thatw = 3(13)k0−1σ0(w1). Moreover, we have thatVk = σ0(u11w1u1)12l0

and thus thatσ0(u11w1u1)12l02 ≺ v. It thus comes from Remark 21 thatu11w1v12 ≺ v
and that|u1| < |u|. Then, we can iterate this process untilun has a minimal length, that is
un = 12ln . The result thus follows withm = wn. �
Lemma 24. Letk be a positive integer and letVk be the prefix of lengthk of the sequencev.
Let us assume thatVk satisfies the assumptions of Lemma22. If moreovera = 2 andb = 3,
then there exists a positive integern and a wordm ∈ {1,2,3}∗ such that:

(i) 2ln−1 ≺ m,
(ii) u = ψn(1)ψn−1(1) . . .ψ1(1)1,
(iii) w = 2l0(13)k0ψ1(2l1(13)k1) . . .ψn−1(2ln−1(13)kn−1)ψn(m).
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Proof. Sincea = 2 andb = 3, the letter 1 is a suffix ofu and then the word 2l0−1 is a
prefix of w. This implies the existence of a wordu1 such thatu = σ0(u1)1. If moreover
u1 is not the empty word, that is, ifu �= 1, then there exists a wordw1 such that eithe
w = 2l0−1(13)k0σ0(w1) or w = 2l0(13)k0σ0(w1).

In the first case, we will haveVk = σ0(u11w1u1)1, which implies thatVk+1 =
σ0(u11w1u13) since by assumptionVk+1 = Vk3. Then, by Remark 21 we will hav
u11w1u13 ≺ v. This is in contradiction to the fact that 11/∈ L(v).

We thus havew = 2l0(13)k0σ0(w1) and thenvk = σ0(u12w1u1)1. SinceVk+1 = Vk3,
we obtainu12w1u13 ≺ v with |u1| < |u|. Then we can iterate this process untilun has a
minimal length, that is,un = 1. The result thus follows withm = wn. �
Lemma 25. For any positive integern, let us consider

u1,n = ψn

(
12ln

)
ψn−1

(
12ln−1

)
. . .ψ1

(
12l1

)
12l0,

w1,n = 3(13)k0−1ψ1
(
3(13)k1−1) . . .ψn

(
3(13)kn−1),

u2,n = ψn(1)ψn−1(1) . . .ψ1(1)1, and

w2,n = 2l0(13)k0ψ1
(
2l1(13)k1

)
. . .ψn

(
2ln−1).

Then,u1,n1w1,nu1,n ≺ v andu2,n2w2,nu2,n ≺ v.

Proof. An easy induction shows that for any positive integern,

u1,n1w1,n = ψn+1(1) and u1,n ≺ ψn+1(2).

It follows

u1,n1w1,nu1,n ≺ ψn+1(12) ≺ v.

Similarly, we obtain by induction that for any positive integern,

u2,n2w2,n = ψn

(
12ln

)
and u2,n ≺ ψn(13).

It follows

u2,n2w2,nv2,n ≺ ψn+1
(
12ln13

)≺ v,

concluding the proof. �
Lemma 26. Let us consider the two real sequences(e1,n)n�0 and (e2,n)n�0 respectively
defined by

e1,n = 1+ |u1,n|
and e2,n = 1+ |u2,n|

.
|v1,n1w1,n| |u2,n2w2,n|
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ice(v) = max
{
lim sup
n→∞

e1,n, lim sup
n→∞

e2,n

}
.

Proof. It first follows from Lemma 25 that

ice(v) � max
{
lim sup
n→∞

e1,n, lim sup
n→∞

e2,n

}
.

Now, let us consider an initial power ofv. Sincev clearly does not begin with an
square, such an initial power can be decomposed asvu ≺ v, whereu is a strict prefix of the
wordv. We can assume without any restriction thatvu is a maximal initial power. That is
there exists a letterb such thatvub ≺ v andub is not a prefix ofv. Sinceu is a strict prefix
of the wordv andub is not a prefix ofv, we can decomposed the wordv asuaw, a being
a letter different to the letterb. Then it follows from Lemma 22 that eithera = 1 andb = 2
or a = 2 andb = 3. By Lemmas 23 and 24, we have

ice(v) � max
{
lim sup
n→∞

e1,n, lim sup
n→∞

e2,n

}
,

hence the proof. �
Proof of Theorem 8. Let (ln)n�0 and (kn)n�0 be two increasing sequences of posit
integers satisfyingln = o(kn). Let us note that there exists a non-countable numbe
such sequences. All the other quantities are defined as previously in this section.

Now let us consider the sequence(an, in)n�0 defined by

(l0,0), (0,1), (0,1), . . . , (0,1)︸ ︷︷ ︸
k0 times

, (l1,0), (0,1), (0,1), . . ., (0,1)︸ ︷︷ ︸
k1 times

, . . . ,

, . . . , ln,0), (0,1), (0,1), . . ., (0,1)︸ ︷︷ ︸
kn times

, . . . .

By Theorem 12, we know that there exists a characteristic coding of rotationu defined by
u = φ1(v), where

v = lim
n→∞

(
n∏

j=0

(
F ij

aj
◦ G1−ij

aj

)
(1)

)

and whereφ1 is defined by

1 �−→ 1
2 �−→ 122
3 �−→ 12.
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The definition ofφ1 implies that if ice(v) = 1 then ice(u) = 1. The last step to prov
Theorem 8 is thus to show that ice(v) = 1 for our choice of sequences(ln)n�0 and(kn)n�0.
In order to prove this, we first have to remark that our sequencev corresponds to th
sequencev defined at the beginning of this section with our choice of sequence(ln)n�0
and(kn)n�0. We thus can keep the previous notation used in this section.

We now have to recall that for any positive integern,∣∣ψn(13)
∣∣� ∣∣ψn(2)

∣∣� ∣∣ψn(1)
∣∣.

Sinceln|ψn(2)| � |ψn(12ln)| � (ln + 1)|ψn(2)| and|ψn(3(13)kn−1)| � (kn − 1)|ψn(2)|, it
follows that

lim sup
n→∞

(e1,n) � 1+
n∑

j=0

(lj + 1)

/ n∑
j=0

(lj + kj − 1).

Since|ψn(2ln(13)kn)| � |ψn(2ln−1)| � (ln − 1)|ψn(2)|, it follows that

lim sup
n→∞

(e2,n) � 1+ n
/ n∑

j=0

(lj − 1).

Since the sequences(ln)n�0 and (kn)n�0 are increasing and satisfyln = o(kn), we ob-
tain that the real sequences(e1,n)n�0 and(e2,n)n�0 together vanish whenn increases. By
Lemma 26, we thus have ice(v) = 1, concluding the proof. �
Remark 27. If the sequences(ln)n�0 and(kn)n�0 are constant ones (respectively eq
to l and tok), we obtain following [2] a binary coding of rotation with parameters ly
in a same quadratic field. In that case, the parameters can be computed explici
necessarily the initial critical exponent is greater than 1. However, ifl is large enough an
if k is large enough with respect tol, we can construct explicit codings with an initi
critical exponent less than 3/2 and thus for which Theorem 5 could not be applied.
instance, this is the case of the binary coding of rotation associated with parameters

(
α = 785− √

25277

1882
, β = 1037

1882
+ 169

√
25277

295474

)
,

which has the periodicD-expansion[ (12,0)(0,1)145].

7. Segment expansion factor and the transcendence of some continued fractions:
proof of Theorem 10

In the previous section, we have shown the existence of many binary codings of ro
without any asymptotic initial power. This difference with respect to the Sturmian case
a particular importance for proving the transcendence of associated continued fra
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Indeed, we know now that we cannot apply Theorem 5 to this class of sequences
ever, we will prove Theorem 10 by using a recent result due to J.L. Davison [16] w
generalizes Theorem 5. Roughly speaking, thisresult allows to replace asymptotic initi
powers by asymptotic almost initial powers in the method given by [5].

We first have to precise what is the meaning of almost initial powers by recallin
following definition introduced in [16].

Definition 28. Supposeγ ∈ R, γ � 1. The infinite wordu = u0u1u2 . . . is said to have a
segment expansion factor� γ if it begins, for every positive integern, in UnVnWn, where:

• Un is a possibly empty word,
• limn→∞ |Vn| = ∞,
• Wn ≺ V s

n for some positive integers,
• |UnVnWn|

|Un|+|UnVn| � γ .

Before stating the generalization of Theorem 5 obtained by J.L. Davison, we intro
a quantity which naturally takes place in the study of continued fractions.

Definition 29. Let α be a real number and let(pn/qn)n�0 be the sequence of converge
associated withα. Then, we define the quantityL(α) by

L(α) = lim sup
n→∞

1

n
logqn

/
lim inf
n→∞

1

n
logqn.

The real numberα has a Lévy constant when limn→∞ 1
n

logqn exists, that is, when
L(α) = 1.

We are now ready to state the main result of [16].

Theorem 30 (Davison [16]). Letα be a real number having the sequenceu = u0u1u2 . . .

as continued fraction expansion.Let us assume that the sequenceu has segment expansio
factor� γ . Then, ifγ /L(α) > 3/2, the numberα is transcendental.

The remainder of this section is devoted to auxiliary results needed for proving T
rem 10 and to the proof itself.

Lemma 31. Let α be a real number having the sequenceu = u0u1u2 . . . as continued
fraction expansion. LetO(u) be the closure of the orbit under the shiftS of the sequenceu.
If the dynamical system(O(u), S) is uniquely ergodic, thenα has a Lévy constant.

Proof. It suffices to follow the proof of Theorem 10 at the end of [5]. In fact, the aut
of [5] prove the weaker following result:α has a Lévy constant if the associated contin
fraction is a fixed point of a primitive substitution. But what is only used in their proo
the fact that the subshift associated with such a sequence is uniquely ergodic.�
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Lemma 32. Let u andv be two infinite words andφ be a morphism such thatφ(v) = u.
If every letter inv has a frequency and ifv has a segment expansion factor> 3/2, thenu
has a segment expansion factor> 3/2.

Proof. Let v be an infinite sequence defined over the alphabetA = {1,2, . . . , d} whose
every letter has a frequency and with a segment expansion factor> 3/2, letu be an infinite
sequence defined over the alphabetB = {1,2, . . . , r} and letφ be a morphism fromA to
B such thatφ(v) = u. Sincev has a segment expansion factor> 3/2, there existε > 0 and
three sequences of finite words(Un)n�0, (Vn)n�0 and(Wn)n�0 such that:

• limn→∞ |Vn| = ∞,
• Wn ≺ V s

n for some positive integers,
• |UnVnWn|

|Un|+|UnVn| � 3
2 + ε.

Let us denote byf (i) the frequency of the letteri in the sequencev. We thus obtain tha

∣∣φ(UnVnWn)
∣∣= d∑

i=1

f (i)
∣∣φ(i)

∣∣|UnVnWn| + o
(∣∣φ(UnVnWn)

∣∣) and

∣∣φ(UnUnVn)
∣∣= d∑

i=1

f (i)
∣∣φ(i)

∣∣|UnUnVn| + o
(∣∣φ(UnUnVn)

∣∣).
This implies

|φ(UnVnWn)|
2|φ(Un)| + |φ(Vn)| = |φ(UnVnWn)|

|φ(UnUnVn)| = |φ(UnVnWn)|
|UnUnVn| × |UnUnVn|

|φ(UnUnVn)|
= |UnVnWn|

2|Un| + |Vn| + o(1) � 3

2
+ ε + o(1),

which ends the proof. �
Definition 33. Let S = {Fk: k � 0} ∪ {Gk: k � 0}, with the substitutionsFk andGk being
defined in (1) and letS∗ be the free monoid (for the composition of morphisms) gener
by S. Let U andW be two finite words on{1,2,3} and letε be a positive number. Then
U �ε W if for any elementφ in S∗ we have:

∣∣φ(W)
∣∣� (1+ ε)

∣∣φ(U)
∣∣.

Lemma 34. Let U andW be two finite words on{1,2,3} and letε be a positive numbe
Let us assume that either

(|W |2 − |U |2
)− (

max
(|U |1 − |W |1,0

)+ max
(|U |3 − |W |3,0

))
� ε|U | (5)
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or

min
(|W |1 − |U |1, |W |3 − |U |3

)− max
(|U |2 − |W |2,0

)
� ε|U |, (6)

thenU �ε W .

Proof. Let φ be an element ofS∗. Then,φ is the composition of a finite numbern of
substitutions of typeFk andGk . We first prove by induction onn the following inequalities:∣∣φ(13)

∣∣> ∣∣φ(2)
∣∣� max

{∣∣φ(1)
∣∣, ∣∣φ(2)

∣∣, ∣∣φ(3)
∣∣}. (7)

If n = 0 thenφ is the identity and thus the result is obvious. Now, let us assume
(7) is satisfied for a givenl and letψ be an element ofS∗ obtained as a product ofl + 1
substitutions of typeFk andGk . Then there exists an elementξ of S∗ obtained as a produc
of l substitutions of typeFk andGk and an integerr such thatψ = ξ ◦Fr or ψ = ξ ◦ Gr .
By assumption, we have:∣∣ξ(13)

∣∣> ∣∣ξ(2)
∣∣� max

{∣∣ξ(1)
∣∣, ∣∣ξ(2)

∣∣, ∣∣ξ(3)
∣∣}. (8)

By definition of the substitutionsFr , we have:∣∣ψ(13)
∣∣= ∣∣ξ(13)

∣∣+ r
∣∣ξ(2)

∣∣+ ∣∣ξ(3)
∣∣, ∣∣ψ(2)

∣∣= ∣∣ξ(2)
∣∣+ r

∣∣ξ(2)
∣∣+ ∣∣ξ(3)

∣∣,∣∣ψ(3)
∣∣= r

∣∣ξ(2)
∣∣+ ∣∣ξ(3)

∣∣, ∣∣ψ(1)
∣∣= ∣∣ξ(1)

∣∣+ ∣∣ξ(3)
∣∣.

Then, (8) implies that∣∣ψ(13)
∣∣> ∣∣ψ(2)

∣∣� max
{∣∣ψ(1)

∣∣, ∣∣ψ(2)
∣∣, ∣∣ψ(3)

∣∣}.
By symmetry, the above inequalities are also true if we replaceFr byGr and if we exchange
the role played by the letters 1 and 3.

Now, letW andU be two finite words on{1,2,3} satisfying (5) for a given positiveε
and letφ be an element ofS∗. It thus follows that

∣∣φ(W)
∣∣− ∣∣φ(U)

∣∣= 3∑
i=1

(|W |i − |U |i
)∣∣φ(i)

∣∣
�
(|W |2 − |U |2

)∣∣φ(2)
∣∣− ∑

i∈{1,3}

(
max

{|U |i − |W |i ,0
}∣∣φ(i)

∣∣).
Following (7), we have:

∣∣φ(W)
∣∣− ∣∣φ(U)

∣∣� (|W |2 − |U |2
)∣∣φ(2)

∣∣−( ∑
i∈{1,3}

max
{|U |i − |W |i , 0

})∣∣φ(2)
∣∣

�
((|W |2 − |U |2

)−
∑

max
{|U |i − |W |i , 0

})∣∣φ(2)
∣∣.
i∈{1,3}
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Then (5) and (7) imply that

∣∣φ(W)
∣∣− ∣∣φ(U)

∣∣� ε|U |∣∣φ(2)
∣∣� ε

∣∣φ(U)
∣∣.

The case whereW andU satisfy (6) is similar, hence the proof.�
We will use in the remainder of this section a notation similar to the one introduc

Section 6. Let us consider a sequence(an, in)n�0 ∈ (N × {0,1})N, with (an)n�0 not even-
tually vanishing and with(in)n�0 not eventually constant. Letv be the infinite sequenc
defined by:

v = lim
n→∞

(
n∏

j=0

(
F ij

aj
◦ G1−ij

aj

)
(1)

)
, (9)

where the substitutionsFk andGk are defined in (1). Then, ifk is a positive integer we
denote byvk the sequence

lim
n→∞

(
n∏

j=k

(
F ij

aj
◦ G1−ij

aj

)
(1)

)

and byφk the morphism

k−1∏
j=0

(
F ij

aj
◦ G1−ij

aj

)

such thatφk(vk) = v.

Lemma 35. Let ε be a positive number. If there exist a pair of sequences(Wl,Ul)l>0 of
finite words on{1,2,3} withUl �ε Wl and an increasing sequence of integers(kl)l>0, such
that for any positive integerl the sequencevkl begins inWlUlWl , thenu has a segmen
expansion factor> 3/2.

Proof. If V �ε W we obtain by (7) and by Definition 33 that

∣∣φk(W)
∣∣� (1+ ε)

∣∣φk(V )
∣∣,

for every positive integerk. By assumptions, the sequenceu begins inφkl (WlUlWl) for
every positive integerl. It thus follows thatu has a segment expansion factor

� lim inf
|φkl (WlUlWl)|

.

l→∞ |φkl (WlUl)|
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But (7) implies that

lim inf
l→∞

|φkl (WlUlWl)|
|φkl (WlUl)| � 1+ lim inf

l→∞
|φkl (Wl)|

|φkl (Wl)|(1+ 1
1+ε

)
= 3

2
+ ε

2(2+ ε)
>

3

2
,

concluding the proof. �
Lemma 36. Let ε be a positive number. If there exist a pair of sequences(Wl,Ul)l>0 of
finite words on{1,2,3} and an increasing sequence of integers(kl)l>0, such that for all
positive integerl:

• the sequencevkl begins in1WlUl2Wl ,
• Ul2�ε Wl ,

thenu has a segment expansion factor> 3/2.

Proof. Let ε > 0 and let (W,U) be a pair of words on{1,2,3} with U �ε W .
Let us first consider the image of the word 1WU2W by the two substitutionsFk

andGk . We haveFk(1WU2W) = 13Fk(W)Fk(U)2k3Fk(W) = 1W ′U ′2W , with W ′ =
3Fk(W) and U ′ = Fk(U)2k ≺ Fk(U2). If we apply Gk , we obtainGk(1WU2W) =
12kGk(W)Gk(U)12k+1Gk(W) = 1W ′U ′2W , with W ′ = 2kGk(W) and U ′ = Gk(U)1 ≺
Gk(U2). In both cases, we haveU ′ �ε W ′ and|W ′| > |W |.

Then, an easy induction shows that one can found a pair of sequences(W ′
l ,U

′
l )l>0

of finite words on {1,2,3} with U ′
l �ε W ′

l and liml→∞ |W ′
l | = ∞ and such tha

φkl (1WlUl2Wl) = 1W ′
l U

′
l 2W ′l. It thus follows from our assumption that the seque

u begins for every positive integerl in 1W ′
l U

′
l 2W ′

l . The sequenceu thus has a segmen
expansion factor

� lim inf
l→∞

|1W ′
l U

′
l 2W ′l|

|1| + |1W ′
l U

′
l 2| = lim inf

l→∞
|W ′

l U
′
l W

′l|
|W ′

l U
′
l |

.

SinceU ′
l �ε W ′

l , it follows that

lim inf
l→∞

|W ′
l U

′
l W

′l|
|W ′

l U
′
l |

� 1+ lim inf
l→∞

|W ′l|
|W ′

l |(1+ 1
1+ε

)
= 3

2
+ ε

2(2+ ε)
>

3

2
,

concluding the proof. �
Lemma 37. The sequencev (defined in(9)) has a segment expansion factor� 3/2.

Proof. The assumption on the sequence(an, in)n�0 allows us to claim that at least one
the following holds:

(a) (0,0) appears infinitely often in(an, in)n�0,
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(b) there exist two sequences of positive integers(jn)n∈N and(kn)n∈N such that for every
n, the block(jn,0)(kn,0) appears in(an, in)n�0,

(c) there exists a sequence of positive integers(jn)n∈N, jn � 4, such that for everyn, the
block (jn,0) appears in(an, in)n�0,

(d) there exists a sequence of positive integers(jn)n∈N, jn � 5, such that for everyn, the
block (jn,1) appears in(an, in)n�0,

(e) there exists a sequence of positive integers(jn)n∈N, jn � 14, such that for everyn, the
block (0,1)jn appears in(an, in)n�0,

(f) there exist two sequences of positive integers(jn)n∈N, 1� jn � 3, and(kn)n∈N, 1�
kn � 4, such that for everyn, the block(jn,0)(kn,1) appears in(an, in)n�0,

(g) there exist three increasing sequences of integers(jn)n�0, 1 � jn � 3, (kn)n∈N, 1 �
kn � 13, and(ln)n∈N, 1� ln � 4, such that for everyn, the block(jm,0)(0,1)kn(ln,1)

appears in(an, in)n�0,
(h) there exist three increasing sequences of integers(jn)n�0, jn � 3, (kn)n∈N, kn � 13,

and(ln)n∈N, ln � 4, such that for everyn, the block(jm,0)(0,1)kn(ln,0) appears in
(an, in)n�0.

(a) In this first case, we obtain that for an infinite number ofk, vk = G0(vk+1), which
implies thatvk begins in the word 11 since

G0
1 �−→ 1
2 �−→ 12
3 �−→ 13.

It easily follows that the sequencev begins in arbitrarily long squares and thus that it ha
segment expansion factor� 2.

Now we can assume without restriction that(0,0) does not appear in(an, in)n�0. This
easily implies that for any non-negative integerk, the sequencevk does not begin in the
word 11.

(b) In this case, we obtain that for an infinite number ofk, vk = Gjn ◦ Gkn(vk+2), which
implies thatvk begins in the word 12kn12kn since

Gjn ◦ Gkn

1 �−→ 12jn(12jn+1)kn

2 �−→ 12jn(12jn+1)kn+1

3 �−→ 12jn13.

It follows that the sequencev begins in arbitrarily long squares and thus that it has a
ment expansion factor� 2.

Now we can assume without any loss of generality that there is no block of the form
(m,0)(k,0) in the sequence(an, in)n�0. This means that if for positive integersk andn,
vk = Gn(vk+1) then there exists a non-negative integerm such thatvk−1 =Fm(vk).
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(c) In this case, we obtain that for an infinite number ofk, vk = Gjn (vk+1), which implies
thatvk begins in the word 124 sinceGjn (1) = 12jn andjn � 4. It follows that the sequenc
v begins inφk(124) and that it thus has a segment expansion factor

� lim inf
k�0

{ |φk(124)|
2|φk(1)| + |φk(2)|

}
� 1+ 2

3
>

3

2
,

since following (7) we have|φk(2)| � |φk(1)|.
(d) We obtain that for an infinite number ofk, vk = Fjn (vk+1). Sincevk+1 does not

begin in 11, it should begin either in 12 or in 13. This implies thatvk begins in the word
1325 sinceFjn(12) = 132jn+13,Fjn(13) = 132jn3 andjn � 5. It follows that the sequenc
v begins inφk(1325) and that it thus has a segment expansion factor

� lim inf
k�0

{ |φk(1325)|
2|φk(13)| + |φk(2)|

}
� 1+ 2

3
>

3

2
,

since following (7) we have|φk(2)| � max{|φk(1)|, |φk(3)|}.
Now, we can assume without restriction that for everyn, an is at most equal to 4.

(e) We obtain that for an infinite number ofk, vk = F jn

0 (vk+jn), which implies thatvk

begins in the word 1314 sincejn � 14 and since

F jn

0
1 �−→ 13jn

2 �−→ 23jn

3 �−→ 3.

Moreover, we can assume without any loss of generality thatjn is chosen such thatvk−1 �=
F0(vk). It follows that the sequencevk−1 begins either inFm(1314) or in Gm(1314), 1�
m � 5. The sequencev thus has a segment expansion factor

� lim inf
k�1,1�m�5

{
min

( |φk−1(13(2m3)14)|
2|φk−1(13)| + |φk−1(2m3)| ,

|φk−1(12m(13)14)|
2|φk−1(12m)| + |φk−1(13)|

)}

� lim inf
k�1

{ |φk−1(125(13)14)|
2|φk−1(125)| + |φk−1(13)|

}
� 1+ 7

13
>

3

2
,

since following (7) we have|φk−1(13)| > |φk−1(2)| � max{|φk−1(1)|, |φk−1(3)|}.
(f) We obtain that for an infinite number ofk, vk = Gjn ◦ Fkn(vk+2). Sincevk+2 does

not begin in 11 and sincekn � 1, the sequencevk+1 should begin in 132 and the sequen
vk thus begin in 12jn1312jn.

If there are infinitely manyn for which jn > 1, then using (5) of Lemma 34 we obta
13�1/2 12jn . Lemma 35 thus implies thatv has a segment expansion factor> 3/2.

Else, we can assume without restriction thatjn is always equal to 0. We thus foun
an infinite number ofk such thatvk begins in the word 121312. Moreover, we kno
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that vk−1 = Fm(vk), 0 � m � 4, since as we have already assumed that a bloc
the form (m,0), (n,0) cannot appear in(an, in)n�0. We thus have thatvk−1 begins in
132m+13132m3132m+13. We can rewrite this word asWnUnWn, whereWn = 132m+13
andUn = 132m3. In view of Lemma 36, it remains to prove the existence of a positiε

such that for everyn, Un �ε Wn. Following (5) of Lemma 34, we obtain that

132m3 � 1
m+3

132m+13.

Sincem � 4, we always have 132m3 �1/7 132m+13. Lemma 35 thus implies thatv has a
segment expansion factor> 3/2.

(g) We obtain that for an infinite number ofk, vk = Gjn ◦ Fkn

0 ◦ Fln(vk+kn+2). Since
vk+kn+2 does not begin in 11 and sinceln � 1, the sequencevk+kn+1 should begin in 132
It thus follows that the sequencevk begins in the word 12jn(13)kn+112jn+1(13)kn1 since
we recall that

Gjn ◦Fkn

0
1 �−→ 12jn(13)kn

2 �−→ 12jn(13)kn

3 �−→ 13.

(10)

We first have to note thatvk−1 = Fm(vk), 0� m � 4, since as we have already assum
that a block of the form(m,0), (jn,0) cannot appear in(an, in)n�0 . We thus have tha
vk−1 begins in 13(2m+13)jn(132m3)kn+113(2m+13)jn+1(132m3)kn13. We can rewrite this
word as 1WnUn2Wn, whereWn = 3(2m+13)jn(132m3)kn13 andUn = 2m3132m. In view
of Lemma 36, it remains to prove the existence of a positiveε such that for everyn,
Un2 �ε Wn. Following (6) of Lemma 34, we obtain that

2m3132m+1 � 1
2m+4

3
(
2m+13

)jn
(
132m3

)kn13.

Sincem � 4, we always have 132m3 �1/12 132m+13. Lemma 35 thus implies thatv has a
segment expansion factor> 3/2.

(h) We obtain that for an infinite number ofk, vk = Gjn ◦ Fkn

0 ◦ Gln (vk+kn+2). Since
ln � 1, the sequencevk+kn+1 begins in 12. It thus follows in view of (10) that the sequen
vk begins in 12jn(13)kn12jn+1(13)kn1. We can rewrite this word as 1WnUn2Wn, where
Wn = 2jn(13)kn1 andUn is the empty word. In view of Lemma 36, it remains to prove
existence of a positiveε such that for everyn, Un2 = 2 �ε Wn. Sincejn andkn are pos-
itive, we can use (6) of Lemma 34 to obtain that for everyn we have 2�1 2jn(13)kn1.
Lemma 35 thus implies thatv has a segment expansion factor> 3/2, concluding the
proof. �
Proof of Theorem 10. If u denotes the natural characteristic coding of an i.d.o.c. th
interval exchange, then it is proved in [2] that there exist a non-erasing morphismφ defined
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on {1,2,3} and a sequence(an, in)n�0 ∈ (N × {0,1})N, with (an)n�0 not eventually van-
ishing and with(in)n�0 not eventually constant, such thatu = φ(v), where the sequencev
is the natural coding of another i.d.o.c. three-interval exchange defined by:

v = lim
n→∞

(
n∏

j=0

(
F ij

aj
◦ G1−ij

aj

)
(1)

)
.

By Lemma 37, we obtain thatv has a segment expansion factor> 3/2. Since it is well
known that any letter in the natural coding of an i.d.o.c. three-interval exchange a
a frequency, then Lemma 32 implies thatu also has a segment expansion factor> 3/2.
Moreover, it is also well known that the subshift associated with the natural coding of
i.d.o.c. three-interval exchange is uniquely ergodic (see, for instance, [36]). It thus fo
from Lemma 31 that sequenceu satisfies the condition required in Theorem 30, conclud
the proof in this case.

If u denotes the natural coding of a non-periodic three-interval exchange which
not satisfy the i.d.o.c., then it is shown in [2] thatu must be quasi-Sturmian and thus t
result is already proved in Theorem 6.

If u denotes a nondegenerate characteristic coding of rotation, then by Theor
we know that there exist a characteristic coding of an i.d.o.c. three-interval exc
v and a non-erasing morphismφ from {1,2,3} into {1,2} such that eitheru = φ(v) or
u = 1S(φ(v)), whereS denotes the classical shift transformation. In these two case
easily obtain that the sequenceu has a segment expansion factor> 3/2. Indeed, since
we have already noticed that any letter in thenatural coding of an i.d.o.c. three-interv
exchange admits a frequency, we can apply Lemma 32. The subshift associate
an irrational binary coding of rotation being uniquely ergodic (see, for instance, [
Lemma 31 implies that the continued fraction associated with such a sequence satis
conditions of Theorem 30, concluding the proof in this case.

Finally, if u denotes an irrational coding of rotation whose parameters satisfyβ ∈
Z+αZ, then it is proved in [28] thatu is also quasi-Sturmian. The transcendence of the
sociated continued fraction is thus already shown in Theorem 6, which ends the proof.�
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