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Abstract

We discuss combinatorial properties of a class of binary sequences generalizing Sturmian se-
qguences and obtained as a coding of an irrational rotation on the circle with respect to a partition in
two intervals. We give a characterization of those having a finite index in terms of a two-dimensional
continued fraction like algorithm, the so-call@texpansion. Then, we discuss powers occurring at
the beginning of these words and we prove, contrary to the Sturmian case, the existence of such
sequences without any non-trivisdyanptotic iritial repetition. We also show that any characteristic
sequence (that is, obtained as the coding of ti¥t @f the origin) has non-trivial repetitions not
too far from the beginning and we apply this property to obtain the transcendence of the continued
fractions whose partial quotients arises from such sequences when the two letters are replaced by
distinct positive integers.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

It seems that the question of the repetition of finite words occurring in an infinite
sequence was first looked by A. Thue [33]in 1906. It was then presented as a purely com-
binatorial exercise without any particular application. Today, the situation is quite different
since this problematic has been related to various fields, including the transcendence of
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real numbers, Diophantine approximation and quasicrystalthe study of the spectrum

of discrete Schroédinger operators. Numeroesent papers deal with these interactions,

as for instance [5,8,11,16,18,21]. It thus is not surprising in view of the fascination ex-
ercised by Sturmian sequences since theisal papers of M. Morse and G.A. Hedlund
[24,25] that the question of repetition of words occurring in Sturmian words has been con-
sidered by many authors [5,9,10,13,14,18,122234]. In order to study this problem, an
outstanding result gives an interpretation of Sturmian sequences in terms of substitutions
(also calledS-adic expansion) and of the continued fraction expansion of the associated
slope (see for instance [7] and also a more precise result in [6]).

Theorem 1. Let u be a characteristic Sturmian sequence with slopéf the continued
fraction expansion of is [0; a1 + 1,42, ...ay,, .. .], then

i ai az a1
u_nll—>mootl 0Ty’ .7 (D),

where substitutiong; and t2 are defined by

1 2
11— 1 and 1+— 12.
2+— 21 2+— 2

More generally, most of the results concerning Sturmian words can be proved by using
such an expression.

In a previous paper [2], we give a similar expression for binary codings of rotations
in which the role played by the continued#tion expansion is replaced in a natural way
by the so-called>-expansion. Then, we use this representation in [1-4] to deduce differ-
ent dynamical and combinatorial properties for these sequences and to deal with related
guestions arising at once from number theory, theoretical computer science and theoreti-
cal physic. In the present paper, we discuss the problem of powers of words occurring in
this class of binary sequences as well as ateel question concerning the transcendence
of real numbers defined by their continued fraction expansions. In this direction, it has
been for instance proved in [5] that the real numbes [0,1,2,1,1,2,1,2,...] having
the Fibonacci sequence as continued fractiquaasion is transcendental. More recently,
D. Roy [29-31] (see also [12]) exhibited surprising properties for similar numbers related
to an old conjecture in the study of the approximation of real numbers by algebraic in-
tegers. The attractive work of D. Roy should motive further development in this area of
mathematics.

2. Definitions
2.1. Binary codings of rotations
Let (a, B) € (O, 1)2. In the following {x} will mean the fractional part of the real.

The coding of rotation corresponding to the parameters, x) is defined as the symbolic
sequence = (u,),>0 With value in the binary alphab¢®, 1} by:
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_ {1 if {x +na} €0, B),
"7 10 otherwise

Whene is rational, the sequences obtained are clearly periodic, otherwise the coding
of rotation is said irrational. The casgs=« or 8 = 1 — o give Sturmian sequences and,
more generally, the casg € Z + oZ gives quasi-Sturmian sequences (see [28] and see
Section 4 for a definition of Sturmian and quasi-Sturmian sequences). In all that follows,
we only consider irrational binary codings of rotations. A binary coding of rotation is said
to be non-degenerateff¢ Z + oZ. A coding of rotation is called characteristicxf= 0.

2.2. Interval exchange transformations

Let s e N, s > 2. Let 0 be a permutation of the sdtl, 2,...,s} and letx =
(A1, A2, ..., As) be a vector irR® with positive entries. Let

1=[0, [, Where|A|:Zki, and for1<i <s, I,-:[ZM,ZM).

i=1 j<i o j<i

The interval exchange transformation associated Withr) is the mapE from I into
itself, defined as the piecewise isometry which arises from ordering the intéyualth
respect tar. More precisely, ifx € I;,

E(x)=x+a;, whereq; = Z Ao(k) — Z)\k.

k<o =1(i) k<i

We can introduce a natural coding of the orbit of a point under the action of an interval
exchange transformation by assigning to eaeimelnt of this orbit the index of the interval
which contains it. Such a coding is said characteristic if the starting point is the origin.
We say that an interval exchange transformation satisfies the i.d.o.c. (infinite distinct orbit
condition) introduced in [20] if the orbits of its discontinuities are infinite and distinct.

2.3. TheD-expansion

In a previous paper [2], we have investigated the links between non-degenerate binary
codings of rotations and i.d.o.c. three-interval exchange transformations. An algorithm was
introduced which can be regarded as a speed-up of the Rauzy induction for three-interval
exchange transformations. This algorithm issagyeneralization of the classical continued
fraction algorithm. Let us introduce a map

D:[0,1) x RY — [0,1) x RY.

given by
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Given a non-degenerate codiofyotation with parameterg, 8), 8 > «, the associated
D-expansion is given by the sequen(eg, i,),en Which is defined as follows:

_ .1 ity <1,
“"—{ J ’"—{o if v > 1,
where(xy, y») = D" (xo, yo) and

1|18y =
(x01y0)=( [ Je—p al )

1= (22 + e 1= (|52 ] + De

Xn

yn_l

For a non-degenerate coding of rotation correspondingx@) € [0, 1)%, « > B, its
D-expansion is given by th@®-expansion associated with the coding corresponding to
(1 - «,1— B). The D-expansion of a non-degenerate coding of rotation always satisfies
that(a,),en is not eventually vanishing and th@t,), <y is not eventually constant.

2.4. Index of an infinite word and initial critical exponent
Let w be a finite word angb a positive integer. We will denote hy? the word

wl =ww...w.
—

p times

More generally, when is a positive real number* is the wordw*u, whereu is the
prefix of w with length[(x — [x])|w|]. Letu be an infinite word. The index af, denoted
by ind(u), is defined by:

ind(u) = sup{x € R: 3w, w* € L()}.
We can also define the asymptotic indexupfienoted by inti(u), by
ind*(u) =Sup{x eR: Vn>0, 3w, |lw >n, w'e L‘(u)}.

These definitions easily imply that i) and ind (u) are together finite or infinite. In the
case where these quantities are both finite, we will sayunets a finite index.

Let p be a positive integer. A word is said p-power free ifw” € L(U) = w=¢
and asymptoticallyp-power free if there exists an integétr such that ¢” € £(u) and
lw| > N) = w=ce.

In the remainder of the paper, we will write< w when the word: is a prefix of the
word w. We define the initial critical exponent of an infinite wardy

ice(u) = Sup{x eR: Vn>0 3w, |lwl >n, w' < u}.
This definition obviously implies that i¢e) > 1 for any sequence and we will exhibit

in the following examples of sequences lndtit any asymptotic initial power, that is, for
which ice is equal to 1.
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3. Main results

We present here our three main theorems (that is, Theorems 3, 8, and 10) together with
related results already obtained in the case of Sturmian sequences.

3.1. Words with a finite index

The following characterization of Sturmian sequences with a finite index was first
proved by P. Mignosi in [22] and the quantitative part of this result is due more recently to
D. Vandeth [34].

Theorem 2 (Mignosi, Vandeth)Letu be a Sturmian sequence of slapand let(a,),>o0
be its continued fraction expansion. Thehas a finite index if and only # has bounded
partial quotients.

Moreover if¢ has bounded partial quotients, thenis asymptoticallykth power-free
but not asymptoticallyk — 1)th power-free withk = 3+ lim sup{a,,: n > 0}.

The following result proved in Section 5 is an analogous of Theorem 2 in the case
of non-degenerate binary codings of rotations, Thexpansion taking the place of the
classical continued fraction expansion.

Theorem 3. Letu be a non-degenerate binary coding of rotation andigt, i,,) >0 be its
D-expansion. Them has a finite index if and only if there exists a non-negative intéger
satisfying

(i) an <M,
(i) in=ipy1="-=iptm—1= 3k, n <k <n+ M — 1 such thata; # 0.

Moreover, if there exist infinitely many such that eithew,, = M or such thati,, =
Iny1="---=ip+pm—2 @nday =0,n <k <n+ M — 2, thenu is asymptoticallycth power-
free but not asymptoticallgk — 3)th power-free fok = M + 4.

A characterization of the non-degenerate binary codings of rotations which are linearly
recurrent is given again in terms of thdir-expansion in [4]. This result together with
Theorem 3 allows us to characterize the codings of rotations with a finite index and which
are not linearly recurrent. Let us note that a Sturmian sequence has a finite index if and
only ifitis linearly recurrent.

Corollary 4. Letu be a binary coding of rotation and l€t,, i,),>0 be itsD-expansion.
Then,u has a finite index but is not linearly recurrent if and only if there exists a non-
negative integeM satisfying

(i) an <M,
(i) in=ipy1=""=ipt+m—1= Tk, n <k <n+ M — 1 such thaty; #0,
(iii) Vn >0, 3k such thaty; =0,0< j <n.
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3.2. Words without any non-triviasymptotic iiitial repetition

The study of arbitrarily long initial powers in infinite words has recently been related
to important questions in different areas of mathematics and theoretical physic. The fol-
lowing combinatorial condition of transcenut= is proved under the lines in [5]. Their
proof is based on a famous result of W.M. Schmidt [32] on simultaneous approximation
by algebraic numbers. The method they used was first initiated in [15] and in [26,27].

Theorem 5 (Allouche et al.) Letu = (4,),>0 be a sequence of positive integers taking
two different values. If the subshift generatedulig uniquely ergodic and ite(u) > 3/2,
then the real numbet := [0, ug, u1, ..., u,, ...] is transcendental.

In particular, this condition is used again in [5] to prove the transcendence of Sturmian
continued fractions.

Theorem 6 (Allouche et al.) Letu = (u,),>0 be a sequence of positive integers. Then
the real number := [0, ug, u1, ..., u,,...] is transcendental if the sequenaéas quasi-
Sturmian(the definition of quasi-Sturmiaequences is given in Sectiéh In particular,

the same conclusion holds wheiis a Sturmian sequence.

The key point to prove the transcendence of Sturmian continued fractions and also to
study the spectrum of one-dimensional discrete Schrédinger operators with Sturmian se-
guences as potentials in [13] is given by the following property of Sturmian sequences
obtained independently in [5,13].

Theorem 7. Any Sturmian sequence begins in arbitrarily long squares.

We will show in Section 6 as a consequence of the following result that such a nice
property is generally far to be true for binary codings of rotations.

Theorem 8. There exist a non-countable number of characteristic binary codings of rota-
tions with initial critical exponent equal td.

However, we can easily prove by using Theorem 11 and a result of W. Veech [35, p. 225]
that the presence of arbitrarily long squares at the beginning of characteristic codings of
rotations is generic.

Proposition 9. For almost all parametersgo, ) (in the sense of the Lebesgue measure on
the squarg the corresponding characteristic coding of rotation begins in arbitrarily long
squares.

More precisely, such a conclusion holds if there are infinitely many positive integers
such that one of the following holds

(i) a,=i,=0, (i) ip =in+l=O,

where(a,, in),>0 denotes thé-expansion associated withy, 8).
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3.3. Almost initial powers and an application to transcendence

Though Theorem 8 shows the prossibility of applying Theorem 5, we will prove that
characteristic codings of rotations always/@aon-trivial asymptotic repetitions not too
far from the beginning (see Section 7 for a definition) and we will use this property together
with a recent result of J.L. Davison [16] to obtain the following extension of Theorem 6.

Theorem 10. Letu = (4,),>0 be a sequence of positive integers. Then the numaber
[0, uo, u1, ..., u,,...]is transcendental if one of the following holds

(i) the sequencea is an irrational characteristic coding of rotatign
(i) the sequence is a characteristic coding of a non-periodic three-interval exchange
transformation.

The combinatorial condition of transcendence given in [16] generalizes Theorem 5 and
is recalled in Section 7 (Theorem 30). Unfortunately, our method does not allow to prove
the transcendence of the continued fraic$ associated to non-characteristic codings of
rotations. This is mainly due to the fact that an explisidic expression is just known for
the characteristic sequences.

The organization of the article is as folis. In Section 4 we recall some classical defin-
itions on infinite words and morphisms together with fhadic expression obtained in [2]
for non-degenerated binary cods of rotations. This representation in terms of substitu-
tions will be the key tool in the remainder of the paper for proving our results. Sections 5-7
are devoted respectively to the proofs of Theorems 3, 8, and 10.

4. Background on infinite words
4.1. Sequences and morphisms

A finite word on A is a finite sequence of letters and an infinite word4is a sequence
of letters indexed byN. The length of a finite word, denoted byw|, is the number of
letters it is built from. The empty word, is the unique word of length 0. We denote by
A* the set of finite words onl and by.AY the set of sequences oh

Let u = (ux)ren be a symbolic sequence defined over the alphabe factor ofu is
a finite word of the formu;u;1...u;, 0<i < j. If w is a factor ofu anda a letter, then
|w|, is the number of occurrences of the letteén the wordw. We denote by (u) the set
of all the factors of the sequenaeThe setC(u) is called the language of A sequence in
which all the factors have an infinite number of occurrences is called recurrent. When these
occurrences have bounded gaps, the sequemadiésl uniformly recurrent. A sequence is
said linearly recurrent (with constaft) if there exists an integet’ such that for any of its
factorsw the difference between two successive occurrences is boundgtly

We call complexity function of a finitely-valued sequencé¢he function which asso-
ciates with each integer the numbem(n) of different words of lengtlx occurring inu.
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A sequence is called Sturmiangi{n) = n + 1 for every integern. More generally, a non-
periodic sequence is called quasi-Stiamif there exists a positive integersuch that
p(n) < n+ cforevery integen.

Let u be a uniformly recurrent sequence over the alphaband letw be a nonempty
prefix of u. A return word tow of u is a factonu; x—17 (= u; . . .ux—1) of u such that and
k are two consecutive occurrencesmfThe sequence can be written in a unique way as
a concatenation of return words#oLet Ry ,, be the set of return words 0 in u. Then
u=uwov1i...v..., Wherev; € Ry . The fact thaw is uniformly recurrent implies that
Ru,w is a finite set. We can therefore consider a bijective map, from Ry ,, to the finite
set{1, 2, ..., CardRy )}, where, for definiteness, the return words are ordered according
to their first occurrence (i.e/,\g)}v(l) is the first return wordy, AJ}U(Z) is the firsty;
which is different fromuvg, and so on). The derived sequencaucdn w is the sequence
with values in the alphabél, 2, ..., Card Ry )} given by

Dy (u) = Au,w(UO)Au,w(Ul) cen Au,w(vi) e
To such a sequence we can associate a morphjsby
Quw(i) =v;.

We obtaing,, (D,,(u)) = u. The morphisn,, is called the return morphism to of u.

In the following, morphism will mean homomorphism of (free) monoid. A morphism
¢ such that no letter is mapped to the empty word is said to be non-erasing. A non-erasing
endomorphism of free monoid is called substitati All the morphisms considered in the
remainder of the paper will be non-erasing.

4.2. AnS-adic representation of binary codings of rotations

Let k be a non-negative integer. Let us consider the two following substitutions defined
by

F Gk
1+— 13 1— 12
2 —> 2kt13 and 2 — 121 ()
3+— 2¢3 3+— 13

and letg, be the morphism defined frofd, 2, 3} to {1, 2} by

Pk

1— 1
2 > 12t1
33— 12k,

With such a notation, we have given in [2] the followiSegadic representation of char-
acteristic non-degenerate codings of rotations.



B. Adamczewski / Advances in Applied Mathematics 34 (2005) 1-29 9

Theorem 11. Letu be a characteristic non-degenerate coding of rotation viitexpansion
equal to(ay, in)n>0 € (N x {0, 1) and letv be defined by

V= ,,'Lmoo( [1(7 0 Ga; ”)<1>>a

j=0

where] [ means the composition of morphisms from left to right. Thénthe natural cod-

ing of ani.d.o.c. three-interval exchange and there exists an explicit non-erasing morphism
¢ from {1, 2, 3} to {1, 2} such that eitheu = ¢ (v) or u = 1S5(¢(v)), whereS denotes the
classical shift transformation.

Conversely, the following result is particularly useful to exhibit codings of rotations
or of three-interval exchanges with a prescribed property. We will use it for instance in
Section 6 for proving Theorem 8.

Theorem 12. Let k be a non-negative integer and l&t,, i,),>0 € (N x {0, 1HYN, with
(an)n>0 Not eventually vanishing and wiif,),>o not eventually constant. Then, the se-
guence

V= ,,'Lmoo(ﬂ(féii °Ga ”')(1)):

Jj=0

is a natural coding of a three-interval exchange transformation and the sequeadgg (v)
is a characteristic coding of rotation having the sequegg i,),>o0 asD-expansion.

5. Wordswith afiniteindex: proof of Theorem 3

Our proof of Theorem 3 follows an idea introduced in [4]. In the remainder of this
section,M denotes a fixed non-negative integer. We first have to prove that any infinite se-
guencev defined as in Theorem 11 {8/ + 3)th power-free when the sequeneg, i,), >0
satisfies the conditions (i) and (ii) of Theorem 3. In order to prove this point, we define three
language ovefl, 2, 3} which does not contain any™ + 3)th power and with extra con-
ditions. Then, we obtain stability propemri¢see Lemmas 14, 16-18) for the image of our
languages by the different substitutiods ( Gi, 5, andGl) used to built the sequenee
These properties allow us to show that at each step of the construction of the seguence
the finite prefix that we obtain does not havéM + 3)th power as a factor, proving that
v is (M + 3)th power-free. The fact thatis asymptotically M + 3)th-power free finally
derives from a classical trick on derived sequences.

Let £ be the largest language (with respect to the inclusion) defined over the alphabet
{1, 2, 3} and satisfying the following conditions:

() Yo e{1,2,3}*, oMt e L1 = w=c¢,
(i) Yo e{l,2,3)*andvz e (1,2, 3}, (w2)Mt2w ¢ L1,
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(iii) 33 e L1= (21¢ £1 and 22¢ L,),
(iv) 11e€ L1 = (22¢ L1 and 23¢ L1).

Let £, be the largest language defined over the alph&he?, 3} and satisfying the
following conditions:

() Yoe{1,2,3}*, oM B c L= w=c¢,
(i) Yo e{l,2,3)*andVz e {1,2,3}, (w2)Mt2w ¢ L,
(iii) 33 ¢ Lo.

Let £3 be the largest language defined over the alph&he?, 3} and satisfying the
following conditions:

() Yo e{1,2,3}*, oMt3 e L3 w=c¢,
(i) Yo €{1,2,3)*andvz € {1, 2,3}, (w2)M*+2w ¢ L3,
(i) 11 ¢ La.

These three languages are clearly all included in the langQatgdined over the alpha-
bet{1, 2, 3} as the largest one satisfying the condition:

Vo e{l,2,3)*, oMBer = w=e
In the remainder of this sectiofty andG; denote the substitutions defined in (1).

Lemma 13. Letk be a non-negative integew, € 7 (L£1) andz € {1, 2}. Then, if3wFi(z) €
Fr(L1) there exists a worah' € {1, 2, 3}* such thatw = Fy(w').

Proof. The proof directly comes from the definition 8%,. O
Lemma 14. Letk be a positive integek < M. Then
Fr(L) CcLiNLoN L3,

Proof. Letk be a positive integek, < M. The fact thak > 1 implies that the letters 1 and
3 areisolated i (L1). Thus,Fy (L£1) satisfies the conditions (iii) and (iv) in the definition
of £1 and the condition (iii) in the definitions af; and Ls.

It remains to prove that the conditions (i) and (ii) in the definitiorCafare satisfied by
Fr(La).

(i) Let w € {1, 2, 3}* such thatw™+3 € F;(£1). Then there exists a 3-tuple of finite
words (x, v, y), x € {¢,2/3: 1<I<k},ve (1,23}, yefe 1,2 1<I<k+ 1}, such
that

w=xFr(v)y. (2)
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Moreover, the unicity of the decomposition is ensured i chosen with a maximal
length and if 3 is not a prefix af. Let us assume thai is a non-empty word. Two cases
have to be considered.

(@) If v=e¢then(xy)M+3 e Fi(L1). Since|yx|3 < 1, this should imply the existence of
aletterz such that™*2 e £;. A contradiction appears sine& 2 cannot lie inly in
view of (ii).

(b) Let us assume that+# ¢. Following the decomposition given in (2), we obtain that
oM+3 = x (Fr(v)yx)"*+2F; (v)y. Sincev does not begin with a 3 and thiatr|3 < 1,
Lemma 13 implies the existence of a lettet {1, 2, 3} such thatyx = Fy(a). We thus
have

"3 = x(F(va)) " P Fe()y = x Fr (va) M +20) y.

The fact thatv does not begin with 3 implies thava)”+2v € £1, which gives a
contradiction with (ii). In fact, if we consider a woude {1, 2, 3}* such that#; (u) €
Fi(L1) andu does not begin with 3, thane L.

(i) Let w e {1,2,3}* and z € {1,2,3} such that(wz)”+%w € Fi(L1). Let us
consider the decomposition @b in w = xFi(v)y (as in (2)). Thus(wz)M+2w =
x(Fr(v)yzx)M+2F, (v)y. Sincev does not begin with 3 anfzx|3 < 2, Lemma 13 im-
plies the existence of a lettersuch thatyzx = F(a) or the existence of two lettetsand
b such thatyzx = Fi(ab).

(@) If yzx = Fi(a), then (w2)M+2w = xFi((va)”*+2v)y. This would imply that
(va)*2y € £1 becauser does not begin with 3, which will give a contradiction
with (ii).

(b) If yzx = Fi(ab), thenz = 3, b = 3 andx = 2¢3 because < {¢, 2/3: 1< <k} and
ye{e 1,21 1< <k+1}. It thus follows(wz)M+2w = 2k3F, (va3)M+2v)y.

(b1) If a =1, theny = 1 and (wz)M 12w = 2k3F((v13)M+21)13 € Fi(L1) since
the letter 1 is always followed with 3; s@z)™ 2w = 2k3F; ((v13)M+2y1) €
Fi(L£1). Sincev does not begin with 3(w13)"*2v1 € Fi(L1), which gives a
contradiction with (ii).

(bp) If a =2, theny = 2Kt and we obtain thatwz)™ 2w = 283F; ((v23)M+2v2) €
Fi(L1) because 2! is always followed with 3. Since does not begin with 3,
it follows (v23)M+2y2 € i (L1), which gives a contradiction with (ii).

(b3) If a =3 and sincer = 2¢3 then either B33)*2y € £1 or 23312y e £;.
The first case gives a contradiction with (ii) becauge33) 2y = (3v3)M+23y.
In the last case and sinaedoes not begin with 3,®2should have 21 or 22 as
a factor. But since 33 should also be a factorZaf this gives a contradiction
with (iii). O

Lemma 15. Letk be a non-negative integen, € Gr(£1) andz € {2, 3}. Then, ifFx(z)wl e
Fr(L1) there exists a woray’ € {1, 2, 3}* such thatw = G (w’).
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Proof. It directly follows from the definition of the substitutign.. O
Lemma 16. Letk be a positive integek < M. Then
Gk(L1) CL1NL2N L3,

Proof. This proof is similar to the one of Lemma 14. This comes from the symmetry
between the substitutions; and G, for which the role of the letters 1 and 3 are just
exchanged. The central place of the letter 3 in the proof of Lemma 14 is now given to
the letter 1. In order to help the reader, we recall for word§46L1) an analogous de-
composition of the one given in (2). Lete {1, 2, 3}* such thatw™*3 € G;(L1). Then,
there exists a 3-tuple of words:, v, y), x € {£,3,2: 1 <1<k + 1}, v e {123}

y e {e,12: 1 <1 <k}, such that

o =xGr(v)y. a
Lemma 17. Letk be a positive integek < M. Then

FE(L2) € L1N La.
Proof. We recall that the substitutioﬁ(’,‘ is defined by

7
1+— 13
2 —> 23

3+— 3.

This definition implies that none of the words 11, 21 or 22 lie in the Ianguﬁ@&iz).
In particular,]-'(’;(ﬁz) satisfies the assertions (iii) and (iv) in the definition®f and the
assertion (iii) in the definition of’3.

Now, let us show that the assertions (i) and (ii) in the definition£pfand L3 are
satisfied byF5 (L2).

(i) Let w € {1,2,3}* such thatw¥*3 € F&(L2). Then, there exists a triple of words
(x,v,y) with x e {£,3: 1<I<k+1},ve{l,2,3*andy e {e1,13,23: 1<I<
k + 1}, such that

w=xFr(v)y. (3

Moreover, this decomposition is uniquevifis chosen with a minimal length and if the
letter 3 is not a prefix of. Let us assume that is not reduced to the empty word. We thus
have two cases to consider.

(@) If v=e, then(xy)M*+3 e F§(L,). If moreovery = ¢, then we should have32 e
]-'(’;(122), which is impossible because 83C5. Sincex cannot be the empty word, we
obtain the existence of a lettere {1, 2} such that eithety = F5 (a) or yx = F§(a3).
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In the first case, we will obtain that’+2 € £, sincea is not equal to 3. This produces
a contradiction with (ii). In the second case, the same reasoning@i8g%+2a € £,
hence again a contradiction with (ii).

(b) Now if v # &, thenw™*3 can be decomposed ag?*+3 = x (5 (v)yx)MT2F% (v)y.
Sincev does not begin with 3 and sin¢ex |1 + |yx|2 < 1, Lemma 13 implies the exis-
tence of a letten € {1, 2, 3} such that eithepx = Fj (a) € F5(L2) Of yx = Fs(a3) €
]—‘(’;(Liz). In the first case, we will haveva)M+2y € £5, hence a contradiction. In the
second case and sinee# 3, we will obtain (va3)®*+2va € £, which is forbidden

by (ii).

(i) Let w € {1,2,3}* andz € {1, 2, 3} such thatwz)" 2w € F§(L2). Let us consider
the decomposition ob in w = xF5(v)y. Then,(wz2) 2w = x (F& (v)yzx)M 275 (v)y.
Sincev does not begin with 3 and sin¢ex|1 + |yx|2 < 2, it follows that there exists a
lettera € {1, 2, 3} such that eithepzx = F5(a) or yzx = Fk(a3). We now have to deal
with these two cases.

@) If yzx = F§(a), then(wz) 2w = x F§ (va)M+2v)y. We will obtain (again using the
fact that 3 is not a prefix of) that (va)™*+2v € £1, hence a contradiction with (ii).

(b) If yzx = f(])‘(a3), thena # 3 since 33¢ Lo. If y # ¢, then f(])‘((va3)M+2v)y €
F&(L2) and thus it implies thatF} ((va3)M+2v)Fh (a) € F§(L2). It follows that
(va3)M*2ya e L,, which is forbidden by definition of .

If y = e, thenx = 31, The fact that 81754 ((va3)M2v) € F§(L2) thus implies
the existence of a lettdr € {1, 2} such thatFs (b3)F5((va3)M+2v) e F5(L2). We
thus deduce thatBva)*23v e £, hence a contradiction with assertion (ii) of the
definition of £2. O

Lemma 18. Letk be a positive integek < M. Then
g’é (L3) C L1N Lo.

Proof. For the reasons already exposed in the proof of Lemma 16, this proof is similar to
the previous one if we exchange the roles played by the letters 1 and 3.

Lemma 19. A uniformly recurrent sequencehas a finite index if and only if this is the case
for any of its derived sequences. More precisely, for any derived sequéehedollowing
holds

o if vis not asymptoticallkth power-free, themw is not asymptoticallkth power-free,
o if vis asymptoticallyth power-free, themw is asymptoticallyk + 1)th power-free.

Proof. Let u be a uniformly recurrent sequence defined over the alphdbédt u be a
factor ofu and letv be the derived sequencewbn . Then there exists a morphisp),
called the return morphism, such that(v) = u. It thus follows that ifv is not asymptoti-
cally kth power-free, them is not asymptoticallycth power-free.
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Now, letr be the number of return words en There thus exist possibly empty but
distinct wordsvy, vy, . . ., v,, defined overd such that

Pu
B={12,....r} — A

i —> uv;.

Let us assume that contains arbitrarily longk + 1)th powers. Letw be a sufficiently
long word such thatv**1 e £(u). Sincew is long enough and is uniformly recurrent,
the wordu has at least two different occurrencesinThe wordw can thus be decomposed
as

w=x¢,(v)y,

wherex is a strict suffix of the image of a letter ky,, v € B is not the empty word and
wherey is a strict prefix of the image of a letter lpy,. Thus,wf = x (¢, (V) yx) @, (v)y.

The fact that the set of return words is a code (see [17]) allows us to say that there is a
unique letteri € B satisfyingyx = ¢, (i). It thus follows thatyp, ((vi)¥) is a factor ofu.

By definition of the derived sequenceés;)* is a factor ofv. We thus obtain that i¥ is
asymptoticallykth power-free them is asymptoticallyk + 1)th power-free. O

Remark 20. Such a result is of course no more true if we replace arbitrarily long powers
by powers.

Proof of Theorem 3. Let u be a characteristic non-degenerate coding of rotation and

let (an, in)n>0 be itsD-expansion. Then as it is already mentioned in [4], there exists a
sequence

L A )
— h J J
V= nILrnoo( ,_0(‘7:“;' ° g“;' )(1))

J

such that:

(i) vis a derived sequence of
(i) there exists a non-negative intedgersuch thawn > 0, a,, = a4+, andi, = i,y«.

Now, let us assume that for any non-negative integer

(i) an <M,
(i) in=ipy1=--=iptm—1=> 3k, n <k <n+ M — 1 such thaty # 0.

Let us consider the following sets of substitutions:

S1={F.G: 1<k<M},  S2={F§ 1<k<M}, and
Ss={G& 1<k < M}.
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The condition satisfied by thB-expansion of the sequenaeensures the existence of a
unigue sequence of substitutio@s ), >0, 0, € S1U Sz U S3 such that

V= nli_)moo 0001 ...0,(1) 4)
with the additional conditions
o €S2 =01 ¢ S2 and oy € S3= opy1 ¢ S3.
Then Lemmas 14, 16—18 imply that for any non-negative integer
0001...0,(1) e (L1UL2UL3) C L,

which in particular shows thatis (M + 3)th power-free.

Moreover, if there exist infinitely many such that eithes, = M ori, =i,41=---=
l,,+M 2anday =0,n <k <n+ M - 2, then at least one of the substitutiafig, QM,
}'0 or go appears infinitely often in the composition (4). We thus deduce directly from
the definition of these substitutions that in that cas®ntains arbitrarily longM + 1)th
powers.

The proof thus follows from Lemma 19 and the previous observatiors.

6. Wordswithout initial powers: proof of Theorem 8

This section is devoted to the proof of Theorem 8. Our proof is based on an explicit
construction of a class of binary codings ofations without any asymptotic initial power,
that is, for which ice is equal to 1. These sequences are obtained by choosing suitable
associated-expansions.

The following definitions will be used in the remainder of this section. Ugh,>0
and(k,),>0 be two sequences of positive integers. We define the substittioner the
alphabetl, 2, 3} by

Opn
1+ 12n(13)k
2 — 12nt1(13)kn
3+— 13

It thus follows thab, = G;, o ]—‘(’)‘" , Where the substitution, and.7; are defined in (1).
Let us consider the substitutiah, = ]_[Z;é ok (we recall thaf [ means the composition of
morphisms from left to right). Our goal isow to study the initial critical exponent of the
sequence = lim,_, o, ¥, (1). In what follows, we will also have to consider the sequences
v; defined by

n—1
V)= nILmoo ( l_[ crk> ().
k=1



16 B. Adamczewski / Advances in Applied Mathematics 34 (2005) 1-29

Thus,y;(v;) = V.
Remark 21. By definition ofoy,, ¥, (w) < v impliesw < v,,.

Lemma 22. Letk be a positive integer and I&f, be the prefix of lengtk of the sequence
Let us assume that, admits the following decompositioB(u, w) € {1, 2, 3}*, 3(a, b) €
{1,2,3}2, a # b such that

(i) Vk =uawu,
(i) Viy1= Vib.

Then, eithem =1andb=2o0ra=2andb=3.

Proof. The casesd =1,b =3) and ¢ = 3, b = 1) can be suppressed since we easily
verify that 11¢ L(v).

Let us assume that=2 andb = 1. It thus follows thatx cannot be the empty word,
begins with the letter 1 and admits the word?1&s a suffix. This implies the existence of
awordu1 such that: = o1(11)12° and of a wordws such thatw = 2(13)%cg(w1). Then,

Vi = oo(u12w1u1) and it derives from 21 that;2wiu1 should be a prefix o¥; satisfying
the assumptions required f&f and with a smaller length. By iterating this process, we
obtain a contradiction.

The case where = 3 andb = 2 is similar. O

Lemma 23. Letk be a positive integer such thdj, satisfies the assumptions required by
Lemma22. If moreovera = 1 andb = 2, then there exists a positive integeand a word
m € {1, 2, 3}* such that

(i) 31341 <m,
(i) w=Yn(127)_1(12n-1) .. yry (121)120,
(i) w =313 o1y (3L~ .., 1(3(A* 17y, (m).

Proof. Sincea = 1 andb = 2, the word 12 is a suffix ofu and the word &L.3)%0—1 js
a prefix ofw. This implies the existence of a word such thaw = og(x1)12° and of a
word w1 such thatw = 3(13)k0~150(w1). Moreover, we have that;, = og(u1lwiug)120
and thus thato(u1lwiu1)1202 < v. It thus comes from Remark 21 thatlwiv12 < v
and thatu1| < |u|. Then, we can iterate this process ungilhas a minimal length, that is,
u, = 12 The result thus follows witlm = w,. O

Lemma 24. Letk be a positive integer and Iéf, be the prefix of lengthk of the sequence
Let us assume that, satisfies the assumptions of Lem®2alf moreovera = 2 andb = 3,
then there exists a positive integeand a wordm € {1, 2, 3}* such that

(i) 21 < m,
(i) u=Yn(DYyp-1(D) ... ¥2(DI,
(iii) w = 20(13)koyry (22(13)k1) ..., _1(2In-1(13)kn-1) 4, (m).
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Proof. Sincea =2 andb = 3, the letter 1 is a suffix of and then the word/2 1 is a

prefix of w. This implies the existence of a word such that: = og(u1)1. If moreover
u1 is not the empty word, that is, if # 1, then there exists a wond; such that either
w = 2l0~1(13)kogq(wq) or w = 2/0(13)%05g(w1).

In the first case, we will havé/y = oo(u1lwiu1)l, which implies thatVi 1 =
oo(u1lwiu13) since by assumptioVy1 = V3. Then, by Remark 21 we will have
u1lwiu13 < v. This is in contradiction to the fact that #1L(v).

We thus havew = 210(13)]{000(11)1) and thernvy = op(u12wiu1)l. SinceViy1 = Vi3,
we obtainui2wiu13 < v with |u1| < |#|. Then we can iterate this process unijl has a
minimal length, that isy, = 1. The result thus follows witm = w,. O

Lemma 25. For any positive integes, let us consider
urn = Y (120 a1 (12-1) . yrg (121) 120,
w1 = 313 01y (3(13 L) Ly (3134,

uzn =Yn(Dn-1(D...¥2(H1, and
w2, = 2l0(13)k0w1(211(13)k1) oY (21,,—1).

Thenu ,lwy pu1, < Vandug 2w yu2 , < V.
Proof. An easy induction shows that for any positive integer
urnlwiy =Yn41(1)  and wug, < Yni1(2).
It follows
urnlwi iy < Ya41(12) < v.
Similarly, we obtain by induction that for any positive integer
U2 n2wz =Y (127) and up, < ¥ (13).
It follows
U2, 2W2 n V2, < 1ﬁn+1(12"13) <V,
concluding the proof. O

Lemma 26. Let us consider the two real sequences,),>o0 and (ez,,),>0 respectively
defined by

ui, uz,
[u1,nl and ep, =1+ lu2,n|

ern =14 MLl L
IUl,nlwl,n| |u2,n2w2,n|
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Then

ice(v) = max[lim Supe1.,, limsupez,, }

n—oo n—o0

Proof. It first follows from Lemma 25 that

ice(v) > max[lim Supe1.,, limsupez,, }

n—odo n—0o0

Now, let us consider an initial power of Sincev clearly does not begin with any
square, such an initial power can be decomposed asv, whereu is a strict prefix of the
wordv. We can assume without any restriction thatis a maximal initial power. That is,
there exists a lettdr such thabub < v andub is not a prefix ofv. Sinceu is a strict prefix
of the wordv andub is not a prefix ofv, we can decomposed the war@suaw, a being
a letter different to the letter. Then it follows from Lemma 22 that either= 1 andb = 2
ora =2 andb = 3. By Lemmas 23 and 24, we have

ice(v) < max[lim Supei n, limsupez , }

n—oo n—oo

hence the proof. O

Proof of Theorem 8. Let (/,),>0 and (k,),>o0 be two increasing sequences of positive
integers satisfyind, = o(k,). Let us note that there exists a non-countable numbers of
such sequences. All the other quantities are defined as previously in this section.

Now let us consider the sequenes, i,).>o0 defined by

(101 0)1 (01 1)1 (01 1)1 AR (01 1)7 (111 0)1 (01 1)1 (01 1)1 ey (07 1)1 AR ]
ko times kq times
1"'1ln70)7 (07 1)7 (07 1)7"‘1(01 1)7""

kn times

By Theorem 12, we know that there exists a characteristic coding of rotatiefined by
u=¢1(v), where

. S

V:n[)moo(l_[(fajj o gaj ])(1)>
j=0

and wherep; is defined by

1— 1
2 — 122
3+— 12
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The definition of¢; implies that if icév) = 1 then ic€u) = 1. The last step to prove
Theorem 8 is thus to show that i@ = 1 for our choice of sequencés),, >0 and(k,),>o.
In order to prove this, we first have to remark that our sequencerresponds to the
sequence defined at the beginning of this section with our choice of sequénge.o
and(k,),>0. We thus can keep the previous notation used in this section.

We now have to recall that for any positive integer

[¥n(13)] = (¥ (2)] = [¥a (D).

Sincel, [, (2)] < [¥n (120)] < (I + D[¥, (2)] and [, (331 | > (ky — D]y ()], it
follows that

lim sup(er.,) < 1+Z(z +1)/Z(1 +kj—1).

n— oo

since|yy, (20 (13)*)| = ¥, (21| = (I, — ¥ (2)], it follows that

limsup(ez.,) < 1+n/2(l —-1).

n— oo

Since the sequencés,), >0 and (k,),>o0 are increasing and satisfy = o(k,), we ob-
tain that the real sequences ,),>o0 and(ez,,),>0 together vanish whem increases. By
Lemma 26, we thus have ig® = 1, concluding the proof. O

Remark 27. If the sequence§,),>o0 and (k,),>0 are constant ones (respectively equal
to ! and tok), we obtain following [2] a binary coding of rotation with parameters lying

in a same quadratic field. In that case, the parameters can be computed explicitly and
necessarily the initialritical exponent is greater than 1. Howevel, i§ large enough and

if k is large enough with respect 1gp we can construct explicit codings with an initial
critical exponent less than/2 and thus for which Theorem 5 could not be applied. For
instance, this is the case of the binary coding of rotation associated with parameters

< 785— /25277 1037 169v2527
o=

1882 P 1882Jr 295474
which has the periodi®-expansiori (12, 0)(0, 1)145].
7. Segment expansion factor and the transcendence of some continued fractions:
proof of Theorem 10
Inthe previous section, we have shown the existence of many binary codings of rotations

without any asymptotic initial power. This é#rence with respect to the Sturmian case has
a particular importance for proving the transcendence of associated continued fractions.
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Indeed, we know now that we cannot apply Theorem 5 to this class of sequences. How-
ever, we will prove Theorem 10 by using a recent result due to J.L. Davison [16] which
generalizes Theorem 5. Roughly speaking, te&ult allows to replace asymptotic initial
powers by asymptotic almost initial powers in the method given by [5].

We first have to precise what is the meaning of almost initial powers by recalling the
following definition introduced in [16].

Definition 28. Supposer € R, y > 1. The infinite wordu = ugu1uy . .. is said to have a
segment expansion factory if it begins, for every positive integer, in U, V,, W,,, where:

U, is a possibly empty word,
im0 [Vl = 00,

W, < V,; for some positive integer,
|Un Vin W |
IABIAARSS

Before stating the generalization of Theorem 5 obtained by J.L. Davison, we introduce
a quantity which naturally takes place in the study of continued fractions.

Definition 29. Let« be a real number and 1€p, /g,),>0 be the sequence of convergents
associated witkk. Then, we define the quantify(«) by

. 1 T &
L(x) =Ilim sup; Iogqn/ Ilnrglor;f - loggy.

n— oo

The real numbew has a Lévy constant when Iimoo%logqn exists, that is, when
L(a) =1.

We are now ready to state the main result of [16].

Theorem 30 (Davison [16]) Let« be a real number having the sequence: uguiusy. ..
as continued fraction expansidret us assume that the sequendeas segment expansion
factor> y. Then, ify /L(«) > 3/2, the number is transcendental.

The remainder of this section is devoted to auxiliary results needed for proving Theo-
rem 10 and to the proof itself.

Lemma 31. Let o be a real number having the sequence- uguiuz... as continued
fraction expansion. LaD(u) be the closure of the orbit under the shifof the sequence.
If the dynamical systef©O(u), S) is uniquely ergodic, thea has a Lévy constant.

Proof. It suffices to follow the proof of Theorem 10 at the end of [5]. In fact, the authors
of [5] prove the weaker following resultz has a Lévy constant if the associated continued
fraction is a fixed point of a primitive substitution. But what is only used in their proof is
the fact that the subshift associated with such a sequence is uniquely ergadic.
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Lemma 32. Letu andv be two infinite words an¢h be a morphism such thgt(v) = u.
If every letter inv has a frequency and if has a segment expansion facte3/2, thenu
has a segment expansion facte3/2.

Proof. Let v be an infinite sequence defined over the alphabet {1, 2, ..., d} whose
every letter has a frequency and with a segment expansion fa@¢, letu be an infinite
sequence defined over the alphaBet {1, 2, ...,r} and let¢ be a morphism fronH to
B such that (v) = u. Sincev has a segment expansion factoB/2, there exist > 0 and
three sequences of finite words,,),,>0, (V)0 and(W,),>o such that:

o limy 00 [Vi| =00,
e W, < V? for some positive integey,

[Un Vi Wil

3
NUnVuWnl 3 .
® WH Vv, Z2TE

Let us denote by (i) the frequency of the lettérin the sequence. We thus obtain that

d
|6WUVaWa)| =D FD]dD]IUVaWal + 0(|¢(Un VaW,)|)  and
i=1
d
B UV =D FO]d@|IUnUn Vil + 0| U U, Vi) ).

i=1

This implies
| (Un Ve Wn)| _ | (Un Va W)l _ | (Un Vi W)l y [UnUp Vil
2lp(Un)| + 1o (V)| 1@ UnUp Vi)l [UnUy Vil | (UnUpy Vi)
[Un Vo Wl 3
=1 o) > 1),
P TAESTA +o0(1) 2+8+0( )

which ends the proof. O
Definition 33. Let S = {F¢: k > 0} U {G: k > 0}, with the substitutionst; andg; being
defined in (1) and lef* be the free monoid (for the composition of morphisms) generated

by S. Let U andW be two finite words orf1, 2, 3} and lete be a positive number. Then,
U <« W if for any element in $* we have:

lo(W)| = (L +e)|p ()]

Lemma 34. LetU and W be two finite words o1, 2, 3} and lete be a positive number.
Let us assume that either

(IWl2 = [U2) — (max(|U |1 — [W|1, 0) + max(|U|3 — |W|3, 0)) > |U| ®)
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or
min(|W|1— |Ul1, W3 — IUI3) —maX(IUlz— IW|2,0) = e|U|, (6)
thenU <. W.

Proof. Let ¢ be an element of*. Then,¢ is the composition of a finite numbar of
substitutions of type;, andgy . We first prove by induction on the following inequalities:

}- (7)

If n =0 then¢ is the identity and thus the result is obvious. Now, let us assume that
(7) is satisfied for a givehand letyr be an element of* obtained as a product éf 1
substitutions of typer;, andgy. Then there exists an eleménof S* obtained as a product
of [ substitutions of typeF; andG, and an integer such thaty =& o F, ory =£ o G, .

By assumption, we have:

| (13)| > [¢(2)| = max{

£(13)] > |£(2)] = max]

). (8)
By definition of the substitutiong,, we have:
|v(13)| = |E13)| +r lv@)| =@ +r
lv@3)|=rle@|+]£3)], lv| =@+ |£3)].
Then, (8) implies that

lv13)| > v @] =maq |y, [v@)]. [v3)]}.

By symmetry, the above inequalities are also true if we repfadey G, and if we exchange
the role played by the letters 1 and 3.

Now, let W andU be two finite words or{1, 2, 3} satisfying (5) for a given positive
and letp be an element af*. It thus follows that

3

lpW)| = [d@)| =D (IWli — U)o ()]

i=1

> (IWl2—UL2)[¢@|— Y (maxq{|U]i — [Wli. 0} ()]).

ief1,3)
Following (7), we have:

bW = 6] = (W2 — [U1) 62| —( S max{|Ul; — Wy, o})|¢<z>|

ie{1,3}

><(|W|z—|U|z)— Y max{|Uli — Wi, 0}>|¢(2)|.

i€{1,3}
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Then (5) and (7) imply that
lp(W)| = [6(U)| = lUI|¢(2)] = |pU)].
The case wher® andU satisfy (6) is similar, hence the prooft
We will use in the remainder of this section a notation similar to the one introduced in
Section 6. Let us consider a sequengs i,),>o0 € (N x {0, HN, with (an)n=0 NOt even-

tually vanishing and with(i,),>0 not eventually constant. Letbe the infinite sequence
defined by:

o= i (11165 )0 ), ®
j=0

where the substitutiong;, andg; are defined in (1). Then, ¥ is a positive integer we
denote by, the sequence

0
j=k

and byg; the morphism

such thatpg (Vi) = V.
Lemma 35. Let ¢ be a positive number. If there exist a pair of sequen(@®gs U;);-o of
finite words o1, 2, 3} with U; <« W; and an increasing sequence of integ@#s;- o, such

that for any positive integef the sequencey, begins inW;U; W;, thenu has a segment
expansion factoe 3/2.

Proof. If V «. W we obtain by (7) and by Definition 33 that

|px(W)| = (14 &) |pr(V)

9

for every positive integek. By assumptions, the sequenedegins ingy, (W;U;W;) for
every positive integel. It thus follows thatu has a segment expansion factor

. WU W,
> liminf |28 W UWDL
I—oo  |op, (W Up)|
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But (7) implies that

|1, (WU W) > 14 liminf |ok, (WD) 3 €

liminf =5 >
=00 |, (WDI(L+ 135) 2 2(2+e)

I=oo g, (WU

3
27
concluding the proof. O

Lemma 36. Let ¢ be a positive number. If there exist a pair of sequen(@gs U;);-o of
finite words on{1, 2, 3} and an increasing sequence of integétg,-.0, such that for all
positive integer:

o the sequencey, begins inlW,;U;2W;,
o Ui2<L: Wi,

thenu has a segment expansion factei3/2.

Proof. Let ¢ > 0 and let (W,U) be a pair of words on{1,2,3} with U «. W.
Let us first consider the image of the wordVL/2W by the two substitutionsFy
and Gr. We haveF, (IWU2W) = 13F(W)Fi (U)2*3F (W) = 1W'U'2W, with W' =
3F (W) and U’ = F(U)2* < Fr(U2). If we apply Gr, we obtainGy(1WU2W) =
125G (W) G (U)125H1G (W) = 1W/U2W, with W' = 2kG, (W) and U’ = Gy (U)1 <
Gr(U2). In both cases, we havg’ <, W and|W’| > |W]|.

Then, an easy induction shows that one can found a pair of sequew¢es);-o
of finite words on{1,2,3} with U/ <. W/ and lim_ |W/| = co and such that
¢, AW, U1 2W)) = 1W/U;2W'L. It thus follows from our assumption that the sequence
u begins for every positive integérin 1W,U,2W,. The sequenca thus has a segment
expansion factor

o WuRw L WUW
> liminf ————— =liminf ————
I>oo 1|+ [IW/U[2] ~ I>s0 WU

SinceU; «. W/, it follows that

W/ U/W'l| iming Wl 3 e 3
7>1+|lm|n I =§+2(2+8)>§,
—oo [Wi(A+ %)

liminf —
=00 IWl Ull

concluding the proof. O
Lemma 37. The sequence (defined in(9)) has a segment expansion facte3/2.

Proof. The assumption on the sequerag, i,),>o0 allows us to claim that at least one of
the following holds:

(a) (0, 0) appears infinitely often ita,, i»),>0,
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(b) there exist two sequences of positive intedgs$,cn and(k,,),cy such that for every
n, the block(j,, 0) (k,, 0) appears inay, in)n>o0,

(c) there exists a sequence of positive intedgr$,cn. j» = 4, such that for every, the
block (., 0) appears iy, in)n>0s

(d) there exists a sequence of positive intedé$,<n, j» = 5, such that for every, the
block (j, 1) appears iay, in)n>o0,

(e) there exists a sequence of positive inte@¢rs.en, j» > 14, such that for every, the
block (0, 1)/» appears ifay, in)n>0,

(f) there exist two sequences of positive integ@ren, 1 < jn <3, and(k)nen, 1 <
kn, <4, such that for every, the block(ji,, 0)(k,, 1) appears ifa,, i»)»>0,

(9) there exist three increasing sequences of inte@is>o, 1 < jn < 3, (kp)nen, 1<
k, <13, and(l,)nen, 1< 1, < 4, such that for every, the block(j,,, 0)(0, 1)% (I, 1)
appears inap, in)n>0s

(h) there exist three increasing sequences of integg¥s>o0, jn < 3, (kn)nen, kn < 13,
and (I,)nen, I, < 4, such that for every, the block(ji,, 0)(0, 1)*(1,, 0) appears in

(an, in)n}O-

(a) In this first case, we obtain that for an infinite numbek 0¥, = Go(vr+1), which
implies thatv; begins in the word 11 since

Go

1— 1
2+— 12
3+— 13

It easily follows that the sequengebegins in arbitrarily long squares and thus that it has a
segment expansion factor2.

Now we can assume without restriction tti@f0) does not appear itw,, in),>o0. This
easily implies that for any non-negative intedethe sequence; does not begin in the
word 11.

(b) In this case, we obtain that for an infinite numbekp¥, = G;, o G, (Vi+2), which
implies thatv; begins in the word 1212% since

Gjn © Gr
1 —> 12j)1 (12j11+l)kn
2 — 12j)1 (12j11+l)kn+l
3 — 1213

It follows that the sequencebegins in arbitrarily long squares and thus that it has a seg-
ment expansion factge 2.

Now we can assume without any loss of gextigy that there is no block of the form
(m, 0)(k, 0) in the sequencéu,, i),>o. This means that if for positive integetsandn,
Vi = G, (Vk+1) then there exists a non-negative integesuch thatv,_1 = 7, (Vi).
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(c) In this case, we obtain that for an infinite numbek of;, = G;, (Vk+1), which implies
thatvy begins in the word 1‘Qsincegjn (1) =12» andj, > 4. It follows that the sequence
v begins ing, (12%) and that it thus has a segment expansion factor

> liminf
k>0

{ | (129)] }>1+g>§’
2l (D) + 1pr (2)]

3 2
since following (7) we havépy (2)| > |¢x (1)].

(d) We obtain that for an infinite number &f v, = F;, (Vk11). Sincev,,1 does not
begin in 11, it should begin either in 12 or in 13. This implies thabegins in the word
132 sinceFj, (12) = 132»+13, F; (13) = 1323 andj, > 5. It follows that the sequence
v begins ing; (132) and that it thus has a segment expansion factor

< limi { |pr (132D)] } 2 3
> limin >14+=-> -,
k=0 | 2|k (13)] + |k (2)] 2

3
since following (7) we havépi (2)| = max{|¢x (1)], |¢x(3)[}.
Now, we can assume without restriction that for every,, is at most equal to 4.

(e) We obtain that for an infinite number bf vy = ]-'é" (Vk+j,), Which implies thatv,
begins in the word 1% sincej, > 14 and since

Fi
1+— 13n
2 —> 23
3+— 3.

Moreover, we can assume without any loss of generality thist chosen such thag,_1 #
Fo(vp). It follows that the sequence._1 begins either inF,, (13 or in G, (13'%), 1<
m < 5. The sequencethus has a segment expansion factor

lpk—1(13(2"3)1%)] lpx—1(12"(13)14)] )}
2|pk—1(13)| + |pr—1(2"3)|” 2|pr—1(12")| + |pr—1(13)|

{ lpk—1(122(13)14)| }>1 7 3
= +—>—,
2lpk—1(125)| + |pr—1(13)| 137 2

since following (7) we havépx—1(13)| > [¢x-1(2)| = max{|gx-1(D)], [¢x-1(3)|}.

(f) We obtain that for an infinite number &f vy = G;, o F, (Vk+2). Sincevy o, does
not beginin 11 and sinck, > 1, the sequence.1 should begin in 132 and the sequence
vy thus begin in 1213127,

If there are infinitely many: for which j, > 1, then using (5) of Lemma 34 we obtain
13«1/2 12/». Lemma 35 thus implies thathas a segment expansion factoB/2.

Else, we can assume without restriction thatis always equal to 0. We thus found
an infinite number ofk such thatv; begins in the word 121312. Moreover, we know

> liminf {min
k>1,1<m<5

> liminf
k=1
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that vi_1 = F,,(Vk), 0 < m < 4, since as we have already assumed that a block of
the form (m, 0), (n, 0) cannot appear iffa,, in),>0. We thus have that,_; begins in
1327+1313273132"+13, We can rewrite this word a®,U, W,, whereW,, = 132"+13
andU, = 132"3. In view of Lemma 36, it remains to prove the existence of a positive
such that for every, U, <. W,,. Following (5) of Lemma 34, we obtain that

132"3 <1 132"+13,
m+

Sincem < 4, we always have 133 «1/7 132"*+13. Lemma 35 thus implies thathas a
segment expansion facter3/2.

(9) We obtain that for an infinite number &f vy =G;, o (')‘" o Fi, Vi4k,+2). Since
Vi+k,+2 does not begin in 11 and singe> 1, the sequence«,+1 should begin in 132.
It thus follows that the sequeneg begins in the word 12(13)%+112/»+1(13)k1 since
we recall that

Gy o Fy'
1 +— 12 (13)k
2 — 1213k
3 — 13

(10)

We first have to note that,_1 = F,,,(Vk), 0 < m < 4, since as we have already assumed
that a block of the fornm(m, 0), (j,, 0) cannot appear ifia,, in),>o0 . We thus have that
Vi1 begins in 1327+13)Jr (13273)kn+113(2m+13)/nt1(13273)k 13. We can rewrite this
word as W, U,2W,,, whereW,, = 3(2"+13)Jn(132"3)k 13 andU,, = 2"3132". In view

of Lemma 36, it remains to prove the existence of a positiv@ich that for every:,
U,2 <, W,. Following (6) of Lemma 34, we obtain that

2"3132"t « 4 3(2"*+13)(13273)"13

2n-r4

Sincem < 4, we always have 138 «1/12 132"+13, Lemma 35 thus implies thathas a
segment expansion facter3/2.

(h) We obtain that for an infinite number &f vy = G;, o ]—‘é‘” o G, Viktk,+2). Since
I, > 1, the sequence 4, +1 beginsin 12. It thus follows in view of (10) that the sequence
v begins in 12 (13)k12/»+1(13)k1. We can rewrite this word asWi,U,2W,,, where
W, = 2/»(13)k1 andU, is the empty word. In view of Lemma 36, it remains to prove the
existence of a positive such that for every, U,2 = 2 <. W,,. Sincej, andk, are pos-
itive, we can use (6) of Lemma 34 to obtain that for everwe have 2«7 2/ (13)% 1.
Lemma 35 thus implies that has a segment expansion facter3/2, concluding the
proof. O

Proof of Theorem 10. If u denotes the natural characteristic coding of an i.d.o.c. three-
interval exchange, then it is proved in [2] that there exist a non-erasing morphigfined
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on{1,2,3} and a sequend@,, i,)»>o0 € (N x {0, 1HN, with (an)n>0 Not eventually van-
ishing and with(i, ), >0 not eventually constant, such that= ¢ (v), where the sequenee
is the natural coding of another i.d.o.c. three-interval exchange defined by:

V= ,,'Lmoo(H(fi_’; °Ga, "')<1>>~

j=0

By Lemma 37, we obtain that has a segment expansion facte!3/2. Since it is well
known that any letter in the natural coding of an i.d.o.c. three-interval exchange admits
a frequency, then Lemma 32 implies thatlso has a segment expansion factoB/2.
Moreover, it is also well known that the subfildssociated with the natural coding of an
i.d.o.c. three-interval exchange is uniquely ergodic (see, for instance, [36]). It thus follows
from Lemma 31 that sequenaesatisfies the condition required in Theorem 30, concluding
the proof in this case.

If u denotes the natural coding of a non-periodic three-interval exchange which does
not satisfy the i.d.o.c., then it is shown in [2] thatmust be quasi-Sturmian and thus the
result is already proved in Theorem 6.

If u denotes a nondegenerate characteristic coding of rotation, then by Theorem 11
we know that there exist a characteristic coding of an i.d.o.c. three-interval exchange
v and a non-erasing morphisgnfrom {1, 2, 3} into {1, 2} such that eitheu = ¢ (v) or
u=1S(¢(v)), whereS denotes the classical shift transformation. In these two cases, we
easily obtain that the sequenaehas a segment expansion facter3/2. Indeed, since
we have already noticed that any letter in thetural coding of an i.d.o.c. three-interval
exchange admits a frequency, we can apply Lemma 32. The subshift associated with
an irrational binary coding of rotation being uniquely ergodic (see, for instance, [37]),
Lemma 31 implies that the continued fraction associated with such a sequence satisfies the
conditions of Theorem 30, concluding the proof in this case.

Finally, if u denotes an irrational coding of rotation whose parameters saisfy
Z+aZ, thenitis proved in [28] that is also quasi-Sturmian. The transcendence of the as-
sociated continued fraction is thus alrgathown in Theorem 6, which ends the proota
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