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Linearly Recurrent Circle Map Subshifts and
an Application to Schrödinger Operators

B. Adamczewski and D. Damanik∗

Abstract. We discuss circle map sequences and subshifts generated by them. We give
a characterization of those sequences among them which are linearly recurrent.
As an application we deduce zero-measure spectrum for a class of discrete one-
dimensional Schrödinger operators with potentials generated by circle maps.

1 Introduction and Results

1.1 Introduction

The concept of linear recurrence or linear repetitivity, LR in short, has been re-
cently discussed and investigated by quite a number of researchers within various
frameworks. For example, the articles [15, 17, 19] study the LR property from the
point of view of combinatorics on words, whereas [14, 32, 38] discuss its implica-
tions within the theory of tilings.

In both cases one considers structures (e.g., an infinite word or a tiling of
Euclidean space), or families of structures (e.g., a subshift or a family of tilings),
and their local patterns (e.g., subwords or patches occurring in the given tiling)
which are equivalence classes modulo translations. Fixing such a local pattern, one
may look at the set of occurrences of the pattern in the structure and compare
the distance between two “consecutive” occurrences with the size of the pattern.
If the distance is bounded by a fixed linear function of the size, the structure
is said to have the LR property. Although the concepts are the same in spirit,
applied to words it is usually referred to as linear recurrence, whereas among
tiling theorists this concept is usually called linear repetitivity. Since this article
will be concerned with a class of words and subshifts, we will henceforth use the
term linear recurrence.

The usefulness of the LR property has been independently realized by nu-
merous people who had quite different applications in mind. LR has been shown to
have consequences in mathematical disciplines as diverse as combinatorics [15, 19],
ergodic theory [14, 32, 34], and spectral theory of Schrödinger operators [35].
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Our present study is motivated by the paper [35]. Consider discrete one-
dimensional Schrödinger operators

(Hψ)(n) = ψ(n+ 1) + ψ(n− 1) + V (n)ψ(n) (1)

in �2(Z), where the potential V : Z → R is given by

V (n) = λχ[0,β)(nα+ θ mod 1). (2)

Here, λ �= 0 is the coupling constant, α ∈ (0, 1) irrational is the rotation number,
and β ∈ (0, 1) and θ ∈ [0, 1) are arbitrary numbers. These potentials are called
circle map potentials in the mathematical physics community (cf. [23, 24, 25])
and codings of rotations by people working in combinatorics on words or symbolic
dynamics. The operator (1) with potential (2) has been studied in many papers;
for example, [3, 4, 6, 10, 11, 12, 16, 23, 24, 25, 26, 27, 28, 29, 39, 40]. One expects
the following picture to be true (cf. [9]): The operator H has purely singular
continuous spectrum which is supported on a Cantor set of Lebesgue measure
zero. To establish this, one has to prove the following three properties of H :

(i) The spectrum σ(H) of H has Lebesgue measure zero.

(ii) The absolutely continuous spectrum σac(H) of H is empty.

(iii) The point spectrum σpp(H) of H is empty.

Actually, it is easy to see that (i) implies (ii). However, (ii) is known in great
generality while (i) is not. Namely, it follows from Kotani [31] and Last and Simon
[33] that for all parameter values allowed above (recall λ �= 0 and α irrational), (ii)
holds. Moreover, (iii) is known in many cases. For example, Delyon and Petritis
showed that the point spectrum is empty for every λ and β, almost every α, and
almost every θ [16]. Hof et al., on the other hand, prove (iii) for every λ, α, and
β, and generic θ (i.e., for a dense Gδ set) [24]. Thus, properties (ii) and (iii) are
well understood. This is not the case for property (i). Until very recently, there
was only one approach to (i). This approach is based on trace maps and it allowed
Bellissard et al. to prove the zero measure property in the case where α = β, that
is, in the Sturmian case [3] (see also Sütő [40] for the Fibonacci case). Their results
were extended to the quasi-Sturmian case in [13]. (A quasi-Sturmian sequence is
essentially a morphic image of a Sturmian sequence.) In the non-(quasi-)Sturmian
case, very little is known. The only result, due to Hörnquist and Johansson [25],
concerns a small class which can be shown to be generated by substitutions so
that the adaptation [5] of [3] to potentials generated by substitutions applies.
Essentially, the absence of a trace map is the reason that no other results are known
for the non-Sturmian case. A new approach to zero-measure Cantor spectrum,
which is not based on trace maps, was recently developed by Lenz [35]. It is
therefore natural, and was in fact suggested in [35], to try to apply this new
approach to the potentials in (2). This new approach shows that linear recurrence
allows one to deduce (i). Thus, we are led to the following question: For which
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choices of parameter values is V in (2) linearly recurrent? It is the aim of this
paper to answer this question. In fact, we shall characterize this set of parameter
values. We note that the examples considered by Hörnquist and Johansson are
linearly recurrent so that our result contains theirs.

For convenience, we will slightly change the setting from individual sequences
to subshifts. However, at the end of Section 5 we shall clearly state for which
parameter values we get property (i).

The organization of the article is as follows. In the remainder of this section
we will recall some key notions and state our main result which provides a char-
acterization of the circle map sequences/subshifts which are linearly recurrent. In
Section 2 we will develop the general setup and in particular recall the connection
between LR subshifts and primitive S-adic subshifts. The link between circle map
sequences and interval exchange transformations, and particularly the results of
[1] which will be crucial to our paper, will be explained in Section 3. Section 4 con-
tains the proof of our main result. The application of this theorem to Schrödinger
operators is discussed in Section 5. Appendix A explains how to prove a finite
index for some circle map sequences which are not LR. Finally, in Appendix B we
discuss possible generalizations of the approach presented in this paper.

Acknowledgments. We would like to thank Julien Cassaigne for useful discussions
and particularly for his contributions to what is presented in Appendix A. More-
over, D. D. would also like to express his gratitude for the hospitality at CPT and
IML at CNRS, Luminy where this work was initiated.

1.2 Circle maps

Definition 1 Let (α, β) ∈ (0, 1)2. The circle map corresponding to the parameters
(α, β) is the symbolic sequence U = (un)n≥0 defined over the binary alphabet
{0, 1} by:

un =

{
1 if {nα} ∈ [0, β[,
0 else.

We will restrict our attention to circle maps where α is irrational and β �∈
Z+αZ. The case α rational is not interesting since the associated circle map is pe-
riodic (and hence, in this case, the corresponding Schrödinger operator has purely
absolutely continuous spectrum which is supported on a finite union of closed in-
tervals). The case β = α gives a Sturmian sequence and, more generally, the case
β ∈ Z + αZ corresponds to quasi-Sturmian sequences and will be not considered
in this paper (see [7, 37]). (Zero-measure spectrum for chrödinger operators with
quasi-Sturmian potentials was shown in [13]).

Definition 2 A circle map is called nondegenerate if its parameters satisfy:
• α is irrational,
• β �∈ Z + αZ.

Such a circle map is called admissible if in addition we have α < β.
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1.3 The D-expansion

In a previous paper [1], one of us has investigated the links between nondegen-
erate circle maps and three-interval exchange transformations. An algorithm was
introduced which can be regarded as a speed-up of the Rauzy induction for three-
interval exchange transformations. This algorithm is also a generalization of the
classical continued fraction algorithm. Let us introduce a map

D : [0, 1[×R
∗
+ −→ [0, 1[×R

∗
+

given by

(x, y) �−→




( { x
y−1 }

1
y−1−� x

y−1 �
, 1

1
y−1−� x

y−1 �
)

if y > 1,

(
{ x

1−y}, y
1−y − � x

1−y �
)

if y < 1,

(0, 1) if y = 1.

Definition 3 Given an admissible circle map with parameters (α, β), the associated
D-expansion is given by the sequence (an, in)n∈N which is defined as follows:

an =
⌊∣∣∣∣ xn

yn − 1

∣∣∣∣
⌋

in =
{

1 if yn < 1
0 if yn > 1

where

(xn, yn) = Dn(x0, y0) and (x0, y0) =


 1 −

⌊
1−β

α

⌋
α− β

1 −
(⌊

1−β
α

⌋
+ 1

)
α
,

α

1 −
(⌊

1−β
α

⌋
+ 1

)
α


 .

For a circle map corresponding to (α, β) ∈ [0, 1[2 which is nondegenerate and not
admissible (i.e., α > β), its D-expansion is given by the D-expansion associated
with the admissible circle map corresponding to (1 − α, 1 − β).

Conversely, for any sequence (an, in)n∈N with (an)n∈N not ultimately van-
ishing and (in)n∈N not ultimately constant, and any k ∈ N, there is exactly one
nondegenerate pair (α, β) such that � 1−β

α � = k and the corresponding circle map
sequence has D-expansion (an, in)n∈N.

We also want to mention the recent paper [22] of Ferenczi, Holton, and Zam-
boni which introduces a generalized continued fraction algorithm for three-interval
exchange transformations which is based on a different induction process.
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1.4 Results

Our main result is Theorem 4 which gives a characterization of linearly recurrent
nondegenerate circle map subshifts.

Theorem 4 A nondegenerate circle map subshift is linearly recurrent if and only if
its D-expansion (an, in)n∈N satisfies the following: there exists an integer M such
that for every integer n,

(i) an ≤M ,

(ii) in = in+1 = . . . = in+t ⇒ t ≤M ,

(iii) an = an+1 = . . . = an+t = 0 ⇒ t ≤M .

In the following, we will call this condition the (∗)-condition.

In particular, the class of LR nondegenerate circle map subshifts contains,
but is not equal to, the circle map subshifts corresponding to parameters (α, β),
where α and β lie in the same quadratic field. This follows directly from the fact
proved in [17] that a primitive substitutive subshift is linearly recurrent and

Theorem 5 (Adamczewski [1]) For a subshift associated with a nondegenerate cir-
cle map corresponding to parameters (α, β), the following are equivalent:

(i) It is primitive substitutive, that is, it can be generated by the morphic image
of a fixed point of a primitive substitution.

(ii) The associated D-expansion is ultimately periodic.

(iii) α and β lie in the same quadratic field.

In terms of interval exchange transformations, Theorem 4 is a full geometric
generalization of the following theorem.

Theorem 6 (Durand [20]) A Sturmian subshift associated with an irrational num-
ber α is linearly recurrent if and only if the coefficients of the continued fraction
expansion of α are bounded.

2 Definitions and Background

2.1 Symbolic sequences and substitutions

A finite and nonempty set A is called alphabet. The elements of A are called
letters. A finite word on A is a finite sequence of letters and an infinite word on
A is a sequence of letters indexed by N. The length of a finite word ω, denoted
by |ω|, is the number of letters it is built from. The empty word, ε, is the unique
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word of length 0. We denote by A∗ the set of finite words on A and by AN the set
of sequences over A.

Let U = (uk)k∈N be a symbolic sequence defined over the alphabet A. A
factor of U is a finite word of the form uiui+1 . . . uj , 0 ≤ i ≤ j. If ω is a factor
of U and a a letter, then |w|a is the number of occurrences of the letter a in the
word ω.

We denote by L(U) the set of all the factors of the sequence U , L(U) is called
the language of U . A sequence in which all the factors have an infinite number
of occurrences is called recurrent. When these occurrences have bounded gaps,
the sequence is called uniformly recurrent. A sequence U is called K-power free
if uK ∈ L(U) implies u = ε. A sequence U is called power free if there exists an
integer K such that U is K-power free.

Endowed with concatenation, the set A∗ is a free monoid with unit element ε.
A map from A to A∗\{ε}, called substitution on A, can be extended by concatena-
tion to an endomorphism of the free monoid A∗ and then to a map from AN to it-
self. Given a substitution σ defined on A, we call the matrix Mσ = (|σ(j)|i)(i,j)∈A2

the incidence matrix associated with σ. The composition of substitutions corre-
sponds to the multiplication of incidence matrices. A substitution is called prim-
itive if there exists a power of its incidence matrix for which all the entries are
positive.

2.2 Return words

We present here the main definitions concerning the notion of return words intro-
duced in [18]. Let U be a uniformly recurrent sequence over the alphabet A and
let u = u1u2 . . . un be a nonempty prefix of U . A return word to u of U is a factor
u[i,j−1] (= uiui+1 . . . uj−1) of U such that i and j are two consecutive occurrences
of u. The sequence U can be written in a unique way as a concatenation of return
words to u. Let RU,u be the set of return words to u in U . Then U = ω0ω1 . . . ωi . . .,
where ωi ∈ RU,u. The fact that U is uniformly recurrent implies that RU,u is a
finite set. We can therefore consider a bijective map ΛU,u from RU,u to the finite
set {1, 2, . . . ,Card(RU,u)} = AU,u, where, for definiteness, the return words are
ordered according to their first occurrence (i.e., Λ−1

U,u(1) is the first return word ω0,
Λ−1

U,u(2) is the first ωi which is different from ω0, and so on). The derived sequence
of U on u is the sequence with values in the alphabet AU,u given by

Du(U) = ΛU,u(ω0)ΛU,u(ω1) . . .ΛU,u(ωi) . . . .

To such a sequence we can associate a morphism ΘU,u from AU,u to A∗ defined
by:

ΘU,u(i) = ωi.

We obtain ΘU,u(Du(U)) = U . The morphism ΘU,u is called the return morphism
to u of U . When AU,u = A, we will call it return substitution to u of U . When it
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does not create confusion, we will suppress the “U” in the symbols RU,u, ΘU,u,
and AU,u.

Proposition 7 (Durand [18]) Let u be a nonempty prefix of U . Then the following
holds.

(i) The set Ru is a code and the map Θu is one to one.

(ii) Let v be a nonempty prefix of Du(U). Then there exists a nonempty prefix w
of U such that Dv(Du(U)) = Dw(U). Moreover, we have Θu ◦ Θv = Θw.

A derived sequence of a derived sequence is hence a derived sequence.

Definition 8 Let U be a symbolic sequence defined over the alphabet A starting
with the symbol 1 ∈ A. We introduce the following notation: D(0)(U) = U and,
for n ∈ N, D(n+1)(U) = D1(D(n)(U)); Θ0 is the identity map and, for n ∈ N,
Θn+1 = Θn ◦ ΘD(n)(U),1.

Remark 9 According to Proposition 7, we obtain that (D(n))n∈N is a sequence of
derived sequences of U and (Θn)n∈N is a sequence of return morphisms of U .

2.3 LR sequences

Definition 10 Let A be an alphabet, K a positive integer, and U a sequence over A.
The sequence U is called K-linearly recurrent (K-LR) if it is uniformly recurrent
and for all ω ∈ Ru, we have |ω| ≤ K|u|. A sequence is called linearly recurrent
(LR) if it is K-LR for some K.

Proposition 11 (DHS [17]) Let U be an aperiodic K-LR sequence over an alphabet
A. Then:

1. For every n, each factor of U of length n has at least one occurrence in each
factor of U of length (K + 1)n.

2. U is (K + 1)-power free.

3. For every nonempty prefix u of U and for all ω ∈ Ru, we have 1
K |u| < |ω|.

2.4 Subshifts and LR subshifts

Let A be an alphabet. The topology of AN is given by the product of the discrete
topologies on A. We denote by T the standard shift transformation which asso-
ciates to each symbolic sequence U = (uk)k≥0 the sequence T (U) = (uk)k≥1. To
a sequence U in AN we associate the dynamical system (O(U), T ), where O(U) is
the closure of the orbit of U under the shift. This dynamical system is called the
subshift associated with U . A dynamical system is minimal if it has no nontrivial
invariant closed set. For a subshift associated with a sequence U , minimality of
the subshift is equivalent to uniform recurrence of U .
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Definition 12 A subshift is called primitive substitutive if it contains a primitive
substitutive sequence (i.e., a sequence which is the morphic image of a fixed point
of a primitive substitution). A minimal subshift associated with a sequence U is
called linearly recurrent (LR) if and only if U is LR.

2.5 S-adic sequences and S-adic subshifts

Let A be an alphabet, a a letter of A, and S a finite set of substitutions from
A to A∗. We will say that a sequence U ∈ AN is an S-adic sequence (gener-
ated by (σn)n∈N ∈ SN and a) if there exists a sequence (σn)n∈N ∈ SN such that
U = limn→∞ σ0σ1 . . . σn(aa . . .). Let U be such a sequence. If there exists an in-
teger s0 such that for all b ∈ A and all c ∈ A, the letter b has an occurrence in
σr+1σr+2 . . . σr+s0(c), then U is called a primitive S-adic sequence (with constant
s0).

The subshift associated with an S-adic sequence (resp., a primitive S-adic
sequence) is called an S-adic subshift (resp., a primitive S-adic subshift). These
notions were introduced by S. Ferenczi in [21] and by F. Durand in [19].

It was claimed in [19] that a subshift is LR if and only if it is primitive S-adic.
In [20], Durand provides a counterexample and exhibits a primitive S-adic subshift
which is not LR. However, LR does imply primitive S-adic and with an additional
condition we can obtain a partial converse given in Proposition 14 below.

Definition 13 Let A be an alphabet and σ a substitution on A. The substitution σ
is called (b, c)-proper if for any letter i in A, σ(i) begins with b and ends with c.

An S-adic sequence is called proper if there exist two letters b and c in A
such that any substitution in S is a (b, c)-proper substitution. A subshift which
contains a proper and primitive S-adic sequence is called a proper primitive S-adic
subshift.

Proposition 14 (Durand [20]) A subshift (X,T ) is LR if and only if it is a proper
primitive S-adic subshift.

2.6 Interval exchange transformations

Interval exchange transformations are classical examples of dynamical systems.

Definition 15 Let s ∈ N, s ≥ 2. Let σ be a permutation of the set {1, 2, . . . , s} and
let λ = (λ1, λ2, . . . , λs) be a vector in R

s with strictly positive entries. Let

I = [0, |λ|[, where |λ| =
s∑

i=1

λi and for 1 ≤ i ≤ s, Ii =


∑

j<i

λj ,
∑
j≤i

λj


 .
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The interval exchange transformation associated with (λ, σ) is the map E from I
into itself, defined as the piecewise isometry which arises from ordering the inter-
vals Ii with respect to σ. More precisely, if x ∈ Ii,

E(x) = x+ ai, where ai =
∑

k<σ−1(i)

λσk
−
∑
k<i

λk.

We can introduce a natural coding of the orbit of a point under the action
of an interval exchange transformation by assigning to each element of this orbit
the number of the interval which contains it.

Remark 16 Let us consider an interval exchange transformation E, and U the
natural coding of the orbit of the point 0 under E. The natural coding of the orbit
of the point 0 under the action of the induced map of E on its first interval is the
derived sequence on the letter 1 of U . Moreover, the associated induced substitution
corresponds to the return substitution to 1 of U . In the case of the Rauzy induc-
tion, one does not induce on the first interval but on an interval which is larger.
However, the induction on the first interval can be decomposed into several steps
of the Rauzy induction.

We refer the reader to [36] for information on the useful notion of Rauzy
induction for interval exchange transformations.

3 A Geometric Interpretation

In this section, we investigate the geometric link between Theorems 4 and 6.
The symmetric Rauzy induction for two-interval exchange transformations

is introduced in [2]. From the study of this induction process, the authors of [2]
obtain an S-adic expression for Sturmian subshifts. Let τ1 and τ2 be substitutions
on {0, 1} defined as follows:

τ1(0) = 01 and τ2(0) = 0
τ1(1) = 1 τ2(1) = 10.

Proposition 17 Let α ∈ (0, 1) be an irrational number. The Sturmian subshift
associated with α is generated by the sequence

lim
n→∞ τ i1

2 τ
i2
1 τ

i3
2 τ

i4
1 . . . τ

i2n−1
2 τ i2n

1 (0),

where [0; i1 + 1, i2, i3, i4, . . .] is the continued fraction expansion of α.

The decomposition of the two-interval exchange transformation associated to
α under the symmetric Rauzy induction is symbolized in Figure 1. The fact that
α is irrational implies that this two-interval exchange transformation satisfies the
well-known I.D.O.C. condition (short for Infinite and Disjoint Orbit Condition)
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21
1 2τ τ

Figure 1: The symmetric Rauzy induction graph for two-interval exchange trans-
formations.

G
1

: ,21
1τ

G2
: 21

2τ

Figure 2: The primitivity subgraphs for two-interval exchange transformations.

introduced in [30]. It also implies that an orbit under the symmetric Rauzy in-
duction does not ultimately remain in one of the primitivity subgraphs G1 or G2

represented in Figure 2.
Moreover, an I.D.O.C. two-interval exchange is LR if and only if its orbit

under the symmetric Rauzy induction can stay in any of the primitivity subgraphs
G1 and G2 only for a bounded number of consecutive induction steps. This last
remark provides a geometric interpretation of Theorem 6.

We present now an analogous study in the case of nondegenerate circle map
subshifts. Let us introduce the following four substitutions, defined over the al-
phabet {1, 2, 3}, given by:

σ1

1 �−→ 13
2 �−→ 2
3 �−→ 3

σ2

1 �−→ 1
2 �−→ 2
3 �−→ 23

σ3

1 �−→ 1
2 �−→ 23
3 �−→ 3

σ4

1 �−→ 1
2 �−→ 13
3 �−→ 2

For each integer k, we also consider the following morphism:

Φk : {1, 2, 3}∗ −→ {1, 0}∗
1 �−→ 1,
2 �−→ 10k+1,
3 �−→ 10k.

If (Un)n∈N ∈ {0, 1}N, the sequence (Un)n∈N is defined by

Un =

{
1 if Un = 0,
0 if Un = 1.

Having fixed the above notation, we can give the following S-adic expression
for nondegenerate circle map subshifts.

Theorem 18 (Adamczewski [1]) Let us consider nondegenerate parameters (α, β)
∈ (0, 1) and let (an, in)n∈N be the D-expansion associated with (α, β). The circle



Vol. 3, 2002 Linearly Recurrent Circle Map Subshifts 1029

map subshift associated with parameters (α, β) is generated by the sequence

lim
n→∞ Φ� 1−β

α �


 n∏

j=0

((
σ1σ

aj

2 σ3

)ij ◦ (σ4σ
aj

1 σ4

)1−ij
)

(1)




if α < β and by

lim
n→∞ 1T


 Φ� β

1−α �


 n∏

j=0

((
σ1σ

aj

2 σ3

)ij ◦ (σ4σ
aj

1 σ4

)1−ij
)

(1)







if α > β.

The proof is based on a study of an induction process for three-interval ex-
change transformations close to that of Rauzy. We also obtain an analog to Propo-
sition 17 in the case of nondegenerate circle map subshifts. Figure 3 is the analog
of Figure 1 and Figure 4 is the analog of Figure 2. To a nondegenerate circle map
we can associate an I.D.O.C. three-interval exchange transformation. The orbit
of such an interval exchange transformation under the Rauzy induction does not
ultimately remain in one of the primitivity subgraphs G1, G2, or G3 represented
in Figure 4.

321

3σ

4σ
1σ

1σ

4σ

2σ
312 231

Figure 3: The Rauzy induction graph for three-interval exchange transformations.

Moreover, an I.D.O.C. three-interval exchange transformation is LR if and
only if its orbit under the Rauzy induction can stay in any of the primitivity
subgraphs G1, G2, and G3 only for a bounded number of consecutive induction
steps. This last remark provides a geometric interpretation of the (∗)-condition in
Theorem 4 and will be proved in Section 4.

A similar study could clearly be carried out in the general case of an I.D.O.C.
interval exchange transformation. However, the results quickly become hard to
read since the complexity of the equivalent to the (∗)-condition increases rapidly
(cf. Appendix B).

In this section we have exhibited some similarities between the Sturmian and
the circle map cases. On the other hand, some aspects of the two cases do not have
mutual counterparts. The strategy used to prove Theorem 6 is the following:

• Exhibit a primitive S-adic expression for Sturmian subshifts generated by an
irrational α when the coefficients of the continued fraction expansion of α are
bounded and use this to establish linear recurrence in this case.
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G3G1 G2312 321 312 321 231 321 231: : :, ,

Figure 4: The primitivity subgraphs for three-interval exchange transformations.

• Show that otherwise a Sturmian sequence contains arbitrarily high powers.
We thus obtain that a Sturmian sequence is LR if and only if it is power free.
However, such an equivalence does not hold for circle maps. We can therefore
not mimic the strategy used in the Sturmian case. For example, the circle map
sequences with D-expansion (an, in)n∈N, where (in)n∈N is the periodic sequence
(10)ω (i.e., in = 0 if n is even and in = 1 if n is odd), an = 1 if n is a power of 2
and 0 otherwise, are both non-LR and power free (see Appendix A).

4 Proof of Theorem 4

The proof of Theorem 4 is based on Theorem 18 and Proposition 14 which states
that a proper primitive S-adic subshift is LR. Our strategy to prove this theorem
is the following:

• We exhibit a proper primitive S-adic expression for three-interval exchanges
associated with circle maps whose D-expansion satisfies the (∗)-condition
(Proposition 20).

• We prove the existence of a uniform upper bound of the gaps between suc-
cessive occurrences of letters in the different derived sequences of an LR-
sequence (Lemma 24).

• Finally, we show that such a uniform bound does not exist for a circle map
whose D-expansion does not satisfy the (∗)-condition (Proposition 23).

For i ∈ {1, 2, 3, 4}, let Ai denote the incidence matrix of the substitution σi

which has been defined in the previous section. For every integer k, we write

Fk = (σ1σ
k
2σ3) and Gk = (σ4σ

k
1σ4), (3)

and for the associated incidence matrices, we write

Bk = (A1A
k
2A3) and Ck = (A4A

k
1A4). (4)

Definition 19 Let (C,D) ∈ M3(R)2, C = (ci,j), D = (di,j). We say that C ≥ D
if ci,j ≥ di,j , ∀(i, j) ∈ {1, 2, 3}2. Similarly, we say that C > D holds if ci,j > di,j,
∀(i, j) ∈ {1, 2, 3}2.

Proposition 20 A nondegenerate circle map whose D-expansion satisfies the (∗)-
condition is the image by a morphism of a proper primitive S-adic sequence.
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Lemma 21 If C is a nonnegative matrix in M3(Z), then for every integer k, the
following four inequalities hold:

BkC ≥ C, CBk ≥ C, CkC ≥ C, and CCk ≥ C.

Proof. This follows directly from Bk = I3 +A′
k with A′

k ≥ 0 and Ck = I3 +B′
k with

B′
k ≥ 0. �

Lemma 22 Let (an, in)n∈N be a D-expansion satisfying the (∗)-condition with an
integer M0 and let S =

{∏(k+1)M0
j=kM0

F ij
aj ◦ G1−ij

aj , k ∈ N

}
. Then S is a finite set of

substitutions and each of its element is (1, 3)-proper.

Proof. The set S is clearly finite because the sequence (an)n∈N is bounded by M0.
In view of (3), we obtain for every integer k

Fk

1 �−→ 13
2 �−→ 2k+13
3 �−→ 2k3

Gk

1 �−→ 12k

2 �−→ 12k+1

3 �−→ 13

Let k be an integer and i ∈ {1, 2, 3}. Then Fk(i) ends with 3 and Fk(1) begins
with 1. Moreover Gk(i) begins with 1 and Gk(1) ends with 3. It follows thus that
each composition of substitutions of types Fk and Gk in which the two types both
appear is (1, 3)-proper. Part (ii) of the (∗)-condition allows us to conclude. �

Proof of Proposition 20. Let us consider a circle map U whose D-expansion satisfies
the (∗)-condition with some integer M0. Theorem 18 provides us with an S-adic
expression for this circle map. Our goal is now to prove that we can extract a
proper primitive S-adic expression for U from this representation.

We can suppose that U is admissible in order to simplify the notation. We
have

U = lim
n→∞ Φ� 1−β

α �


 n∏

j=0

((
σ1 ◦ σaj

2 ◦ σ3

)ij ◦ (σ4 ◦ σaj

1 ◦ σ4

)1−ij
)

(1)


 .

Let

V = lim
n→∞


 n∏

j=0

((
σ1 ◦ σaj

2 ◦ σ3

)ij ◦ (σ4 ◦ σaj

1 ◦ σ4

)1−ij
)

(1)


 . (5)

Thus,

U = Φ� 1−β
α �(V ) (6)
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and

V = lim
n→∞


 n∏

j=0

F ij
aj

◦ G1−ij
aj


 (1).

We have then

V = lim
n→∞


 n∏

k=0


(k+1)M0∏

j=kM0

F ij
aj

◦ G1−ij
aj




 (1). (7)

Let

S =




(k+1)M0∏
j=kM0

F ij
aj

◦ G1−ij
aj

, k ∈ N


 .

Then Lemma 22 implies that (7) gives us a proper S-adic representation of V .
We have now to prove that this representation is primitive or more precisely

that there exists an integer s0 such that for every integer r and all b ∈ {1, 2, 3}
and c ∈ {1, 2, 3}, the letter b has an occurrence in

k+s0∏
r=k


(r+1)M0∏

j=rM0

F ij
aj

◦ G1−ij
aj




 (c).

Or similarly, we have to show that the corresponding product of matrices
k+s0∏

r=k


(r+1)M0∏

j=rM0

Bij
aj

◦ C1−ij
aj






is positive, where the matrices Bl and Cl are defined in (4). Let us consider the
matrix

Mr =


(r+1)M0∏

j=rM0

Bij
aj

◦ C1−ij
aj


 .

By the fact that the D-expansion associated with U satisfies the (∗)-condition with
the integer M0, we get

∃j1 ∈ {1, 2, . . . , l} such that ij1 = 0,
∃j2 ∈ {1, 2, . . . , l} such that ij2 = 1,
∃j3 ∈ {1, 2, . . . , l} such that aj3 ≥ 1.

The previous remark and Lemma 21 show that at least one of the following in-
equalities holds:

Mr ≥ B0C1,
Mr ≥ B1C0,
Mr ≥ C1B0,
Mr ≥ C0B1.
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Now we just have to remark that each element of {B0C1,B1C0, C1B0, C0B1}2 is pos-
itive. Therefore, we obtain primitive S-adicity of our representation with constant
s0 = 2. We therefore obtain that U is the image under the morphism Φ� 1−β

α � of
the proper primitive S-adic sequence V , concluding the proof. �

Proposition 23 A nondegenerate circle map subshift whose D-expansion does not
satisfy the (∗)-condition is not linearly recurrent.

Since we will work with the derived sequences of a given circle map sequence
in our proof of Proposition 23, we start off by discussing LR properties of derived
sequences of an LR sequence.

Lemma 24 Let U be a K-linearly recurrent sequence defined over an alphabet A
and let ω be a nonempty prefix of U . Then every word of length at least K2(K+1)
in Dω(U) contains all the elements of Aω.

Proof. Let ω be a factor of U and i ∈ Aω = {1, 2, . . . , d}. Then there exists a
unique word ωi such that Θω(i) = ωi. By definition we have

∀j ∈ Aω, |ωj | ≤ K|ω|.
This inequality implies that ωi appears in each word of length at least (K +
1)(K|ω|), in view of Proposition 11. Moreover, again by Proposition 11, we have

∀j ∈ Aω,
1
K

|ω| ≤ |ωj | ≤ K|ω|.

The set Rω is a code. We thus obtain that the letter i occurs in each word of
length at least K2(K + 1) in Dω(U). �

Lemma 25 Let U be a K-linearly recurrent sequence. Then, for every integer n,
we have

∀i ∈ An, |Θn(i)| ≤ K2(K + 1),

where the maps Θn are introduced in Definition 8.

Proof. Let i be an element of An and Θn(i) = ωi. By definition of the return words
and the sequence D(n), the letter 1 has just one occurrence in ωi and 1 is the first
letter of ωi. Then, 1 does not appear in the maximal proper suffix of ωi. Lemma 24
implies that the length of this suffix is at most K2(K + 1) − 1. �

Lemma 26 Let U be a K-linearly recurrent sequence defined over an alphabet A
and let ω be a nonempty prefix of U . Then the sequence Dω(U) is K3-linearly
recurrent.
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Proof. This statement and its proof are very similar in spirit to the previous two
lemmas. Let x be a factor of Dω(U). Consider any occurrence of x in Dω(U) and
the length of the corresponding return word to x in Dω(U) (i.e., the length of
the gap between this occurrence of x and the next, plus the length of x). We use
again that Rω is a code. Namely, to this occurrence of x in Dω(U) corresponds a
word of length at most K · |ω| · |x| in U whose return words have length at most
K2 · |ω| · |x|. Choose the one that corresponds to this particular occurrence and
go back via ΛU,ω to factors of Dω(U). We conclude that the length of the return
word to x in question is bounded by K3 · |x|. In the previous steps, we have made
repeated use of Proposition 11. This shows that Dω(U) is K3-linearly recurrent
since x and its occurrence were arbitrary. �

Lemma 27 Let r be a positive integer. Then for every (i1, i2, . . . , ir) ∈ {1, 2, 3, 4}r,
we have

|σi1 ◦ σi2 ◦ · · · ◦ σir (123)| ≥ ∣∣σi1 ◦ σi2 ◦ · · · ◦ σir−1 (123)
∣∣+ 1.

Proof. We just have to remark that for each k ∈ {1, 2, 3, 4}, there exists a letter
b ∈ {1, 2, 3} such that |σk(b)| ≥ 2 and that 1, 2, and 3 occur in σk(123). �

Lemma 28 Let r be a positive integer and (i1, i2, . . . , i3r+1) ∈ {1, 2, 3, 4}3r+1. Then
there exists at least one letter b ∈ {1, 2, 3} such that∣∣σi1 ◦ σi2 ◦ · · · ◦ σi3r+1 (b)

∣∣ > r.

Proof. According to Lemma 27, it follows by induction that∣∣σi1 ◦ σi2 ◦ · · · ◦ σi3r+1 (123)
∣∣ ≥ 3r + 1.

The assertion follows immediately. �

Lemma 29 Let n be an integer, (m0,m1, . . . ,mn) ∈ N
n, and (l0, l1, . . . , ln) ∈

{0, 1}n. Then, for each b ∈ {1, 2, 3}, we have

(i)
∣∣∣∏n

j=0

(
σ1σ

mj

2 σ3

)
(b)

∣∣∣
1
≤ 1,

(ii)
∣∣∣∏n

j=0

(
(σ1σ3)

lj ◦ (σ4σ4)
1−lj

)
(b)

∣∣∣
2
≤ 1,

(iii)
∣∣∣∏n

j=0

(
σ4σ

mj

1 σ4

)
(b)

∣∣∣
3
≤ 1.

Here, |w|i denotes the number of occurrences of the symbol i in the word w.

Proof. (i) The incidence matrix associated with the substitution
∏n

j=0

(
σ1σ

mj

2 σ3

)
is
∏n

j=0 Bmj , where the matrices Bmj are defined in (4). For each integer k, the
matrix Bk is of the form 

 1 0 0
× × ×
× × ×


 ,
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and so the matrix
∏n

j=0 Bmj is of course of the same form. Then, the definition of
the incidence matrix allows us to conclude.

(ii) The incidence matrix associated with
∏n

j=0

(
(σ1σ3)

lj ◦ (σ4σ4)
1−lj

)
is equal to∏n

j=0

(
Blj

0 C1−lj
0

)
. The matrices B0 and C0 are of the form


 × × ×

0 1 0
× × ×


 ,

and so the matrix
∏n

j=0

(
Blj

0 C1−lj
0

)
is of the same form.

(iii) The incidence matrix associated with the substitution
∏n

j=0

(
σ4σ

mj

1 σ4

)
is

equal to
∏n

j=0 Cmj , where the matrices Cmj are defined in (4). For each integer k,
the matrix Ck is of the form 

 × × ×
× × ×
0 0 1


 ,

and so the matrix
∏n

j=0 Cmj is of the same form, concluding the proof. �

Proof of Proposition 23. Let U be a circle map whose D-expansion (an, in)n∈N does
not satisfy the (∗)-condition. Let V be as in (5) so that we have (6). Let us assume
for the moment that 1 − β > α so that V is the derived sequence corresponding
to the prefix 1 of U . We will comment later on the case 1 − β < α.

Now assume there exists an integer K such that U is K-LR. We consider four
cases.

(i) Let us suppose that the sequence (an)n∈N is unbounded. Then a direct con-
sequence of the fact that σan

2 (3) = 2an3, σan
1 (1) = 13an , and that powers

propagate by substitution is that U cannot be (K+1)-power free. Proposition
11 thus yields a contradiction.

(ii) Let us suppose that the sequence (in)n∈N contains arbitrarily long blocks of
1’s. In particular, there exists an integer n0 such that

in0 = in0+1 = . . . = in0+12K2(K+1) = 1. (8)

We recall that there exists an increasing sequence of integers (kN )N∈N such
that

ΘN =
kN∏

j=kN−1+1

((
σ1σ

aj

2 σ3

)ij ◦ (σ4σ
aj

1 σ4

)1−ij
)
,
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where ΘN is introduced in Definition 8. This follows from Remark 16 and the
fact that, as was already observed in [1], certain steps of our induction pro-
cess correspond to induction on the first interval of three-interval exchange
transformations associated with U . According to Lemmas 25 and 28, the fact
that U is K-LR implies that for each integer N ,

kN+1 − kN < 3K2(K + 1) + 1. (9)

Now, let us consider two particular elements of the sequence (kN )N∈N:

kN1 = min
{
kN , n0 ≤ kN ≤ n0 + 12K2(K + 1)

}
and

kN2 = max
{
kN , n0 ≤ kN ≤ n0 + 12K2(K + 1)

}
.

By the inequality (9), we obtain that kN1 and kN2 are well-defined and

kN2 − kN1 ≥ 6K2(K + 1) + 1. (10)

Let us introduce the substitution Θ = ΘN1+1ΘN1+2 . . .ΘN2. Then,

Θ =
kN2∏

j=kN1+1

((
σ1σ

aj

2 σ3

)ij ◦ (σ4σ
aj

1 σ4

)1−ij
)
.

More precisely, using condition (8), we have

Θ =
kN2∏

j=kN1+1

(
σ1σ

aj

2 σ3

)
. (11)

Proposition 7 implies that Θ is a return substitution for U since it is a
composition of return substitutions. Thus there exists a nonempty prefix ω
of U such that Θ = ΘU,ω. According to the inequality (10) and Lemma 28,
we obtain that there exists a letter b in the alphabet {1, 2, 3} such that

|Θ(b)| ≥ kN2 − kN1

3
> 2K2(K + 1),

and it follows from the equality (11) and Lemma 29 that

|Θ(b)|1 ≤ 1.

But Θ(b) is necessarily a factor of Dω(U). Hence there exists a factor of
Θ(b) of length greater or equal than K2(K + 1) in which the letter 1 does
not occur. We obtain finally that there exists a factor of Dω(U) of length
greater than or equal to K2(K + 1) in which the letter 1 does not occur.
This last remark is in contradiction with the K-LR property of U in view of
Lemma 24.
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(iii) Let us suppose that the sequence (in)n∈N contains arbitrarily long blocks
of 0’s. Then, we just have to mimic the above arguments in order to find a
return substitution Θ′ for U and a letter b in {1, 2, 3} such that

|Θ′(b)|3 ≤ 1 and |Θ′(b)| > 2K2(K + 1).

We thus obtain a nonempty prefix ω′ of U such that Dω′(U) contains a factor
of length greater than or equal to K2(K + 1) in which the letter 3 does not
occur.

(iv) Let us suppose that the sequence (an)n∈N contains arbitrarily long blocks
of 0. Then, analogous reasoning gives a return substitution Θ′′ for U and a
letter b in {1, 2, 3} such that:

|Θ′′(b)|2 ≤ 1 and |Θ′′(b)| > 2K2(K + 1).

We find a nonempty prefix ω′′ of U such that Dω′′(U) contains a factor of
length greater than or equal to K2(K + 1) in which the letter 2 does not
occur.

Thus we arrive at a contradiction in each case. Recall that we assumed 1−β >
α at the beginning of the proof. Let us now discuss the case where 1 − β < α.
In this case V in (5) is not the derived sequence corresponding to the prefix 1
of U , that is, D1(U) �= V . In fact, V takes three values, while 1 has only two
return words, 1 and 10. However, for sufficiently large n, it is relatively easy to
see that D(n)(U) is one of the sequences obtained in the induction process of [1]
(leading to the representation (6)) and hence there is a morphism Ψ such that
V = Ψ(D(n)(U)). If we now again assume that U is LR, then so is D(n)(U), by
Lemma 26, and hence we get that V is LR. Now we can derive a contradiction
following the steps given above. �
Proof of Theorem 4. In view of Proposition 14, Theorem 4 follows directly from
Propositions 20 and 23. �

5 Application of Theorem 4 to Schrödinger Operators

In this section we apply our main result, Theorem 4, to discrete one-dimensional
Schrödinger operators with potentials given by circle maps. As explained in the
introduction, this is in part motivated by previous results on their Sturmian coun-
terparts and a recent result of Lenz which relates aspects of their spectral theory
to LR properties.

A discrete one-dimensional Schrödinger operator acts in the Hilbert space
�2(Z). If φ ∈ �2(Z), then Hφ is given by

(Hφ)(n) = φ(n+ 1) + φ(n− 1) + V (n)φ(n),

where V : Z → R. The map V is called the potential.
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If A is an alphabet, T : Z → Z is the standard shift, Ω ⊆ AZ is T -invariant
(i.e., TΩ = Ω) and closed (discrete topology on A and product topology on AZ),
then Ω is called a (two-sided) subshift. Given such a subshift and a function f :
A→ R, we define, for ω ∈ Ω, a potential V = Vω by

Vω(n) = f(ωn)

and an operator Hω (as above, with this particular potential). It is a standard
result that if Ω is minimal, then the spectrum of Hω does not depend on ω, that
is, there is a set Σ ⊆ R such that σ(Hω) = Σ for every ω ∈ Ω (see, e.g., [9]).

A special case of a recent result of Lenz is given in the following theorem.

Theorem 30 (Lenz [35]) If Ω is a linearly recurrent subshift and Ω and f are such
that the resulting potentials Vω are aperiodic, then Σ has Lebesgue measure zero.

Note in particular that the result is essentially independent of the function
f . Moreover, it suffices that at least one Vω is aperiodic. This implies that all Vω

are aperiodic.
Our goal is to apply this theorem to circle map subshifts. A circle map gen-

erates a two-sided subshift as follows. If u ∈ {0, 1}N is a circle map corresponding
to parameters (α, β), the associated subshift is given by

Ω = Ωα,β = {ω ∈ {0, 1}Z : every factor of ω is a factor of u}.

If we restrict the sequences in Ω to the right half-line, we get exactly the one-sided
subshift that was introduced and discussed above. By recurrence, the languages
associated with the one-sided and two-sided subshifts are the same. In particular,
LR-properties are the same for both subshifts.

Combining our Theorem 4 and the theorem of Lenz, we obtain the following
result.

Theorem 31 Suppose that u is a nondegenerate circle map corresponding to param-
eters (α, β) whose D-expansion (an, in)n∈N satisfies the (∗)-condition. Consider the
associated subshift Ω = Ωα,β and, for a nonconstant function f : {0, 1} → R, the
operators (Hω)ω∈Ω. Then we have that for every ω ∈ Ω, the spectrum of Hω has
Lebesgue measure zero.

It is easy to see that for every θ, the sequence ωn = χ[0,β)(nα + θ mod 1)
is an element of Ωα,β. In other words, Theorem 31 says that if α, β are such that
their D-expansion (an, in)n∈N satisfies the (∗)-condition, then the potential V in
(2) is linearly recurrent for every choice of θ and λ �= 0, and in this case, the
operator H satisfies property (i) from the introduction.
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Appendix A

In this section we give a proof (and a little bit more) of the power freeness of the
sequence we consider in the end of the Section 3. This proof was suggested by
J. Cassaigne [8].

Let us introduce the following two substitutions, defined over {1, 2, 3}, given
by:

f = σ1σ3σ4σ4

1 �−→ 13
2 �−→ 1323
3 �−→ 133

g = σ1σ2σ3σ4σ4

1 �−→ 13
2 �−→ 13223
3 �−→ 1323

where the substitutions σi are defined in Section 3. We denote by F the largest
language defined over the alphabet {1, 2, 3} which satisfies the following three
conditions:

• ∀ω ∈ {1, 2, 3}∗, ω4 ∈ F ⇒ ω = ε,

• ∀ω ∈ {1, 2, 3}∗ and ∀z ∈ {1, 2, 3}, (ωz)3ω �∈ F ,

• 11 �∈ F .

The language F is naturally obtained as the union of all the languages defined
over the alphabet {1, 2, 3} which satisfy these three conditions.

Lemma 32 If ω ∈ F , then f(ω) and g(ω) are two elements of F .

Proof. Let ω be an element of F . We consider three cases to prove that f(ω) ∈ F .

1. Assume there exists a nonempty word M such that M4 is a factor of f(ω).
Then, M could be decomposed in a unique way in xf(v)y, where (x, v, y) ∈
{ε, 3, 23, 33, 323}× {1, 2, 3}∗ × {ε, 1, 13, 132} and the length of v is maximal
with the convention that if v ends with the letter 1, then y �= ε. We consider
two subcases.

(a) Let us suppose that v = ε. Then M = xy and thus

M ∈ {3, 33, 3313, 32313}∪ {31, 313, 3132, 2313, 331, 3231}
∪ {23, 33132, 323, 323132}∪ {23132} ∪ {231}.

But M �∈ {3, 33, 3313, 32313} because 33 is always followed by a 1 in
f(ω). If M ∈ {31, 313, 3132, 2313, 331, 3231}, we obtain that there ex-
ists a letter z ∈ {1, 2, 3} such that z3 is a factor of ω. This gives a
contradiction because ω ∈ F . The word M cannot belong to the set
{23, 33132, 323, 323132} because 23 is always followed by a 1 in f(ω).
M cannot belong to {23132} because the letter 2 is always followed by
a 3 in f(ω). Finally, M cannot belong to {231} because the letter 1 is
never followed by a 2 in f(ω).



1040 B. Adamczewski and D. Damanik Ann. Henri Poincaré

(b) Let us suppose that v �= ε. Then

M4 = xf(v)yxf(v)yxf(v)yxf(v)y

and necessarily yx = f(z) with z ∈ {ε, 1, 2, 3}. If z = ε, then M4 =
f(v4). The fact that v does not end with a 1 allows us to infer that v4 is
a factor of ω. We obtain a contradiction because ω ∈ F . If z is a letter,
then f((vz)3v) is a factor of f(ω). The fact that v does not end with a
1 shows that (vz)3v is a factor of ω. We obtain a contradiction because
ω ∈ F .

2. Let us suppose that there exist a word M and a letter z such that (Mz)3M
is a factor of f(ω). Then, M can be decomposed in a unique way in xf(v)y,
where (x, v, y) ∈ {ε, 3, 23, 33, 323}×{1, 2, 3}∗×{ε, 1, 13, 132} and the length
of v is maximal with the convention that if v ends with the letter 1, then
y �= ε. We obtain that

(Mz)3M = xf(v)yzxf(v)yzxf(v)yzxf(v)y,

and necessarily xzy = f(m) with m ∈ {1, 2, 3} and |m| ≤ 2 because |xzy|1 ≤
2 and the letter 1 has exactly one occurrence in the image of each letter.
Again we consider two subcases.

(a) Let us suppose that |m| = 2. Then there exist two letters a and b such
that yzx = f(ab). But |y|1 ≤ 1 and |x|1 = 0 imply that y = f(a)
and z = 1. We get (Mz)3M = xf((vab)3va). If a �= 1, then (vab)3va
is a factor of f(ω) and we obtain a contradiction because ω ∈ F . If
a = 1, xf((v1b)3v) is a factor of f(ω). We recall that zx = 1x = f(b).
It follows that if b = 2 or b = 3, then x = 323 or x = 33 and thus x is
always preceded by the letter 1 in f(ω). This implies that 1xf((v1b)3v)
is a factor of f(ω). But since 1xf((v1b)3v) = f((bv1)3bv) and v does
not end with the letter 1, it follows that (bv1)3bv is a factor of ω. This
is in contradiction with ω ∈ F . Finally, if b = 1, then f((v11)3v) is
a factor of f(ω). The fact that v does not end with the letter 1 gives
that (v11)3v is a factor of ω and thus 11 is a factor of ω. We get a
contradiction since 11 �∈ F .

(b) Let us suppose that |m| = 1, then (Mz)3M = xf((vm)3v)y. In partic-
ular, f((vm)3v) is a factor of f(ω). But since v does not end with the
letter 1, (vm)3v is a factor of ω. We obtain a contradiction because m
is a letter and ω ∈ F .

3. Let us suppose that 11 is a factor of f(ω). This yields a contradiction imme-
diately because the letter 1 is always followed by a 3 in f(ω) by definition of
f .

The proof for g is exactly the same. �
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Proposition 33 A circle map whose D-expansion (an, in)n∈N satisfies

• (in)n∈N = (10)ω,

• in = 0 implies an = 0, and

• in = 1 implies an ∈ {0, 1}
is power free.

Proof. Let U be such a circle map and V be the natural coding of the three-interval
exchange transformation associated with U . Theorem 18 says that there exists a
sequence of integers (bn)n∈N such that

U = lim
n→∞Φ� 1−β

α �
(
f b0gb1f b2gb3 . . . f b2n(1)

)
and thus

V = lim
n→∞ f b0gb1f b2gb3 . . . f b2n(1).

With the previous notation, 1 ∈ F . Then Lemma 32 implies that

f b0gb1f b2gb3 . . . f b2n(1) ∈ F

for every integer n. We thus obtain L(V ) ⊂ F . This implies that V is 4-power
free. Then, in view of the definition of the morphisms Φk, U is clearly power free if
� 1−β

α � > 0 (i.e., 1− β > α). In the case where 1− β < α, we can use an argument
similar to the one used in the proof of Proposition 23. It is relatively easy to see
that if a sequence is not power free, then all of its derived sequences are not power
free, either. We have already noticed at the end of the proof of Proposition 23 that
for sufficiently large n, there is a morphism Ψ such that V = Ψ(D(n)(U)). Now,
if we assume that U is not power free, then D(n)(U) is not power free and hence
V is not power free because morphisms propagate powers. We therefore obtain a
contradiction to the 4-power freeness of V obtained above. �

In particular, we obtain the power freeness of the sequences mentioned in
Section 3. These sequences are of course not LR in view of Theorem 4 and hence
they are both power free and not LR. To the best of our knowledge, these are the
first examples of sequences with these two properties.

We end this appendix with the following conjecture concerning the power
freeness of circle maps.

Conjecture. A nondegenerate circle map is power free if and only if its D-expansion
(an, in)n∈N satisfies the following: there exists an integer M such that for every
integer n, we have

• an ≤M ,

• in = in+1 = . . . = in+M ⇒ ∃k, n ≤ k ≤ n+M such that ak �= 0.
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Appendix B

We present here what would be the analog of the geometric considerations of
Section 3 in the case of I.D.O.C. four-interval exchange transformations which lie
in the Rauzy class of (4321). The notion of Rauzy class for an interval exchange
transformation was introduced in [36].

Let us introduce the following substitutions, defined on the alphabet
{1, 2, 3, 4}, given by

σ1

1 �−→ 1
2 �−→ 14
3 �−→ 2
4 �−→ 3

σ2

1 �−→ 14
2 �−→ 2
3 �−→ 3
4 �−→ 4

σ3

1 �−→ 1
2 �−→ 2
3 �−→ 3
4 �−→ 34

σ4

1 �−→ 1
2 �−→ 2
3 �−→ 34
4 �−→ 4

σ5

1 �−→ 1
2 �−→ 2
3 �−→ 24
4 �−→ 3

σ6

1 �−→ 1
2 �−→ 24
3 �−→ 3
4 �−→ 4

The Rauzy induction graph for the Rauzy class of (4321) is given in Figure 5.
The orbit of an I.D.O.C. four-interval exchange transformation in the Rauzy class
of (4321) under the Rauzy induction cannot be ultimately confined to one of its
primitivity subgraphs G1, G2, G3 or G4 represented in Figures 6, 7, 8, and 9,
respectively. Moreover, an I.D.O.C. four-interval exchange in the Rauzy class of
(4321) is LR if and only if its orbit under the Rauzy induction can stay in any
of the primitivity subgraphs G1, G2, G3, and G4 only for a bounded number of
consecutive induction steps.

σσ 3

σσ 3

σσ 1

σσ 1

σσ 1

σ 6

σ 4

σ 4

σ 6

σ 5

σ 5

σ 2

σ 2

σ 2

4321

32414213

3142

4132 2431

2413

Figure 5: The Rauzy induction graph for the Rauzy class of (4321).
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σσ 3

σ 6

σ 4

σ 6

σ 5

σ 5

σ 2

4321

4213

3142

4132

Figure 6: The primitivity subgraph G1 for the Rauzy class of (4321).

σσ 3

σσ 1

σσ 1

σσ 1

σ 4

σ 4

σ 6

σ 2

σ 2

4321

32414213

4132 2431

2413

Figure 7: The primitivity subgraph G2 for the Rauzy class of (4321).
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σσ 1

σσ 1

σσ 1

σ 6

σ 4

σ 6

σ 5

σ 5

σ 2

σ 2

4321

32414213

3142

4132 2431

Figure 8: The primitivity subgraph G3 for the Rauzy class of (4321).

σσ 3

σσ 1

σσ 1

σσ 1

σ 4

σ 2

σ 2

4321

3241

2431

2413

Figure 9: The primitivity subgraph G4 for the Rauzy class of (4321).
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[36] G. Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34,
315–328 (1979).

[37] G. Rote, Sequences with subword complexity 2n, J. Number Theory 46, 196–
213 (1994).

[38] B. Solomyak, Nonperiodicity implies unique composition for self-similar trans-
lationally finite tilings, Discrete Comput. Geom. 20, 265–279 (1998).
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