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Introduction

0.1 Probléemes de répartition

La théorie de I'équirépartition a été développée a partir de 1916 sous l'influence de 'article
fondateur de H. Weyl intitulé “Uber die Gleichverteilung von Zahlen mod. eins” !, et est consacrée,
du moins sous sa forme primitive, & I’étude de la répartition de parties fractionnaires de nombres
réels dans 'intervalle unité. La motivation initiale de H. Weyl, ’obtention de résultats améliorant
le théoreme d’approximation de L. Kronecker (& savoir, la suite ({na}),>o est dense dans l'in-
tervalle [0, 1] pour tout nombre irrationnel «), place 'approximation diophantienne au coeur de
cette problématique. Toutefois, les nombreuses applications de 1’équirépartition, ainsi que leur di-
versité, lui conféreront rapidement le statut de théorie & part entiere et contribueront fortement &
son développement. Des 1914, alors que les bases n’en sont pas encore totalement jetées, H. Weyl
[248], reprenant également les travaux de H. Bohl [46] et W. Sierpinski [226, 227], donne déja
des applications de '’équirépartition des suites (na)p>o pour « irrationnel a I'étude des perturba-
tions en astronomie ou celle du mouvement d’une bille de billard. L’utilisation dans cet article du
terme Ergodenhypothese laisse d’ailleurs présager de liens qui s’établiront ensuite avec la théorie
ergodique. Parallelement, le concept de répartition uniforme est naturellement étendu aux suites
multi-dimensionelles, puis & des espaces plus généraux comme les groupes topologiques, compacts ou
quasi-compacts. De méme la notion de répartition dans un espace compact ou localement compact
par rapport & une mesure borélienne abstraite (sous-entendue différente de la mesure de Lebesgue
ou de Haar) fait son apparition, offrant & la théorie toute sa généralité.

De l'importante différence de régularité entre certaines suites réelles, pourtant équiréparties,
est née 'idée de plus ou moins bonne répartition. La notion de discrépance?, mesure de déviation
par rapport & une répartition idéale, a été introduite par V. Bergstrom?® et constitue initialement
une approche quantitative des problemes de répartition des suites réelles. Il est néanmoins possible
d’associer de facon naturelle une notion de discrépance a tous les concepts de répartition évoqués
précédemment. Parmi les suites équiréparties (seules & réellement nous intéresser ici), il devient
alors possible de distinguer les suites réellement réguliéres, celles de faible discrépance, des suites
tout juste équiréparties dont la discrépance est plus importante. Afin d’estimer la discrépance Dy
d’une suite, il est nécessaire d’en obtenir une majoration (par exemple du type O(f(N)) ou f est
une fonction classique) mais il est également utile d’en déterminer une minoration. En effet, cette
derniere permettra de juger la pertinence de la majoration obtenue. La discrépance d’une suite étant
généralement une fonction oscillante, les minorations recherchées sont du type Q(f(N)) (c’est-a-
dire, Dy > C'f(N) pour une certaine constante C' et pour une infinité d’entiers N) ou f désigne

'Pour une référence complete de Darticle voir [249].

2Le terme discrépance semble en fait dii & une francisation brutale du terme allemand Diskrepanz qui signifie
désaccord, divergence.

3Le terme discrépance fut lui probablement introduit un peu plus tard par van der Corput.



une fonction classique. Il est dans un premier temps aisé de constater I'impossibilité d’obtenir
des majorations non triviales qui soient valables pour toutes les suites réelles ou toutes les suites
du tore de dimension d. En effet, il est toujours possible de construire des suites équiréparties
de discrépance arbitrairement grande (mais tout de méme en o(N)). Aussi, pour majorer est-il
indispensable de considérer une suite particuliere ou du moins une classe de suites bien précise.
Déterminer jusqu’a quel point une suite peut étre équirépartie est en revanche un probléme plus
délicat qui n’est aujourd’hui bien résolu que pour les suites réelles unidimensionnelles par un résultat
de W. Schmidt [215] (voir Théoréme 0.1.1).

Concernant ’équirépartition des suites réelles unidimensionnelles, deux problématiques se dis-
tinguent principalement. D’une part, qu’en est-il de la discrépance des suites (na),>o ainsi que
d’autres suites classiques issues de la théorie des nombres ? D’autre part, existe-t-il des suites dont
la répartition est idéale et si c’est le cas, peut-on en donner des constructions explicites 7 Ces deux
questions bien que fondamentalement différentes se rejoignent, les suites (nca),>o étant, du moins
pour des parameétres quadratiques, de bons candidats pour obtenir des suites de faible discrépance.
Il aura d’ailleurs fallu attendre 1981 et les constructions données par H. Faure [108] pour exhiber
des suites mieux réparties que toute rotation irrationnelle. La recherche de suites de discrépance
minimale est également motivée par l'inégalité de Koksma [149] qui montre que de telles suites
offrent de bonnes approximations arithmétiques de calculs d’intégrales de fonctions suffisamment
régulieres. De plus, la discrépance de la suite permet de majorer les erreurs commises par ces ap-
proximations. La discrépance (ou des mesures qui lui sont liées) est également considérée comme
une des mesures du caractére aléatoire d’une suite (voir par exemple [199] et [169]).

Le cas des suites réelles a valeurs dans un tore de dimension supérieure traduit la méme am-
bivalence, avec d’un coté ’étude des suites de Kronecker, liée aux propriétés d’approximation dio-
phantienne simultanée, et de 'autre la recherche et la construction de suites de faible discrépance.
Cette derniere s’est considérablement développée notamment au cours des vingt dernieres années
sous 'influence de H. Niederreiter [181, 182, 183, 184, 185] (voir également [229] et [109] pour des
résultats antérieurs). En effet, E. Hlawka [127] en obtenant un équivalent multidimensionnel de
I'inégalité de Koksma (appelé depuis inégalité de Koksma-Hlawka), montre que les suites de faible
discrépance en dimension k& donnent de bonnes approximations arithmétiques de calculs d’intégrales
de fonctions de k variables suffisamment régulieres. La force de cette méthode, dite de quasi-Monte
Carlo, est d’obtenir une majoration a priori et explicite de 'erreur commise, surpassant ainsi la
méthode de Monte Carlo ou 'on vérifie a posteriori que la suite testée est aléatoire et ou I'erreur
est de nature probabiliste. On compte de nombreuses applications des méthodes de quasi-Monte
Carlo dont certaines semblent particulierement prometteuses en mathématiques financiéres (voir
[223, 224, 225] ou [89]).

0.1.1 Suites (na),>o et suites de Kronecker
Rappelons dans un premier temps les définitions d’équirépartition et de discrépance pour les

suites réelles. Une suite & = (2,)n>0 & valeurs réelles est dite équirépartie modulo un si pour tout
couple (a,b), 0 <a <b<1,

1 N-1
Jim kzo Xjap({zk}) =b—a,

2



ol X[q5 désigne la fonction indicatrice de 'intervalle [a,b[. La discrépance de la suite = est définie
par

Zxab{xk} N(b—a)

et la discrépance a l'origine de la suite x est donnee par

Z X,6[({zk}) — ‘

Ces deux notions de discrépance sont équivalentes au sens ou elles sont liées par la relation D3} <
Dy < 2D7%. La premiére est sans doute plus naturelle, mais la discrépance & l'origine est souvent
plus agréable & étudier. Une propriété remarquable est qu’une suite est équirépartie modulo un si et
seulement si sa discrépance Dy est négligeable devant N (c’est-a-dire, Dy = o(NNV)). Il est naturel
de se demander jusqu’a quel point une suite réelle peut étre équirépartie. Le premier élément de
réponse fut donné dans les années quarante par T. van Aardenne-Ehrenfest [241, 242] qui montra
que Dy (z) ne peut étre bornée, quelle que soit la suite x; ce résultat avait été conjecturé par J.
G. van der Corput. Ensuite W. Schmidt [215] régla la question en 1972 en obtenant le résultat
suivant :

Dy(z) = sup
0<a<b<1

Dy (z) = sup

Théoréme 0.1.1 (Schmidt). Il existe une constante C telle que pour toute suite réelle x =

($n)n207
Dy (z) > C'log N,

pour une infinité d’entiers N.

En effet, des exemples de suites satisfaisant & Dy = O(log N) étaient déja connus depuis long-
temps (voir par exemple [186, 187]). Aussi, considére-t-on qu’une suite réelle est une suite de faible
discrépance des lors que Dy = O(log N).

I1 est connu depuis les travaux de H. Weyl [249], H. Bohl [46] et W. Sierpinski [226, 227], que la
suite (na)pen est équirépartie modulo 1 si et seulement si « est irrationnel. De nombreux auteurs
ont alors étudié la discrépance de ces suites, & commencer par [31, 32, 124, 125]. Ces travaux ont mis
en relief les liens profonds existant entre les qualités d’approximation diophantienne de ’irrationnel
a et la discrépance de la suite (na). Plus précisément, les irrationnels a les moins bien approchés
par des nombres rationnels (comme le nombre d’or) offrent les suites (na) les mieux réparties.

Nous allons a présent rappeler quelques résultats significatifs dans cette direction. Le supremum

des réels v pour lesquels I'inégalité
1

q’)/‘}’l’

p
a—2
q
admet une infinité de solutions entieres ¢, est appelé le type de a. Notamment, tout algébrique

irrationnel est de type 1 en vertu du théoreme de K. F. Roth [211]. Dans [125] et [186], il est prouvé

1
que pour un irrationnel « de type fini 1) et tout € positif, Dy (na) = O(N_5+E). De plus, ce résultat
est optimal puisque (voir [32]) pour un irrationnel «a de type fini 7 et pour tout ¢ positif, il existe
une constante C' telle que

<

Dy(na) > CN_%+E,

pour une infinité d’entiers N. Des démonstrations simples de ces deux résultats sont données dans
[152]. On trouve également dans les travaux de H. Behnke [31, 32] les éléments permettant de
prouver le résultat suivant :



Théoréme 0.1.2 (Behnke). Soit a un nombre irrationnel dont le développement en fractions

continues est donné par [ag;a1,a2,...,0n,...]. Alors, Dy(na) = O(log N) si et seulement si la
m

suite % Zak est bornée.
k=1

Une preuve en est donnée dans [89]. Il en résulte que lorsque « verifie la condition du théoréme
précédent, donc notamment lorsque « est un nombre & quotients partiels bornés ou un nombre
quadratique, la suite (n«) est une suite de faible discrépance. Il est alors naturel d’introduire les
quantités

. Dy (na)

v(a) = limsup ————=

(o) = lmsup =N

et D*( )
v* () = lim sup — no

(o) =lmsup = N

Parmi les nombreux travaux sur ce sujet (voir par exemple [25, 26, 27, 95, 97, 158, 198, 217, 218]),
notons que Y. Dupain et V. T. S6s [97] obtiennent ’égalité surprenante

: k * 1

= (V) = i
plus tard complétée par C. Baxa [25] qui montre que v*(R\ Q) = [v*(v/2), +-00] (voir aussi [26, 27]).
I1 est également conjecturé que l'infimum des valeurs de v est atteint pour le nombre d’or ([26]).
Enfin, mentionnons un résultat métrique d’A. Khintchine [147] qui établit que, pour presque tout
a, la suite (na) est bien répartie. Nous en citons une version légerement plus forte que 1'on peut
trouver dans [29].

Théoréme 0.1.3 (Khintchine). Pour toute fonction croissante ¢,

1
Dy (na) = O (log N.p(loglog N)) <— g o) < 400,
p(n
n=1

pour presque tout réel a.

Ainsi, comme Dillustrent les résultats précédents, la répartition des suites (na) est vraiment bien
comprise. Le role joué par le développement en fraction continue de « est prépondérant dans cette
étude. Les résultats les plus fins sont en effet tous obtenus en utilisant le développement d’Ostrowski
des entiers et des systémes de numération associés. Nous reviendrons sur ces développement au
paragraphe 0.2.2.

L’étude des suites de Kronecker, c’est-a-dire des suites du type (nai,nas,...,naqg), est en
revanche beaucoup moins aboutie. Cela s’explique essentiellement par ’absence de bon équivalent
multidimensionnel aux fractions continues. Nous ne donnons pas ici les définitions classiques d’équi-
répartition et de discrépance pour les suites de R* (ou de R¥ /ZF) ; le lecteur pourra par exemple se
reporter & [152]. Bien que le critere de Weyl [249] donne aisément que la suite (nay, nag, ..., noy)
est équirépartie modulo un si et seulement si oy, as, ..., ap et 1 sont rationnellement indépendants,
le comportement de la discrépance des suites de Kronecker s’avere toujours mal compris. L’inégalité
d’Erdés-Turdn-Koksma [150] permet toutefois d’obtenir que, pour toute suite de Kronecker équiré-
partie et de parametres algébriques, Dy = O(N¢) pour tout e positif. Cette majoration n’est
cependant pas tres satisfaisante, comme Dillustre le résultat suivant de J. Beck [29] :



Théoréme 0.1.4 (Beck). Pour toute fonction croissante @,

+oo
1
Dy(nay,nag, ... ,nag) = O (logk N.¢(log log N)) = Z W < +00,
n=1

pour presque tout k-uplet (a1, o, ... ,ax) (au sens de la mesure de Lebesgue) .

Ce théoreme est réellement I’analogue multidimensionnel du théoreme d’A. Khintchine que nous
avons énoncé précédemment (voir également un résultat un peu plus faible de W. Schmidt [213] qui
utilise I'inégalité d’Erdés-Turdn-Koksma). En effet, on s’accorde généralement & penser que l'ordre
de grandeur minimal pour la discrépance d’une suite & valeur dans R* est logk N. Cependant ce
résultat est seulement conjecturé et la principale minoration de la discrépance des suites de R* est
due & K. F. Roth [210] (voir également une amélioration due & J. Beck [28] pour k = 2).

Théoréme 0.1.5 (Roth). Soit k un entier strictement positif. Il existe une constante Cy, telle que
pour toute suite x = (Tn)n>0 & valeurs dans R*,

Dy(z) > Cy logg N,
pour une infinité d’entiers N.

Le facteur résiduel % dans 'inégalité ci-dessus vient du fait que K. F. Roth minore en fait une
autre notion de discrépance, plus souple, la discrépance associé & la norme L? (voir par exemple
[152]). Pour cette notion de discrépance, il est prouvé dans [65] que la minoration obtenue est en
fait optimale.

0.1.2 Concepts généraux de répartition, discrépance locale et ensembles a restes
exceptionnels

Comme nous 'avons déja remarqué, la théorie de I’équirépartition et son aspect quantitatif,
la discrépance, ne se limitent pas a I'étude de suites réelles. Le livre référence de L. Kuipers et
H. Niederreiter [152], ainsi que 'ouvrage plus récent de M. Drmota et R. F. Tichy [89], I'illustre
parfaitement. De nombreuses notions de répartition y sont abordées, chacune possédant plusieurs
variantes dans les définitions. Toutefois, il s’en dégage une philosophie commune que nous allons
essayer de détailler & présent.

Pour cela plagons-nous dans un cadre suffisamment large et considérons un espace compact
X, muni d’une mesure borélienne de probabilité ; et d’une base B, si possible naturelle, de la
topologie de X. On peut alors définir une notion de répartition sur (X, B, ) en demandant & une
suite = (2,)n>0 a valeurs dans X d’étre équirépartie si

N-1
. 1
VBEB, lim - kZO X(sy(wr) = p(B),

ou x¢py désigne la fonction indicatrice de I'ensemble B. Cette notion s’avere particulierement
intéressante lorsque la définition de B garantit que pour toute fonction f continue sur X

1 N—1
i 3 7o) = | s

5



Il est de méme possible de définir la discrépance de la suite z par :

N—1
Dy(z) = sup > xmy(mk) — Nu(B)| .
k=0

Ainsi, lorsque 'on parle de répartition est-il indispensable de préciser par rapport a quelle mesure
et & quelle base de la topologie de ’espace on souhaite travailler. Dans le cas des suites réelles
par exemple, la mesure est implicite (il s’agit bien siir de la mesure de Lebesgue) et la base de
la topologie est généralement formée des intervalles de [0, 1] ou des intervalles de [0, 1[ ayant pour
origine 0 (pour la discrépance & origine).

La discrépance est une mesure uniforme de répartition et il peut donc sembler surprenant, voir
inopportun, de parler de discrépance locale. Il s’agit néanmoins d’une notion tres utile, qu’il serait
illogique de nommer autrement ; cette terminologie apparait entre autres dans [180] et [30].

Définition 0.1.6. En conservant les notations précédentes, la discrépance locale de x en B, B
désignant un élément de B, est notée An(x; B), et est définie par :

N-—1
An(z;B) = | Y xsy(zr) — Nu(B)|.
k=0

Ainsi, discrépance et discrépance locale sont-elles liées par la relation

Dy (z) = sup Ay (z; B).
BeB

Une premiere remarque, simple mais néanmoins importante, est que toute minoration d’une discré-
pance locale fournit immédiatement une minoration pour la discrépance (voir chapitre 3 pour
un exemple). Ensuite, si la discrépance détecte bien les irrégularités dans la répartition (grace au
supremum dans la définition), elle ne permet généralement pas de révéler les ensembles pour lesquels
la répartition est particulierement bonne. Ce sont ces deux aspects qui motivent principalement
I’étude de la discrépance locale (ainsi qu’un troisiéme aspect plus dynamique abordé au paragraphe
suivant). Enfin, il est intéressant de remarquer que ’étude de la discrépance locale d’une suite
n’est pas nécessairement plus simple que celle de sa discrépance. Par exemple, H. Niederreiter [180]
calcule sans grande difficultés 'ordre de grandeur de la discrépance de la suite de Farey, mais exhibe
pour cette méme suite un probleme de discrépance locale équivalent & I’hypothése de Riemann.

Ensembles & restes exceptionnels

Nous parlerons d’ensembles a restes exceptionnels pour nommer un ensemble dont la répartition
est soit tres mauvaise soit quasiment idéale. Commencons par définir une classe d’ensembles excep-
tionnellement bons : les ensemble a restes bornés.

Définition 0.1.7. Un ensemble B est dit a restes bornés pour la suite x, si Ay (xz; B) est une suite
bornée. Plus généralement, une famille d’ensembles B est dite a restes uniformément bornés pour

la suite x© si la suite
(sup An(z; B) )
BeB N>0

est bornée.



Ces ensembles ont été I'objet de nombreuses études dont nous rappelons les principaux résultats.
Le premier d’entre eux, et certainement le plus célebre, est un théoreme datant de 1966 et dia a H.
Kesten® [146].

Théoréeme 0.1.8 (Kesten). Un intervalle de [0,1] est a restes bornés pour la suite ({na}) si et
seulement si sa longueur appartient ¢ Za mod 1.

Ensuite, W. Schmidt [216] a montré la rareté de ces ensembles en prouvant que toute suite réelle ne
possede au plus qu'un nombre dénombrable d’intervalles & restes bornés, et G. Rauzy [204] a prouvé

lexistence d’ensembles non mesurables & restes bornés pour les suite (na). Les intervalles & restes
N-1

majorés (respectivement minorés), c’est-a-dire pour lesquels la somme Z x(By (k) — Nu(B) est

k=0
simplement majorée (respectivement minorée), sont étudiés pour les suites (na) dans [94] et [96].

Nous développerons au chapitre 2 une méthode permettant de déterminer si intervalle [0, 5[ est &
restes majorés ou bien minorés pour la suite (na) lorsque « et 5 appartiennent & un méme corps
quadratique.

Pour les suites de Kronecker, un résultat négatif de P. Liardet [159] montre qu’il ne peut exister
de pavés non triviaux & restes bornés. Toutefois, G. Rauzy [202] exhibe des ensembles & frontiéres
fractales (voir figure 5) qui sont & restes bornés pour une suite de Kronecker de dimension 2
(voir également [235] pour le cas d’un parallélogramme). Nous détaillerons la construction de ces
ensembles au paragraphe 0.2.4.

Les ensembles a restes bornés jouent un role important dans I’étude spectrale des systemes
dynamiques ergodiques. Ainsi, H. Furstenberg, H. Keynes et L. Shapiro [119] obtiennent-ils en
1973 une importante généralisation du théoreme de H. Kesten :

Théoréme 0.1.9 (Furstenberg, Keynes, Shapiro). Soit (X,B,u,T) un systéme dynamique
ergodique. S1i un élément B de l’ensemble B est, pour presque tout x, un ensemble a restes bornés
pour la suite (T"(x))n>0, alors e2™i(B) est une valeur propre pour la transformation T, ¢’est-a-dire
il existe une fonction mesurable f telle que f(T(x)) = e>™H(B) f(x) pour tout élément z de X. De
plus, si €™ est une valeur propre pour T, il existe un ensemble B appartenant a B tel que u(B) = r
et tel que B soit, pour presque tout x, un ensemble d restes bornés pour la suite (T"(x))n>0-
Le théoréme de H. Kesten implique donc que pour tout élément r de Z[a], €>™ est une valeur
propre pour la rotation d’angle a. Dans ce cas, il est déja connu que le groupe des valeurs propres
est en fait égal & {e?™" r € Z[a]}. Ainsi, toute valeur propre est-elle ici “réalisée” par un intervalle
a restes bornés.

Notons qu’il est également prouvé dans [123] que si, pour tout = appartenant & un ensemble
de mesure positive, B est un ensemble & restes majorés pour la suite (7" (x)),>0, alors e2min(B) egt
encore une valeur propre pour la transformation 7' (voir également [191] sur ce sujet).

Une autre propriété importante des ensembles & restes bornés est donnée par G. Rauzy dans
[204]. L’énoncé de ce résultat étant un peu technique, il nécessite I'introduction de quelques nota-
tions que nous allons rappeler. Considérons un entier k, @ € R* et L un réseau de R¥, de sorte que
la transformation 7 définie de R* /L dans lui-méme par

T(z)=x+« modL

*La partie suffisante du théoréme est en fait due & Hecke [125].
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soit minimale. Soit A une partie de R¥, bornée, d’intérieur non vide et telle que
Ve,yecA, t—yel=z=y.

Cette derniére propriété nous permet d’identifier A & son représentant canonique A dans R¥ /L.
L’application induite par T" sur A, notée T'4, est alors définie de A dans lui méme par :

Ta(z) = TILI;% {T"(z) € A}.

Nous pouvons maintenant énoncer le résultat principal de [204].

Théoréme 0.1.10 (Rauzy). Conservons les notations précédentes et supposons de plus qu’il
existe un réseau M de RF et f € RF tels que :

(i) Vz,ye A, x—yeM=z=y,

(i) Yz € A, Ta(z) =2+ mod M.
Alors, pour tout © € RF /L, 'ensemble A est un ensemble a restes bornés pour (T™(x))n>0.

Ainsi, dira-t-on plus simplement (et avec un léger abus de langage) que si I'induit d’une rotation T
de R¥ /L sur un ensemble A est & nouveau une rotation (pour un autre réseau), A est un ensemble
a restes bornés pour 7. Ce résultat a notamment une grande importance dans la représentation
géométrique des systémes substitutifs (se reporter au paragraphe 0.2.3 et & la discussion du para-
graphe 0.2.5).

La recherche de “mauvais” ensembles pour la répartition d’une suite n’a jusqu’a présent pas
fait 'objet d’une étude intensive. Néanmoins, le résultat suivant de R. Tijdeman et G. Wagner
[240] peut étre considéré comme une version locale du théoreme de W. Schmidt (voir [232] pour un
résultat similaire dans le cas des suites (na)).

Théoréme 0.1.11 (Tijdeman-Wagner). I ezxiste une constante C telle que pour toute suite
réelle x,

An(z;[0,8[) > Clog N,
pour presque tout 5 dans |0, 1].

Ce résultat implique notamment que pour toute rotation d’angle quadratique «, les “mauvais”
intervalles sont en fait génériques.

Nous exhiberons au chapitre 2 (voir également [2]) certains de ces ensembles, a savoir les in-
tervalles [0, B[ pour lesquels S appartient & (Q(«) \ Z[e]) mod 1. Nous montrons également pour
certaines de ces rotations, comme la rotation d’angle le nombre d’or, 'existence d’intervalles du
type [0, B[ qui s’avérent treés particuliers. En effet, ces intervalles vérifient la propriété suivante

A ] Ds
lim sup —N(na, 19, 8) = lim sup 7]\[(”0{),
N—o0 log N Nooo logN

qui s’exprime également par
limsupM =1, (1)
Neoo Dy (na)
puisque par définition
An(na; [0, 8]) < Dy(na).
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Par exemple, nous obtenons

. D}‘V(n—\/g_l) ; Ay (nﬁg’l; [0, ‘/5335 D
1msup ————— = 11msSsu
Ve logN N log N

Notons qu’ici la renormalisation par le facteur log N est naturelle puique D% (na) = O(log N)
lorsque « est quadratique (voir théoréme 0.1.2), mais la formulation de (1) évite de connaitre
préalablement l'ordre de grandeur de D7%. L’équation (1) signifie que l'irrégularité uniforme de
la suite (na) est réalisée par l'irrégularité locale de cette suite par rapport a lintervalle [0, 3].
Ces ensembles a restes exceptionnels n’ont pour l'instant pas du tout été étudiés. La propriété
précédente amene pourtant un certain nombre de questions.

Questions : Pour tout nombre « irrationnel, nous introduisons ’ensemble suivant :

{ﬁ e [0,1], 1imsupM = 1}.

N—o00 D?V(na)

Cet ensemble est-il nécessairement non vide 7 Si tel est le cas, est-il dénombrable, de mesure nulle?
Quelle en est la dimension de Hausdorff? Qu’en est-il lorsque 1’on remplace la suite (na) par une
suite réelle quelconque ?

0.1.3 Discrépance symbolique

Une idée essentielle dans ce travail est d’introduire et de formaliser des notions de répartition
dans un contexte symbolique. Au vu des concepts généraux que nous avons déja discutés, cela
semble légitime. Notre volonté n’est cependant pas de présenter uniquement une énieéme variation
sur le théme de la répartition mais plutot de montrer que les suites symboliques fournissent un cadre
d’étude naturel aux problémes de discrépance locale et donc a fortiori & la recherche d’ensembles
exceptionnels. Aussi considérons-nous les suites symboliques comme s’inscrivant réellement au coeur
des problemes de répartition.

Commencons par rappeler les définitions d’équirépartition et de discrépance pour les ensembles
finis. Considérons un ensemble fini A. Muni de la topologie discrete, A est un ensemble compact
dont les éléments engendrent naturellement la topologie. Considérons une mesure de probabilité p
sur A. Une suite U = (up)nen & valeurs dans A est dite équirépartie par rapport & pu si :

N-1
. 1
Va€A, lim — kzo X{a}(uk) = p(a),

olt Xy, désigne la fonction indicatrice du singleton {a}. Il est facile de constater que chaque
élément de notre ensemble A admet une fréquence dans une suite lorsque celle-ci est équirépartie.
A contrario, considérons une suite U definie sur I’alphabet A et dont les lettres admettent des
fréquences. Le vecteur des fréquences A = (A;);c 4 définit sur ensemble A une mesure de probabilité
naturelle pour U. L’existence des fréquences implique que U est équirépartie par rapport a cette
mesure de probabilité. Notamment, pour un point fixe de substitution primitive (une définition est
donnée au paragraphe 0.2.1) une telle mesure existe toujours (voir par exemple [195]).

Il existe alors une notion de discrépance pour de telles suites.



Définition 0.1.12. La discrépance An(u,U) de la suite U par rapport a la mesure p est définie
par :

An(p,U) =
~(w,U) = max

> (Xqay () — (@) |-

k=0

N-1 ‘

Ainsi, la discrépance Ay (A, U) mesure-t-elle la vitesse de convergence du vecteur
(|UUU,1 e ’LLN1|a>
N acA

Bien que I'étude de la discrépance sur un ensemble fini soit dotée d’un intérét propre (voir
par exemple [89] et [237]), cette notion peut prendre un caractére beaucoup plus général. En effet,
considérons une suite = ((I,‘n)nzo a valeurs dans un espace compact X muni d’une mesure de
probabilité . Etant donnée une partition mesurable P = (Py,...,P) de lespace X, nous pouvons
définir la, discrépance locale® de z par rapport & v et P par :

vers le vecteur des fréquences A.

N-1
An(z,P) = max Z (X{Pi}($) — I/(.PZ)) .
i€{l,...,k} =0

La suite U = (up)nen & valeurs dans A = {1,...,k} et définie par
Uy =1 , 81z, € P,
est appelée le codage naturel de x par rapport a P. Les définitions précédentes entrainent alors
An(z,P) = An(p,U),

ou 4 est la mesure induite par v sur A (& savoir, u(i) = v(P;)). En particulier, la suite Ay (p,U)
est bornée si et seulement si chaque P; est un ensemble & restes bornés pour z.

Ainsi, tout probleme de discrépance locale (sur n’importe quel espace compact) se réduit-il &
I’étude de la répartition d’une suite symbolique. Ceci confere & cette derniére une place centrale,
mais rend du méme coup utopique l'idée d’obtenir des résultats généraux sur la répartition des
suites symboliques. Toutefois, nous montrons au chapitre 3 qu’en restreignant notre étude au cas
des suites obtenues comme points fixes de substitutions primitives (ce qui correspond tout de méme
4 une classe assez étendue de suites fournissant de nombreux exemples), il est possible de décrire
simplement et avec précision le comportement asymptotique de leurs fonctions de discrépance. En
particulier, nous obtenons des résultats sur la répartition des substitutions primitives de type Salem
(substitutions primitives dont la matrice d’incidence admet une unique valeur propre de module
strictement supérieur &4 un et au moins une valeur propre de module un). Il s’agit en fait d’un abus
de langage car nous ne demandons pas au polyndéme caractéristique d’étre irréductible. Ainsi, la
valeur propre dominante d’une substitution de type Salem n’est-elle pas nécessairement un nombre
de Salem.

Parallelement, il est naturel d’associer & une suite U & valeurs dans un alphabet fini le systeme

dynamique (O(U),T), out O(U) est la fermeture de 1’orbite de la suite U sous Paction du shift 7°°.

®Nous renvoyons au paragraphe 0.1.2 pour plus de détails sur cette notion.
6Une définition plus précise est donnée au paragraphe 0.2.1.
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Existe-t-il une notion naturelle de discrépance sur de tels espaces? Comment se comportent ces
systemes 7

Considérons une suite symbolique U, X = (O(U), T le sous-shift associé & U, et p une mesure
invariante pour l'action du décalage. On propose alors de définir une notion de discrépance pour
un tel systéeme dynamique.

Définition 0.1.13. La fonction de discrépance du systéme dynamique X (par rapport a p) par :

N-1
Dy(X)= sup  sup [Y xu)(TH(V)) = Nu([w])|,

Veo) weLU) |k=o
ou [w] désigne le cylindre associé au mot w.

Cette définition est évidemment justifiée par le fait que les cylindres forment une base naturelle de

la topologie de O(U). De plus, si (X, T, u) est un systéme dynamique uniquement ergodique et f
une fonction continue sur X, alors

=

-1

1
N

]

for* [ sau

et la convergence est uniforme. Cependant, la vitesse de convergence dépend de la régularité de la
fonction f (voir par exemple les inégalités de [149] ou de Koksma-Hlawka [127]). La quantité

N-1

ZfoTk((L‘)—N/fd/J,

k=0

sup sup
zex feC(X)

est donc assurément infinie et ne présente aucun intérét. La fonction de discrépance que nous
venons d’introduire mesure la vitesse de convergence uniforme de sommes de Birkhoff, mais en
nous restreignant a une classe tres réguliere de fonctions “presque continues”, & savoir les fonctions
indicatrices des cylindres. Cette classe de fonctions étant suffisamment large (les cylindres forment
une base de la topologie de O(U)) nous pouvons considérer Dy (X) comme une mesure de I'unique
ergodicité des sous-shifts (ayant cette propriété).

Un autre aspect intéressant de cette fonction de discrépance est que si la suite Dy (X) est bornée,
alors tout cylindre est un ensemble & restes bornés pour X'. On obtient ainsi une version symbolique
du théoreme de H. Kesten, les cylindres représentant ’analogue symbolique des intervalles (en tant
que base “canonique” de la topologie). Sous ces hypotheses, le résultat est méme nettement plus
fort puisque les cylindres forment en fait une famille d’ensembles & restes uniformément bornés
(voir définition 0.1.7).

Nous verrons notamment au chapitre 3 que les systemes associés aux substitutions de Fibo-
nacci et Tribonacci vérifient ces conditions et nous donnerons une condition suffisante (et presque
nécessaire) pour qu’un systéme associé & un point fixe de substitution primitive ait une fonction
de discrépance bornée. Plus généralement, nous obtenons une description simple du comportement
asymptotique de la fonction de discrépance des systemes associés aux points fixes de substitutions
primitives, systémes connus pour étre uniquement ergodiques [171, 172].
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0.2 Combinatoire

0.2.1 Substitutions et développements S-adiques

La notion de substitution ou plus exactement de systéme dynamique substitutif a été introduite
en 1963 par W. H. Gottschalk [121]. De tels systémes, issus de la dynamique symbolique et dotés
d’une structure a la fois simple et riche, interagissent avec de nombreux autres domaines et objets
mathématiques dont la combinatoire des mots, la théorie des nombres et ’arithmétique, la théorie
ergodique, la théorie spectrale, 'algebre linéaire, les pavages, les ensembles fractals, les automates
et la théorie des langages. Deux ouvrages, [195] et [194], sont d’ailleurs complétement consacrés &
I’étude de ces interactions. Une substitution est un objet de nature combinatoire et plus précisément
il s’agit un morphisme non effacant défini sur le monoide libre A* = U AF engendré par un

E>0
ensemble fini A.

Dans la suite nous considérons qu’'un ensemble fini A, appelé alphabet, est muni de la topologie
discrete et que les ensembles AN et par extension A* U AN sont munis de la topologie produit des
topologies discrétes. Une application définie sur A et & valeurs dans A* s’étend par concaténation en
un endomorphisme de A*, puis se prolonge par continuité en une application de AY dans lui-méme.
Ainsi nous définirons toujours une substitution par la donnée d’une application d’un alphabet A
dans A*, mais nous considérerons, suivant le contexte, qu’elle agit sur des mots finis ou infinis.
Considérons une substitution o définie sur un alphabet A et supposons qu’il existe une lettre a
telle que o(a) commence par a et soit un mot de longueur au moins deux. Dans ce cas, la suite
(0™(a))n>0 converge vers un élément U = (up)n>o de A", point fixe de la substitution. Par exemple,
la substitution de Fibonacci, définie par (1) = 12 et 0(2) = 1 admet (1) = 1211212112...
comme unique point fixe. Il est ainsi parfois plus agréable de considérer une substitution comme la
donnée d’un tel triplet comme cela est fait dans [98].

Définition 0.2.1. Soit A un ensemble fini. Une substitution définie sur alphabet A est un triplet
(0,a,A), o o est une application de A dans AT = U AF et telle que a soit un préfize strict de

k>1
o(a).

Plus généralement une suite U a valeurs dans l'alphabet B est dite substitutive s’il existe une
suite V', point fixe d’une substitution définie sur ’alphabet A, et un morphisme ¢ de A dans B*
tels que U = (V). On associe alors i la suite U le systéme dynamique naturel (O(U),T), ou
O(U) désigne la fermeture de 'orbite de la suite U sous l'action du décalage ou shift 7' (défini
par T(U) = (un)n>1). Un tel systéme est appelé systéme dynamique substitutif associé au triplet
(0,a,A) et & la projection .

Pour étudier une substitution o ou le systeme substitutif associé, il est souvent utile d’introduire
la matrice d’incidence de la substitution M, = (|o(j)|i)ijeca. Cette matrice correspond a une
“abélianisation” de la substitution et doit donc étre considérée comme un objet plus simple mais
qui ne contient pas toute I'information initiale. L’intérét de définir ces matrices est bien sir de
bénéficier ensuite de la puissance des méthodes de l’algebre linéaire comme nous le verrons aux
chapitres 2 et 3. Notons que la condition de primitivité, a savoir, il existe une puissance de la matrice
dont les coefficients sont tous strictement positifs, s’avére souvent nécessaire et permet d’éviter
certaines substitutions dégénérées. D’un point de vue dynamique, les substitutions apparaissent
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naturellement dans I’étude des systémes auto-similaires, c’est-a-dire lorsque le systéme induit” sur
un sous-ensemble est isomorphe au systéme initial. De tels exemples sont en particulier fournis
par les rotations quadratiques du tore de dimension un (voir par exemple [5]), certaines rotations
algébriques torales en dimensions supérieures [202, 19, 57] ou les échanges d’intervalles dont les
longueurs appartiennent & un méme corps quadratique [48].

Nous avons remarqué que l'itération d’une substitution permet souvent de définir une suite
infinie aux propriétés intéressantes. Nous nous intéressons a présent a une généralisation de ce
phénomene. Nous reprenons les notations et la terminologie utilisés dans [194]. Considérons un
ensemble fini S de substitutions définies sur un alphabet commun B et un morphisme ¢ de B vers
un alphabet A.

Définition 0.2.2. Soit (0y,)n>1 une suite @ valeurs dans S telle que pour tout élément r € B,
lim |o109...0,(r)| = +00. Une suite U définie par lim @(o102...0,(D)), ot b € B, est appelée
n—00 n—00

suite S-adique® et le couple (o, (0n)n>0) est appelé développement S-adique de U.

Une suite S-adique peut ainsi étre engendrée par un nombre fini de substitutions. Des expressions S-
adiques explicites sont déja connues pour les suites sturmiennes, les suites d’Arnoux-Rauzy [23], les
codages de rotations [86, 5] et les échanges d’intervalles [117, 5, 163]. Dans ces exemples, les résultats
sont méme beaucoup plus forts puisque toute les suites du méme type (soit sturmiennes, soit
d’Arnoux-Rauzy, ...) sont décrites a 'aide d’un méme ensemble de substitutions. Ces représentations
sont généralement obtenues en utilisant soit le graphe des mots (voir par exemple [38]) soit un
procédé d’induction comme celui décrit dans [201] pour les échanges d’intervalles (nous rappelons
ce procédé au chapitre 1 dans le cadre des échanges de trois intervalles). Plus généralement, dans
[112] S. Ferenczi montre ’existence de développements S-adiques pour toute suite minimale dont la
complexité est sous-linéaire (c’est-a-dire, il existe ¢ tel que p(n) < c¢n pour tout n). Nous rappelons
que la fonction de complexité p(n) d’une suite associe a tout entier n strictement positif le nombre
de mots distincts de longueur n admettant une occurrence dans cette suite (nous reviendrons sur
cette notion au paragraphe 0.2.6). Ce résultat, qui utilise un théoréme de [61], est théorique et ne
donne pas de description explicite. Bien que sa réciproque soit fausse (il existe des point fixes de
substitution de complexité minorée par cnlog(n), ¢ > 0 [188]), peut-on caractériser les suites de
complexité sous-linéaire en termes de S-adicité 7 En d’autres termes, existe-t-il des conditions sur
les substitutions et/ou sur les développements permettant de définir une nouvelle notion de suite
S-adique équivalente & la complexité sous-linéaire 7 La conjecture S-adique (voir par exemple[194])
affirme qu’il est possible d’obtenir une telle caractérisation.

Dans [100], F. Durand donne une condition suffisante de complexité sous-linéaire, la récurrence
linéaire, qui est de plus équivalente & une notion restrictive de S-adicité [102]. Une suite est dite
linéairement récurrente s’il existe un réel K tel que tout facteur de longueur Kn contienne nécessai-
rement tous les facteurs de longueur n de la suite. Malheureusement, il existe des suites de com-
plexité faible qui ne sont pas linéairement récurrentes comme les suites sturmiennes dont I'angle a
un développement en fraction continue non borné [102]. Ainsi, la récurrence linéaire ne permet-elle
pas d’obtenir la caractérisation souhaitée. Toutefois, cette notion s’avere utile et pertinente comme
l'illustrent notamment les résultats de [100], [157] et [114]; nous 'utiliserons d’ailleurs & plusieurs
reprises dans les chapitres 4 et 5.

"Se reporter au paragraphe 0.1.2 pour une définition.
Par analogie avec la terminologie adique introduite par A. Vershik (voir par exemple [246]).
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Nous verrons dans la troisieme partie de cette these que les expressions S-adiques sont parti-
culierement adaptées a I’étude des phénomenes de répétition intervenant dans les suites symboliques
(voir également [208, 40]). Ceci s’explique par le fait que les substitutions “transmettent” les puis-
sances. Enfin, les développements S-adiques semblent propices a l'introduction d’algorithmes de
fractions continues multidimensionnels (voir par exemples [200, 251, 23, 86, 117, 163, 5]), pro-
duisant alors une description arithmétique des suites. C’est en particulier le cas de I'expression
S-adique que nous donnons, au chapitre 1, pour les codages de rotations.

0.2.2 Systemes de numération

Les systemes de numération occupent une place centrale dans 1’étude de la discrépance, qu’il
s’agisse de suites a valeurs dans R ou dans un espace plus abstrait. Limitons nous dans un premier
temps au cas des suites & valeurs dans le tore de dimension un. Il existe alors essentiellement deux
méthodes pour majorer la discrépance d’une suite.

La premiere tres générale, puisque s’appliquant en théorie & toutes les suites, repose sur I'inégali-
té d’Erdds-Turan [105, 106] et fait donc intervenir 1’étude de sommes d’exponentielles. Tres utile
pour obtenir des résultats plutot généraux, elle s’avere pourtant souvent inefficace lors de recherches
plus précises. Ainsi, I'inégalité d’Erdds-Turdn donne-t-elle aisément que pour un irrationnel « de
type fini’ 5 et tout e positif, Dy (na) = O(N7%+E), mais ne permet pas de montrer que Dy (na) =
O(log(NN)) lorsque les quotients partiels de a sont bornés. Ce dernier résultat, établi dans [152],
nécessite l'introduction de systémes de numération adaptés, liés au développement d’Ostrowski
associé au réel a. Ce développement des entiers est associé a I'échelle de numération (gn)n>0, ot
les q,, désignent les dénominateurs des convergents de «. Il est également possible d’introduire un
développement analogue pour les réels ayant pour base la suite (g, — pn)n>0, ol les p,, désignent
les numérateurs des convergents du réel « (voir [39] pour un survol sur ce sujet).

La seconde méthode de majoration de la discrépance Dy d’une suite consiste & développer dans
des systemes de numération spécifiques d’une part ’entier IV et d’autre part les N premiers éléments
(réels) de la suite. Ainsi, retrouve-t-on toujours une complémentarité entre développement d’entiers
et de réels. Par exemple, nous avons déja remarqué I'importance et I’efficacité du développement
d’Ostrowski (et des systémes de numération associés) pour I'étude de la discrépance des suites
(na)p>0. Dans le méme esprit, la plupart des constructions de suites de faible discrépance sont
fondées sur I'utilisation de systemes de numération ; par exemple, le développement binaire pour la
suite de van der Corput et les développements b-adiques pour les suites de Halton ou de Faure.

L’étude de la discrépance symbolique des points fixes de substitutions primitives n’échappe pas
a cette regle. C’est pourquoi nous devons également introduire un systéme de numération adapté
qui nous permettra & la fois de développer les entiers et les points fixes de substitutions (jouant
ici le role des réels). Ce systeme est introduit par J.-M. Dumont et A. Thomas [92] sous une
forme classique. Dans [205], G. Rauzy en donne une version plus visuelle & l’aide de ’'automate des
préfixes. C’est ce point de vue que nous avons choisi d’adopter.

Définition 0.2.3. Considérons une substitution o sur un alphabet A et notons Pref, le sous
ensemble de A* formé des préfizes stricts des images par o des éléments de A. L’automate des
préfizes associé a la substitution o est défini de la facon suivante :

9Se reporter au paragraphe 0.1.1 pour une définition du type.
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— A est ’ensemble des états de l'automate,

— Pref est ’ensemble des étiquettes,

— il existe une fleche de I’état a vers l’état b étiquetée par le mot m
st mb est un préfize de o(a).

F1G. 1 — Automate des préfixes associé a la substitution de Fibonacci, o(1) = 12 et 0(2) = 1.

1

[oulle-

Fic. 2 — Automate des préfixes associé & la substitution de Tribonacci, o(1) = 12, o(2) = 13 et
o(3) =1.

Un chemin étiqueté C reconnaissable par I’automate des préfixes associé & o sera noté sous la forme
((iov ila EU)? (i17i27 El)a LR (infla ina Enfl)) )

ij € Apour 0 < j <n, E; € Pref, pour 0 < j <n — 1. On appellera suite des étiquettes associée
au chemin C la suite (Fy, E1, ..., E,_1). Le principal théoréeme concernant ’automate des préfixes
associé & un point fixe de substitution est le suivant :

Théoréme 0.2.4 (Dumont et Thomas [92], Rauzy [205]). Conservons les notations de la
définition 0.2.3 et supposons de plus qu’il existe a € A tel que o(a) commence par a et |o(a)| > 2.
Notons alors X, lunique point fize de o commencant par a. Alors, pour tout entier N, il existe
un unique chemin étiqueté reconnaissable par Uautomate des préfives associé a X, partant de o et
étiqueté par la suite (Ey, By ... E,) tel que Eg # ¢ et Xy = 0™(Ep)o" " Y(E}) ... E,, ot Xy désigne
le préfize de longueur N de la suite X, .

La suite finie Xy se développe donc en 0™ (Ey)o™ ' (E1) ... E,, ce qui permet de définir également
n

un développement de l'entier N sous la forme Z |o*(E,_1)|. Ce systéme de numération généralisé

k=0
consitue 'outil principal utilisé dans ’étude, menée au chapitre 3, des problémes de répartition des

systemes substitutifs. De plus, 'automate des préfixes offre une dimension visuelle, agréable pour
comprendre les conditions sofiques intervenant dans ces développements.

Il est naturel de se demander si cette description des entiers ne correspond pas pour certaines
substitutions & des développements classiques. Un premier élément de réponse est apporté par les
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auteurs de [92] qui remarquent que :

- si la substitution est de longueur constante égale & [, on retrouve ’écriture des entiers en base [,
- dans le cas de la substitution de Fibonacci, on retrouve la numération associée & 1’échelle de
Fibonacci {F,,n € N}.

- dans le cas de la substitution de Tribonacci, on retrouve la numération associée a 1’échelle de
Tribonacci.

Une suite sturmienne caractéristique'® est laissée invariante par une substitution non triviale si
et seulement si son angle est quadratique et son développement en fraction continue satisfait a
une condition combinatoire suplémentaire [69] (voir également [250, 189, 35] pour le cas des suites
sturmiennes non caractéristiques). Dans ce cas, les auteurs de [69] exhibent de plus la substi-
tution (sous-entendue la plus simple) laissant la suite invariante. Une propriété remarquable est
que le développement associé & une telle substitution correspond exactement au développement
d’Ostrowski ayant pour base 'angle de la suite sturmienne [4]. Ainsi, il semble que lorsque la
substitution est dotée d’un caractére arithmétique clair, la numération obtenue soit parfaitement
naturelle. Une explication de ce phénomeéne vient sans doute du fait que ’on utilise, comme pour
les développements classiques, 'algorithme “glouton”.

Un autre aspect intéressant, qu’il serait bon d’approfondir, est la possibilité de définir & l'aide
de 'automate des préfixes une numération sur les réels, duale en quelque sorte de celle définie pour
les entiers. Le développement d’un réel correspond cette fois & la donnée d’un chemin infini dans
lautomate. La encore, certains liens avec des numérations classiques sont déja établis dans [92] sur
quelques exemples.

Fic. 3 — Partitions de Markov associées respectivement, aux matrices d’incidence des substitutions
de Fibonacci, o(1) = 12, 0(2) = 1, et de Tribonacci, o(1) = 12, 0(2) =13 et o(3) = 1.

Pour les substitutions de type Pisot qui vérifient une condition suplémentaire, dite de Parry, le
développement des réels correspond au S-développement!! associé au nombre de Pisot et il est
possible d’obtenir des théorémes de Galois (c’est-a-dire, caractériser les développements purement
périodiques) & l'aide de Pautomate des préfixes (voir [138, 141, 140, 10, 11, 37] pour des résultats
dans cette direction). On obtient ainsi qu’un élément z de [0, 1] admet un S-développement pure-
ment périodique si et seulement si (x,z1,z9,...,24), les z; désignant les conjugués de Galois de
x, appartient & un sous-ensemble compact de [0, I[X(Cd. Les ensembles décrivant les réels dont le
développement est purement périodique sont de plus similaires aux partitions de Markov explicites
obtenues, toujours a ’aide de 'automate des préfixes, pour certains automorphismes définis par la

10Se reporter au paragraphe 0.2.6 pour une définition.
" Ces développements ont été introduits par A. Rényi dans [206].
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matrice d’incidence de substitutions de type Pisot (voir [170, 222]). Deux exemples de telles par-
titions sont représentés sur la figure 3. Enfin, automate des préfixes, ainsi qu'une généralisation
introduite dans [56], intervient également dans la représentation géométrique des systémes substi-
tutifs (voir [202, 170, 55, 222]).

0.2.3 Représentations géométriques des systémes substitutifs

Les systemes dynamiques symboliques jouent un role important dans ’étude des systémes dy-
namiques généraux et en particulier des systémes géométriques. En effet, étant donné un systéme
dynamique géométrique (X, T, u) et P une partition (finie) mesurable de X, il est alors possible
de leur associer un systeme symbolique. Il suffit d’introduire I’ensemble des suites obtenues comme
codages naturels des orbites, sous 'action de T, des éléments de X par rapport & la partition
P, puis de considérer le sous-shift engendré par ces suites. Sous certaines hypotheses générales
sur le systeme (X, T, u) et la partition P, ce systéme symbolique est métriquement isomorphe au
systeme géométrique initial. Au-dela de ce type de constructions, les dynamiciens et en particulier
les ergodiciens ont rapidement compris que de tels systemes abstraits offraient une ressource qua-
siment inépuisable d’exemples de systémes dynamiques “simples”. Ainsi, les premiers exemples de
systemes ayant telle propriété ou au contraire ne satisfaisant pas a telle autre ont souvent (presque
systématiquement) été fournis par des systémes dynamiques symboliques, & tel point que leur étude
est considérée comme une théorie a part entiére, la dynamique symbolique.

Une classe importante de systemes symboliques d’entropie nulle est donnée par les systemes
substitutifs primitifs que nous avons définis au paragraphe 0.2.1. IIs sont suffisamment réguliers pour
permettre d’établir de nombreux résultats tels que ’absence de mélange fort [82], I'unique ergodicité
[171, 172], ou la continuité des fonctions propres [132] (voir également [195] pour d’autres résultats
spectraux). On peut alors se demander si ces systémes sont réellement nouveaux ou au contraire si ce
sont des systemes géométriques classiques “déguisés”. Par exemple, tout sytéme associé & une suite
sturmienne d’angle quadratique est substitutif et métriquement isomorphe & une rotation du tore
de dimension 1 [176]. Donner une représentation géométrique consiste a exhiber un isomorphisme
métrique entre le systeme symbolique initiale et un systeme géométrique, en obtenant si possible
une construction explicite de I'isomorphisme (voir [194], chap. 7).

Propriétés spectrales et représentations géométriques sont liées par le résultat suivant de J.
von Neumann : un systeéme, inversible et ergodique, & spectre discret est métriquement isomorphe
a une translation minimale sur un groupe compact abélien muni de la mesure de Haar. En par-
ticulier, il est conjecturé que tout systeme substitutif de type Pisot est & spectre discret et que
dans ce cas le groupe est un tore de dimension d — 1 lorsque la substitution compte d lettres. Le
premier résultat significatif dans cette direction (si l'on omet celui plus ancien de [176]) est du
a G. Rauzy [202]. Il montre que le systéme dynamique associé & la substitution de Tribonacci'?,
définie par o(1) = 12, 0(2) = 13 et o(3) = 1, est isomorphe en mesure & une rotation sur le tore
de dimension 2. La construction de cette représentation fait apparaitre des ensembles compacts &
frontiere fractale qui sont des ensembles & restes bornés pour les suites de Kronecker associées a
cette rotation. La réunion de ces ensembles est depuis appelée fractal de Rauzy (une description
détaillée en est donnée au paragraphe suivant). Plus généralement, des constructions similaires sont
données pour les substitutions de type Pisot [19, 57]; nous montrerons au chapitre 3 (voir aussi
[3]) qu’elles produisent de méme des ensembles & restes bornés pour les rotations associées. Une
méthode analogue de construction d’ensembles fractals & partir de substitutions est introduite dans

12Ce nom est donné par analogie avec la substitution de Fibonacci.
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[80] et permet également de retrouver ces ensembles (voir [139]) ainsi que le pavage de Penrose.
Une autre représentation géométrique des substitutions ne faisant pas intervenir la condition Pisot
mais une condition moins restrictive'® est présentée dans [130].

I1 est également possible de représenter explicitement tout systéme substitutif primitif (et méme
une classe un peu plus large comme le montre [88]) comme une transformation de I'intervalle. Cette
représentation bien qu'un peu abstraite peut étre considérée comme géométrique ou du moins
comme plus “visuelle” que la représentation symbolique. Elle est de plus tres générale comme
l'illustre le résultat principal de [22]. Cette construction est basée sur une méthode dite de couper-
empiler (cutting-stacking pour les anglophones) ; on parle également de représentation par tours de
Rokhlin. Elle a ’avantage de permettre d’exhiber certaines propriétés ergodiques de ces systémes
(voir [111, 113] ou [194]). De plus, de tels systéemes s’averent performants pour obtenir des suites de
faible discrépance a valeurs dans [0, 1[. Par exemple, les orbites d’un systéme simplement représenté
(en 'occurrence a l'aide de la substitution définie par o(1) = 11) comme celui associé & la transfor-
mation de von Neumann-Kakutani'* (voir figure 4) correspondent & des suites de van der Corput.

1

1/2

1/4

178

0 12 3/4 /8 1

Fic. 4 — Graphe de I'application de von Neumann-Kakutani.

Une généralisation immédiate permet (en considérant la substitution définie par o(1) = 19) de
définir un systeme dont les orbites sont des suites de Halton en base d (voir [154] et [88]). Il semble
également possible de définir par des régles simples (en utilisant non pas une substitution mais
plusieurs) un systéme sur l'intervalle dont les orbites sont des suites de Faure de dimension un;
nous rappelons que ce sont les suites de plus faible discrépance connues actuellement [108]. Il serait
évidemment intéressant de généraliser ces constructions, ainsi que leurs relation avec les suites de
faible discrépance, a des dimensions supérieures.

Un des intéréts de toutes les représentations géométriques que nous venons d’évoquer est
de permettre de traduire les résultats obtenus au chapitre 3 sur la discrépance symbolique des
systeémes substitutifs, en terme de répartition pour des suites plus naturelles (¢’est-a-dire & caractére
arithmétique ou géométrique). Ainsi, par exemple, le fait que la fonction de discrépance symbolique
d’une substitution de type Pisot soit bornée (propriété a priori plutot abstraite) permet de déduire
que les composantes du fractal de Rauzy associé sont des ensembles & restes bornés pour les suites
de Kronecker sous-jacentes (propriété arithmétique et géométrique). I’avantage avec les problemes
de répartition symbolique est que le cardinal de I’alphabet n’est pas un facteur de complexité, alors

1371 suffit que la matrice d’incidence de la substitution admette une valeur propre de module strictement inférieur
a un.
" (ette transformation a été introduite par J. von Neumann dans [247] et étudié ensuite par S. Kakutani [143].
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qu’il est beaucoup plus difficile d’étudier des suites & valeurs dans R* /Z* qu’a valeurs dans R/Z.
Passer par une représentation symbolique élimine en partie ces problemes de dimension. Notons
enfin, que les représentations des substitutions ne donnent pas toujours des systémes définis sur
I'intervalle, sur R/Z ou sur RF /ZF. Au vu du théoréme de J. von Neumann, nos résultat peuvent
s’appliquer également & la répartition de suites issues par exemple de translations sur un groupe
compact abélien plus abstrait. En particulier, le systéme substitutif associé a la substitution de
Morse, o(1) = 12 et 0(2) = 21, est isomorphe & une extension & deux points d’une translation
(l’addition de 1) sur le groupe Zy des entiers 2-adiques (voir [194] ou [88] pour ce résultat ainsi
qu’une représentation par tours de Rokhlin de la substitution de Morse). Notre approche permet
notamment de retrouver certains ensembles a restes bornés pour cette transformation.

0.2.4 Un exemple représentatif : le fractal de Rauzy

Dans le paragraphe précédent, nous avons présenté plusieurs idées de représentations géométri-
ques des systemes substitutifs. Nous proposons & présent de détailler 'une d’entre elles, associée &
la substitution de Tribonacci.

Dans [202], G. Rauzy introduit une substitution, appelée substitution de Tribonacci, généralisant
les propriétés dynamiques, arithmétiques et géométriques de la substitution de Fibonacci. Cette
substitution est définie sur un alphabet a trois lettres par

o(l) =12, 0(2) =13 et o(3) =1,
111

1 0 0 | etson polynéome caractéristique est 3 — 22 — x — 1.

010

Ce polynéme admet une unique racine réelle strictement supérieure a un, notée 6, et deux racines
complexes conjuguées de module strictement inférieur & un, que nous noterons « et @. Ainsi, 8 est-il
un nombre de Pisot et I’on dit que o est une substitution de type Pisot. Le mot de Tribonacci, noté
U, est 'unique point fixe de o défini par U = 0°°(1). Le but de la représentation géométrique que
nous allons donner pour la substitution de Tribonacci est de prouver qu’il existe un isomorphisme
métrique entre le systéme substitutif X = (O(U), T, u), ot p désigne 1'unique mesure invariante
par T, et une rotation de T? (muni de la mesure de Haar). Les résultats que nous présentons ici

sont issus pour l'essentiel de [202].

sa matrice d’incidence est M, =

L’unique vecteur propre normalisé associé a la valeur propre dominante 6 est noté vy et est égal

N

a . Il correspond au vecteur associé aux fréquences des lettres dans le mot de Tribonacci.

?\7| »—SEJ| ==

Notons alors pour tout entier n,

(5(%) :n( % > . ( |u0u1...un_1|1 > ‘
2 |’LLO’LL1 e un,1|2
11 est facile de vérifier que le formalisme introduit au paragraphe 0.1.2, conduit pour tout entier n
a I'égalité :
16(n)]o0 = An(U).
Le fait que o soit une substitution de type Pisot implique que sa fonction de discrépance A, (U)

est bornée (voir chapitre 3). Le fractal de Rauzy R est alors défini comme le compact obtenu en
prenant 'adhérence dans R? de I'ensemble {§(n), n € N} (voir figure 5).
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Fia. 5 — Le fractal de Rauzy et ses trois composantes.

Nous pouvons également donner une approche géométrique peut-étre plus intuitive, bien que
rigoureusement équivalente, de cette construction (voir figure 6). Considérons la ligne brisée de R?
obtenue en remplacant successivement les lettres de U par le vecteur d’indice correspondant dans la
base canonique. Alors, cette ligne “s’enroule” asymptotiquement autour de la droite portée par le
vecteur vy. En effet, le fait que chaque lettre de la suite U admette une fréquence et que le vecteur

F1G. 6 — La méthode de projection pour obtenir le fractal de Rauzy.

de fréquence associé soit égal & vy (ce qui est assuré par la primitivité de o, voir par exemple [195]),

implique que la suite (@) . tend vers 0. Ici, le résultat est en fait beaucoup plus précis; comme
n_

A, (U) est bornée, il en est de méme de la distance entre la ligne brisée et la droite dilatante. Ainsi,

en projetant les sommets de la ligne brisée parallelement & vy sur 'hyperplan affine contractant

(plongé dans R?) associé & M,, on obtient un ensemble borné qui est 'image par une similitude de
I'ensemble {d(n), n € N}.

En définissant, pour 1 < ¢ < 3, les trois sous-ensemble de R suivant

1
72 |U[)U1 e un_1|2
on obtient que R = R; U Ry U R3 et que cette union est disjointe en mesure (voir figure 5). Les

ensembles R; sont appelés composantes du fractal de Rauzy. De maniere équivalente, il est possible
de définir trois autres sous-ensembles de R par :

1
5 UQUT - - - Up— ,
R;-:{n(§>—<|01 "1|1>,nEN, unlzz}.
72 |’U,0’U,1...’U,n,1|2
Le systeme substitutif X' associé a la substitution de Tribonacci est alors métriquement isomorphe
4 un échange de morceaux F défini sur R (c’est-ad-dire que F définit une translation sur chaque

morceau R;), de sorte que E(R;) = R (voir figure 7).

)
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F1G. 7 — L’échange de morceaux E associé au fractal de Rauzy.

L’étape suivante consiste & prouver que le fractal de Rauzy est un domaine fondamental de R?
associé au réseau classique Z2. Ce résultat peut sembler surprenant compte tenu de 'apparente
complexité de I’ensemble R ; on s’en convaincra tout de méme au vu de la figure 8. Ceci a une
conséquence importante : les trois vecteurs de translation intervenant dans la transformation F

1
sont identiques modulo Z2. Ainsi, on peut prouver que la translation de vecteur n = ( ¢ ) sur
oz
T? est isomorphe 3 I’échange E considéré modulo Z2. Plus précisément, cela signifie que si = est le
représentant dans R de 1’élément Z de T?, alors E(x) est le représentant dans R de I'élément = + 17;.
Pour la suite de Kronecker ({n + %} , {n + 0%}) ceci implique que dans T? les ensembles R;

n>0’
sont des ensembles & restes bornés.

F1G. 8 — Le pavage périodique du plan engendré par le fractal de Rauzy.

En particulier, on obtient que le systéme substitutif associé a la substitution de Tribonacci est
& spectre discret, donné par {62”", rez [%] + Z [9%]} (puisqu’il est isomorphe & la translation
de vecteur 7 sur T?). Introduisons, pour tout facteur w = wyws ... wy de la suite U, 'ensemble

R—w:{xE'H‘Z,m—i-anij, 1§j§k}.

Au chapitre 3, nous montrerons que la fonction de discrépance Dy (X) associée au systéme sub-
stitutif de Tribonacci est bornée ; ce résultat implique non seulement que pour tout facteur w de
U, Ry est un ensemble & restes bornés pour la suite de Kronecker ({n + %} , {n + 9%})“>0, mais
également la propriété plus forte suivante : B

{Ruw, we LU)}

est une famille d’ensemble & restes uniformément bornés (voir définition 0.1.7). Ceci permet ensuite
de retrouver les valeurs propres de ce systeme & l’aide du théoreme 0.1.9 et produit ainsi une
démonstration courte du fait que la rotation de vecteur 7 est un facteur du systéme symbolique
associé a o (voir [194]).
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Enfin, rappelons brievement certaines propriétés du fractal de Rauzy : R est simplement connexe
[202], la dimension de Hausdorff de sa frontiere peut étre calculée et est strictement supérieure a
1 [139], et sa frontiére est un quasi-cercle [170]. De plus, la plupart des résultats de ce paragraphe
peuvent étre étendus, sous certaines conditions, aux substitutions de type Pisot (voir [55, 222, 57,
19]).

Ce procédé de représentation géométrique est aujourd’hui assez bien compris pour les sytémes
substitutifs de type Pisot. Il lie, comme nous venons de le constater, substitutions de type Pisot,
rotations toriques et ensembles a restes bornés. De telles représentations restent en revanche plus
obscures pour les substitutions primitives de type Salem (c’est-a-dire pour lesquelles la deuxiéme
valeur propre de la matrice d’incidence, par ordre de module décroissant, est de module un). Nous
allons maintenant présenter sur un exemple une ébauche du travail qui pourrait étre accompli dans
ce cas.

Considérons la substitution primitive ¢ définie sur 'alphabet {1,2,3,4,5} par :

1+— 1112455
2+— 111255
3 — 1123455
4 — 23445

5 — 123455

La matrice M, admet le polynéme (z — 1)?(—z® + 722 — 5z + 1) comme polynéme minimal. Ainsi,
la valeur propre dominante de M est un nombre de Pisot, mais la substitution n’est pas de type
Pisot & cause de la valeur propre double 1. En utilisant la méthode de la ligne brisée (voir figure
6), décrite précédemment, et en projetant cette fois sur le plan contractant associé a Mg (qui est
de dimension deux), on obtient un fractal de Rauzy R¢, composé de cing morceaux. Le systeme
substitutif associé¢ a ¢ est de plus métriquement isomorphe & un échange de cing morceaux F,
représenté sur les figures 9 et 10 (car il vérifie une condition combinatoire, dite de coincidence).

F1G. 9 — Le fractal de Rauzy Re.

Bien que la situation puisse paraitre semblable & celle rencontrée précédemment, il n’y a aucune
chance pour que cet échange de cinq morceaux donne, comme dans le cas du fractal de Rauzy, une
rotation de T?. En effet, les composantes du fractal de Rauzy associé & & n’étant pas des ensembles
a restes bornés pour I’échange de morceaux, le théoréme 0.1.10 interdit & E, “d’eétre une rotation”.
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F1G. 10 — L’image par E¢ de Re.

Toutefois, il semble raisonnable de croire (voir [104] pour un exemple de situation similaire) qu’il
existe une rotation de T? de parametres appartenant & un corps cubique et dont application induite
sur R¢ est égale a E¢. Nous pouvons de plus montrer, en appliquant les résultats du chapitre 3,
que si U désigne le point fixe de £ alors

An(U) = Q(log? N) et An(U) = O(log? N).

Ce résultat symbolique pourrait alors étre interprété géométriquement de la maniére suivante : les
composantes de R, qui sont des ensembles compacts d’intérieur non vide, seraient des ensembles
avec une discrépance locale & la fois en Q(log? N) et en O(log? N) pour une rotation de T2. La
valeur logZ N est particuliérement intéressante puisqu’il est attendu qu’une rotation de T2, dont les
parametres appartiennent & un corps cubique, ait une discrépance en O(log2 N).

0.2.5 Equilibre des suites symboliques

Un mot, fini ou infini, défini sur un alphabet A est dit équilibré si, pour tout couple (w,w’)
de facteurs de méme longueur, I'inégalité ||w|, — |w'|s] < 1 est vérifiée pour toute lettre a. Cette
notion apparait pour la premiere fois dans les articles de M. Morse et G. A. Hedlund [175, 176]
publiés en 1938 et 1940. IIs prouvent en particulier que toute lettre d’un mot infini équilibré admet
une fréquence. Dans [68], E. M. Coven et G. A. Hedlund caractérisent les mots infinis sturmiens en
termes d’équilibre : ce sont exactement les mots binaires non ultimement périodiques et équilibrés.
Plus récemment, P. Hubert [135] (voir également un résultat trés proche et antérieur de R. L.
Graham [122]) montre que suites sturmiennes et suites équilibrées définies sur un alphabet & trois
lettres ou plus, sont intimement liées ; il donne de plus une caractérisation géométrique simple de ces
derniéres. Le théoréme de E. M. Coven et G. A. Hedlund (Théoréme 0.2.7 au paragraphe suivant)
a évidemment motivé l'introduction de généralisations de la notion d’équilibre. Par exemple, V.
Berthé and R. Tijdeman [41] étudient les propriétés d’équilibre de mots multi-dimensionnels et
obtiennent que les mots équilibrés multi-dimensionnels sont périodiques. Une autre généralisation
possible, considérée par I. Fagnot et L. Vuillon dans [107] pour les mots sturmiens, consiste &
remplacer les occurrences des lettres par des occurrences de mots dans la définition classique.
Un autre aspect important de cette théorie provient de la conjecture de Frankel qui stipule qu’il
n’existe qu’un seul mot équilibré, a permutation des lettres prés, défini sur un alphabet de cardinal
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m supérieure ou égale a trois et dont les lettres admettent toutes des fréquences distinctes. Des
preuves des cas m = 3,4,5,6 figurent dans [174, 17, 238, 239]. Notons enfin qu’en informatique
théorique, cette question intervient dans les problémes d’optimisation pour des réseaux de files
d’attente (voir par exemple [120]).

Les résultats évoqués précédemment mettent en relief le fait que la propriété d’équilibre est
tres rigide et réellement contraignante. Il s’agit certainement d’une des raisons pour lesquelles
les mathématiciens ont été amenés a rendre cette notion plus flexible. Une approche fructueuse,
notamment du point de vue de la théorie ergodique et de la théorie des nombres, semble venir de
I'extension de la propriété d’équilibre & celle plus souple de C-équilibre en imposant ||w|, — |w']4] <
C, pour toute lettre a. Nous montrerons au chapitre 3 que cette notion est profondément lie &
celle d’ensemble & restes bornés et qu’elle en est d’une certaine fagon I’équivalent symbolique. Ceci
est notamment illustré par les exemples suivants. Considérons une rotation du tore T”, un domaine
fondamental de R™, €2, et une partition Q = Q; UQy U...UQ,, telle que Papplication induite!® par
la rotation sur chaque §2; soit une translation. Un codage naturel de rotation est le codage (naturel)
d’une rotation par rapport a une telle partition. Le théoreme 0.1.10 implique que dans ces conditions
les ensembles 2; sont des ensembles & restes bornés pour la rotation (voir également [110] pour une
réciproque). Cette propriété se traduit symboliquement par le fait qu’'un codage naturel de rotation
doit étre C-équilibré (pour un certain C). Il a longtemps été pensé qu’'une suite d’Arnoux-Rauzy
(voir [23]) devait étre le codage naturel d’une rotation sur le tore de dimension deux. Les auteurs de
[63] ont invalidé cette conjecture en exhibant une suite d’Arnoux-Rauzy totalement déséquilibrée
(& savoir, qui n’est C-équilibrée pour aucun C'), ce qui, au passage, a produit un contre-exemple
au fait que toute suite épisturmienne devait étre 2-équilibrée (voir [90]). Dans le méme esprit, il
est conjecturé que tout systéeme dynamique symbolique associé & une substitution de type Pisot
est isomorphe en mesure & une rotation minimale sur un tore (voir par exemple [202, 19, 57]). Le
fait qu’un point fixe d’une substitution de type Pisot soit C-équilibré (voir chapitre 3) intervient
pleinement ici, toujours au vu du théoreme 0.1.10.

De méme que I’étude de la complexité n’est pas réduite a celle des suites périodiques, sturmiennes
ou quasi-sturmiennes, nous n’avons pas voulu restreindre notre étude & celle des mots équilibrés
ou C-équilibrés. Pour cela, nous introduisons une mesure de ’équilibre d’une suite permettant de
généraliser les propriétés d’équilibre et de C-équilibre.

Définition 0.2.5. Soit U un mot infini défini sur [’alphabet A. La fonction d’équilibre associée a
U est définie par :

— P,
By(n) =max = max {[lwla = |w'la]} -

Nous introduisons également une autre fonction qui généralise la notion d’équilibre introduite dans
[107] et qui peut étre vue comme mesure uniforme de 1'équilibre d’une suite.

Définition 0.2.6. Soit U un mot infini défini sur Ualphabet A. La fonction d’équilibre généralisée
associée a U est définie par :

_ ]
By(n) = max =~ max {{lwly = w'lu]}-

Au chapitre 3 (voir également [1]), nous étudions les liens qu’entretiennent ces deux fonctions avec
les fonctions de discrépance symbolique définies au paragraphe 0.1.3. Nous montrons que lorsque la

15Voir paragraphe 0.1.2 pour une définition.
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suite U est point fixe d’une substitution primitive, ces liens sont tres clairement établis. Cela nous
permet de déduire de nos résultats sur les fonctions de discrépance 1'ordre de grandeur des fonctions
d’équilibre des point fixes de substitutions primitives. Ce travail plutot qualitatif est & rapprocher
de celui de [188] concernant la fonction de complexité. Toutefois, nous montrons également qu’il est
possible d’obtenir, au moins sur de nombreux exemples, des résultats bien plus précis, soulignant
ainsi un aspect plus quantitatif de notre étude.

0.2.6 Une généralisation géométrique des suites sturmiennes : les codages de
rotations

La fonction de complexité p d’une suite associe & chaque entier n le nombre p(n) de facteurs
de longueurs n de la suite. L’entropie topologique'® du sous-shift associé & une suite symbolique
. lo n
est alors égale a lim M
n— o0

gique qui s’avere particuligrement utile pour distinguer les systemes d’entropie nulle; son ordre de
grandeur est également un invariant topologique (voir [194] par exemple). La complexité est ainsi
considérée comme une mesure naturelle du désordre d’une suite (ou plutét du systéme dynamique
qui lui est naturellement associé). Notamment, elle permet de caractériser les suites ultimement
périodiques (ce sont celles pour lesquelles il existe un entier n tel que p(n) < n). Les suites stur-
miennes correspondent elles aux suites non ultimement périodiques les plus ordonnées (au sens de
la complexité) et sont définies comme les suites dont la fonction de complexité vérifie p(n) =n + 1
pour tout entier m. Elles fournissent certainement I'exemple le plus riche d’interactions entre la
combinatoire, la théorie des nombres, la dynamique symbolique et la géométrie, comme l’illus-
trent les nombreuses recherches consacrées a ce sujet (voir par exemple [164]). Ainsi, les suites
sturmiennes peuvent étre caractérisées aussi bien de fagon combinatoire (par définition) que par
des propriétés d’équilibre de leur langage (ce sont exactement les suites binaires non ultimement
périodiques équilibrées [68]) ou des propriétés géométriques. Cette derniére caractérisation, sans
doute la plus célebre et la plus spectaculaire, est due & M. Morse et G. A. Hedlund [176] et peut
s’énoncer comme suit :

. La complexité est donc une notion plus fine que I’entropie topolo-

Théoréme 0.2.7 (Morse-Hedlund). Soit u une suite sturmienne définie sur l’alphabet {1,2}. Il
existe alors un unique couple («, z) appartenant & ’ensemble 10, 1[x[0, 1] tel que l'on ait :
s01t

VneN, (up=1<= {z+na}e€l0,1—-aqaf),

s0it
Vn eN, (up, =1<= {z+na} €)0,1—a]).

Un autre résultat remarquable montre que la connaissance du développement en fraction continue

de 'angle d’une suite sturmienne permet d’engendrer son langage (voir par exemple [23] ainsi que
le résultat plus précis de [18]).

Théoréme 0.2.8. Soit u une suite sturmienne associée au couple (a,z =0). Si le développement
en fraction continue de a est [0;a1 + 1,a9,...ay,...|, alors

. a1 a2 a2n+1
uw= lim mto7m,2...T 1
L Ty 2 1 (1),

161,a notion d’entropie topologique a été introduite en 1965 par R. L. Adler, A. G. Konheim et M. H. McAndrew

[9].
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T T2
ou les substitutions 71 et 7o sont définies par : 1 — 1 et 1 +— 12 .
2 — 21 2 — 2

De nombreuses propriétés combinatoires des suites sturmiennes peuvent étre obtenues a l'aide
de ce théoreme. Ce formalisme n’étant pas usité de tous, certains préfereront parler de regles
de concaténation ou de régles standard (voir par exemple [52, 53, 164, 194]) mais ces différentes
appellations (ou visions) partagent les méme idées. En particulier, une telle expression (on parlera
d’expression S-adique des suites sturmiennes) s’avere tres agréable pour traiter les problemes de
répétitions que nous évoquerons au paragraphe 0.2.7 (voir par exemple [243, 118, 14]).

L’intérét porté aux suites sturmiennes a donné lieu & un nombre important de généralisations
unidimensionnelles ou multidimensionnelles, citons entre autres [209, 23, 90, 135, 60, 20, 21, 24,
133, 134, 12, 85, 86, 87, 117, 178, 62, 42, 43, 44]. Parmi ces nombreuses généralisations, 'une d’entre
elles, tout & fait naturelle au vu du Théoréme 0.2.7, intervient dans les problémes de répartition
pour les suites (na),>¢. Il ’agit des codages binaires de rotations!'” (voir [12, 86, 87]).

Définition 0.2.9. Etant donné un triplet (o, B, ) appartenant a [0,1[>, on appelle codage de
rotation de paramétres (o, 5, x) la suite symbolique U = (un)n>0 définie sur Ualphabet {1,2} par :

" — {1 si {z +na} € 10,4,

2 sinon.

Le codage de rotation de parametre («, 3, x) est ainsi obtenu en codant 'orbite de z sous P'action
de la rotation d’angle a par rapport a la partition du tore en deux intervalles [0, 5[ et [3, 1[. Le cas
ol « est rationnel ne présente que peu d’intérét, car le codage est alors périodique, et ne sera donc
pas considéré dans ce qui suit. Lorsque a = 8 ou a = 1 — 3, le codage définit une suite sturmienne
et plus généralement, le cas ou 8 € Z + aZ correspond & des suites quasi-sturmiennes (voir [126]
pour un résultat réciproque).

Définition 0.2.10. Une suite est dite quasi-sturmienne s’il existe un entier k tel que pour tout
entier n, sa fonction de complexité vérifie p(n) < n + k.

11 est également prouvé dans [209], que les autres codages (ceux pour lesquels 5 ¢ Z + Za) vérifient
p(n) = 2n pour tout entier n suffisamment grand.

Un point important, abordé au chapitre 1, est que 'application induite d’une rotation d’angle «
sur un intervalle [0, ], tel que § € Z+aZ et a < [3, est une transformation tres particuliére, a savoir
un échange de trois intervalles non dégénéré (c’est-a-dire qu’il satisfait & la condition I.D.O.C. que
nous rappelons dans ce méme chapitre). Cette propriété lie ainsi intimement codages de rotations
(non quasi-sturmiens) et échanges de trois intervalles I.D.O.C. De méme sont intimement liés suites
sturmiennes et échanges de deux intervalles (voir par exemple [18]). Pour plus de détails sur les
notions d’échanges d’intervalles, le lecteur peut se reporter a [201, 244, 245].

Nous avons dans un premier temps considéré les codages de rotations comme un outil offrant
une approche nouvelle pour nos problemes de répartitions. Toutefois, il est naturel de se demander
si les codages de rotation interagissent, aussi clairement que les suites sturmiennes, avec d’autres
domaines des mathématiques. Des résultats dans cette direction sont déja donnés dans [146, 209, 12,

'"Comme nous considérons uniquement des codages binaires, nous parlerons simplement de codages de rotations.
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86] et nous savons également que la plupart des propriétés des suites sturmiennes sont “transmises”
aux suites quasi-sturmiennes (ce qui justifie leur appellation). Ce phénomeéne est expliqué par le
fait qu’a un préfixe pres, une suite quasi-sturmienne est ’image par une substitution d’une suite
sturmienne; le résultat, en fait un peu plus précis, est di & E. M. Coven [67] et M. E. Paul
[190]. On peut alors se demander si les codages de rotations dont les parametres vérifient 5 ¢
Z+aZ sont eux aussi “quasiment” sturmiens ou au contraire si leurs comportements (arithmétiques,
combinatoires ou dynamiques) different réellement de ceux observés dans le cas sturmien. Nous
répondons partiellement (et plutot négativement) a cette question en exhibant aussi bien des traits
de caracteres communs que des différences fondamentales. Ces éléments de comparaison seront
récapitulés dans I'annexe A.

En particulier, nous obtiendrons au chapitre 1 un résultat analogue au théoréme 0.2.8 qui servira
de base a I’étude des codages de rotations (il s’agit 14 d’un point commun, mais qui nous permettra
ensuite d’exhiber certaines différences). Plus précisément, nous montrons que le langage des codage
de rotations non dégénérés (& savoir, pour lesquels 8 ¢ Z + aZ) peut étre obtenu par itération
de quatre substitutions définies sur un alphabet & trois lettres, puis une application de projec-
tion. L’ordre d’itération de ces applications est gouverné par un développement bidimensionnel de
type “fraction continue” vérifiant un théoreme de Lagrange, c’est-a-dire que le développement est
ultimement périodique si et seulement si les paramétres appartiennent & un méme corps quadra-
tique. Cette description, on parlera de représentation S-adique (voir paragraphe 0.2.1) des codages
de rotations, est entierement explicite et basée sur une approche dynamique, & savoir une ver-
sion multiplicative de I'induction de Rauzy pour les échanges de trois intervalles'®. Elle permet
de plus de s’affranchir de la condition arithmétiquement peu naturelle @ < min(3,1 — /3) imposée
dans [86]. Notons également que S. Ferenczi, C. Holton et L. Q. Zamboni [117, 115, 116, 114] ont
parallelement mené une étude approfondie des échanges de trois intervalles basée sur un procédé
d’induction différent. Il serait bien siir intéressant de comprendre et d’établir les liens entre ces deux
points de vue ainsi que les spécificités de chacun. Nous utiliserons cette description tout d’abord
au chapitre 2, pour obtenir des résultats précis sur la discrépance locale des rotations quadratiques
du cercle, puis aux chapitres 5, 6 et 7 pour étudier les phénomenes de répétitions intervenant dans
les codages de rotations ainsi que leurs applications & la physique théorique (nature du spectre de
certains opérateurs de Schrodinger discrets unidimensionnels) et & la théorie des nombres (nature
arithmétique de certains nombres réels). Au deld des résultats déja établis, 'expression que nous
donnons des codages de rotations devrait étre un outil efficace pour appréhender d’autres questions
et permettre alors une compréhension encore plus profonde de la combinatoire de cette classe de
suites.

0.2.7 Répétitions, quasi-cristaux et transcendance

S’il est évident que toute suite binaire infinie contient nécessairement des carrés, c¢’est-a-dire une
répétition du type ww, construire un suite binaire sans chevauchement (mot de la forme awawa)
est déja plus difficile. Le premier exemple d’une telle suite est dit & A. Thue [236] en 1906. L’exer-
cice, alors purement combinatoire, ne connaissait aucune application particuliere. Aujourd’hui la
situation est radicalement différente, I’étude des répétitions intervenant dans des domaines variés
et souvent inattendus. Afin d’illustrer ce propos, nous allons discuter de leur interaction dans un
premier temps avec la théorie des quasi-cristaux puis avec la transcendance de certains nombres
réels. Cette problématique est également largement étudiée dans [15].

'8Pour plus de précisions sur ces procédés d’induction, voir [244, 201, 245, 252, 117].
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En 1984, D. Shechtman, I. Blech, D. Gratias et J. V. Cahn [221] découvrent expérimentalement
I'existence de structures non périodiques mais étrangement régulieres qui prirent le nom de quasi-
cristaux. Ce phénomene totalement inattendu va étre & l'origine de nombreuses investigations
théoriques, principalement fondées sur I’étude spectrale d’opérateurs de Schrodinger discrets unidi-
mensionnels de potentiels le plus souvent associés a des suites binaires, “quasiment périodiques” et
classiques de la combinatoire des mots (voir par exemple le survol [70]). Un opérateur de Schrédinger
discret unidimensionnel est une application H de ¢?(Z) dans lui-méme définie par :

(Hyp)(n) = (n+1) +4(n — 1) + V(n)i(n),

ouV : Z — R. La suite V est appelée le potentiel de I'opérateur. Par exemple, les potentiels associés
4 un codage de rotation de parameétres («, 3) sont donnés par :

Vo(n) = Ax[o,8)(na+ 60 mod 1),

ou (A, 0) € R x [0,1]. Pour certains codages sturmiens (8 = a ou f = 1 — ), on obtient des
modeles de quasi-cristaux standard qui sont les plus intéressants du point de vue physique. Les
modeles provenant des substitutions (et en particulier des substitutions primitives) ont également
été étudiés en détail. Il est attendu de I'étude spectrale de ces opérateurs qu’elle révele un certain
nombre de propriétés génériques, traduisant le comportement physique des quasi-cristaux. Dans
des termes plus mathématiques, on attend généralement les trois propriétés suivantes, a savoir, la
mesure spectrale de tels opérateurs est purement singuliére, continue et son support est de mesure
(de Lebesgue) nulle. Etant donné une suite (disons binaire), la démarche est alors la suivante :

- on considere un potentiel, qui lui est associé,

- puis, on essaie de montrer les trois propriétés standard pour l'opérateur de Schrodinger sous-
jacent.

Le fait que la mesure spectrale soit continue et totalement singuliere est connu pour un grand
nombre de potentiels (voir [151] et [155]), mais la troisieme caractéristique est plus délicate & obtenir.
Elle n’est d’ailleurs pas encore connue pour tous les potentiels issus de codages de rotations (voir
[7]). Dans le cas des potentiels sturmiens, ’existence de répétitions est un élément clé pour obtenir
cette propriété. Plus exactement, il faut utiliser le fait (voir par exemple [14, 71, 40]), qu’une suite
sturmienne commence par des carrés arbitrairement longs. Une autre notion importante ici est la
récurrence linéaire. Nous rappelons qu’'une suite est dite linéairement récurrente s’il existe un réel
K tel que tout facteur de longueur Kn contienne nécessairement tous les facteurs de longueurs n
de la suite. Il s’agit également d’une notion de répétition, puisque I'on demande aux occurrences
des facteurs d’une telle suite d’étre peu espacées. Un résultat récent de D. Lenz [157] établit la
nullité de la mesure du support de la mesure spectrale pour tous les opérateurs issus de suites
linéairement récurrentes. La encore, répétitions et propriétés spectrales des opérateurs semblent
liées. Au chapitre 5 (voir également [7]), nous caractérisons, dans le but d’appliquer ce résultat, les
codages de rotations linéairement récurrents, généralisant ainsi une approche de [102].

Il est bien connu que, pour tout entier b > 2, le développement en base b d’un nombre rationnel
est ultimement périodique, mais que peut-on dire sur la régularité du développement d’un irrationnel
algébrique ? Cette question fut posée pour la premiere fois par E. Borel dans [47], qui conjecture
qu’un tel développement doit satisfaire a certaines lois suivies par un nombre tiré au hasard. Plus
précisément, la conjecture stipule que tout irrationnel algébrique doit étre un nombre normal.
Nous rappelons qu’un nombre réel 6 est normal si pour tout entier b, les b' mots de longueur I de
alphabet {0,1,...,b — 1} admettent dans le développement b-adique de 6 la fréquence 1/b'. La
normalité est une notion générique, puisque 'on vérifie rapidement que presque tout nombre réel
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est un nombre normal. Bien que cette conjecture soit considérée comme totalement hors d’atteinte,
certains résultats dans cette direction sont connus depuis déja plus de soixante dix ans [45, 166, 167,
83, 8, 77, 165]. Ils partagent de plus une philosophie commune : un développement b-adique obtenu
par un procédé trop régulier mais non ultimement périodique définit un nombre transcendant. Plus
récemment, S. Ferenczi et C. Mauduit [118] ont donné, en reformulant astucieusement un théoréme
de D. Ridout [207] (voir également [168]), une condition purement combinatoire de transcendance
qui illustre bien ce phénomene. Le théoreme de D. Ridout est en fait un raffinement (lorsque
l’'on ajoute une hypothese de controle de la taille des facteurs premiers des dénominateurs et des
numérateurs des approximations rationnelles) du célebre théoreme de K. F. Roth [211] et traduit le
fait qu’un nombre irrationnel algébrique ne peut étre trop bien approché par des nombres rationnels.

Théoréme 0.2.11 (Ferenczi-Mauduit). Soit © un nombre irrationnel dont le développement b-
!, 0U uy est un mot éventuellement vide, vy, un
mot non vide admettant v], comme préfize. Si de plus, |vy,| tend vers Uinfini, im sup(|uy|/|v,|) < 00

et lim inf(|v},|/|vn|) > 0, alors © est un nombre transcendant.

adique commence, pour tout entier n, par 0, uyvyvpv

Ainsi, la présence de puissances (plus que des carrés, pas trop loin et arbitrairement longues)
dans le développement b-adique d’un nombre réel irrationnel implique la transcendance de ce der-
nier. En particulier, cette condition est utilisée pour prouver la transcendance des réels dont le
développement b-adique est sturmien [118], quasi-sturmien [13], point fixe d’une substitution bi-
naire primitive ou de longueur constante [16] ou une suite d’Arnoux-Rauzy [118, 208]. Au chapitre
6 (voir également [6]), elle nous permettra de montrer la transcendance des nombres réels dont le
développement b-adique est soit un codage binaire de rotation irrationnelle, soit le codage naturel
d’un échange de trois intervalles non périodique.

Une problématique similaire peut étre envisagée avec le développement en fraction continue. En
effet, si celui-ci permet de caractériser les nombres réels quadratiques, ceux dont le développement
est ultimement périodique, le développement en fractions continues d’un nombre algébrique de degré
au moins trois a-t-il un caractere aléatoire ? A. Khintchine [148] est semble-t-il le premier & avoir
posé cette question en 1949. Il est conjecturé que la suite des quotients partiels d’un irrationnel
algébrique de degré au moins trois est nécessairement non bornée, propriété générique qui remplace
ici la notion de normalité. L& encore, cette conjecture parait réellement hors de portée, puisque 'on
ne connait (quasiment) rien sur le développement en fractions continues d’un réel algébrique non
quadratique. Les auteurs de [14] ont récemment obtenu une condition combinatoire de transcen-
dance analogue a celle de [118]. Ce résultat utilise une idée introduite dans [78] et développée dans
[196]. Elle est obtenue & partir d’un théoréme de W. Schmidt [214] sur 'approximation des nombres
algébriques par des nombres quadratiques. Ce théoréme, utilisé dans un role comparable & celui de
D. Ridout, traduit le fait qu’un nombre algébrique de degré supérieur ou égal & trois ne peut étre
trop bien approché par des nombres algébriques de degré deux. Afin de faciliter la compréhension
du lecteur, nous rappelons la condition de [14] dans le cadre particulier, mais souvent suffisant, des
sous-shifts uniquement ergodique!®.

Théoréme 0.2.12 (Allouche-Davison-Queffelec-Zamboni). Soit © un nombre réel non qua-
dratique dont le développement en fraction continue, noté [0;U], commence, pour tout entier n,
par [0;upul, ...], ot u, est un mot non vide admettant u), comme préfize. Si de plus, le sous-shift
engendré par U est uniquement ergodique, |uy| tends vers Uinfini et lim inf% > %, alors © est
un nombre transcendant.

19Se reporter au paragraphe 0.1.3.
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A nouveau, la présence de puissances (plus que %, arbitrairement longues et des le début) dans

le développement en fraction continue d’un nombre réel irrationnel non quadratique permet d’en
déduire la transcendance. Ce résultat s’applique en particulier aux suites sturmiennes et quasi-
sturmiennes [14], a la suite de Thue-Morse [196], & certains points fixes de substitutions [197] et &
un certain nombre d’autres exemples [78, 14]. Cette utilisation du théoréme de W. Schmidt apparait
déja sous une forme moins aboutie dans [78] et [196, 197]. Un survol [13] reprend en détail les deux
problématiques que nous venons d’évoquer. Notons enfin que la condition de transcendance de [14]
a été trées recemment étendue dans [79].

Nous montrerons au chapitre 7 que ce critere ne s’applique pas a tous les codages de rotations.
En effet, nous exhibons des codages de rotations sans aucune puissance initiale arbitrairement
grande.

Dans les deux problématiques que nous venons d’évoquer, le caractére “quasi-périodique” des
développements considérés, illustré par la présence de certaines répétitions, interdit ’algébricité des
nombres réels associés. Il serait évidemment intéressant d’obtenir des conditions de transcendance
similaires pour d’autres développement, comme les S-développements définis dans [206].
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Description de la these

Cette these est composée de sept chapitres, séparés en trois parties, et de deux appendices. La,
premiére partie est consacrée a une étude dynamique et arithmétique des suites (n«) et correspond
aux chapitres 1 et 2. Dans la deuxiéeme partie, composée des chapitres 3 et 4, nous étudions les
propriétés de répartition et d’équilibre des substitutions primitives. Dans la derniére partie, nous
utilisons I’approche dynamique du premier chapitre pour déterminer les répétitions intervenant dans
les codages binaires de rotations. Puis nous appliquons ces résultats a I’étude spectrale d’opérateurs
de Schrodinger discrets unidimensionnels ainsi qu’a la transcendance de certains nombres réels.
Cette partie correspond aux chapitres 5, 6 et 7. Dans un premier appendice, nous récapitulons les
résultats obtenus pour les codages de rotations et nous dressons un tableau de comparaison entre
les codages non dégénérés, sturmiens et quasi-sturmiens. Enfin, nous donnons, dans un second
appendice, plusieurs programmes écrits en langage MUPAD et destinés & la vérification de criteres
algorithmiques introduits au cours de cette these.

Le chapitre 1 est consacré a une étude dynamique des codages de rotations. Il a fait ’objet
d’un article intitulé Codages de rotations et phénomenes d’autosimilarité accepté pour publication
au Journal de Théorie des Nombres de Bordeauz. Le résultat principal est I’obtention d’une expres-
sion S-adique explicite et naturelle pour les codages de rotations et les codages naturels d’échanges
de trois intervalles. Nous introduisons également un développement en fractions continues bidi-
mensionnel qui vérifie un théoréeme de Lagrange, c’est-a-dire que le développement est ultimement
périodique si et seulement si les parametres appartiennent & un méme corps quadratique. Nous en
déduisons ensuite une caractérisation des codages substitutifs primitifs. Ce travail sert ensuite de
base aux chapitre 2, 5 et 6.

Dans le chapitre 2, nous utilisons certains résultats du chapitre 1 pour étudier le comportement
asymptotique de sommes liées & la discrépance des suites (na),>o, pour des parametres quadra-
tiques. Nous obtenons notamment une propriété de forte irrégularité (au sens de Sés) ainsi que
I’existence, sur quelques exemples, d’ensembles & restes exceptionnels donnant une discrépance lo-
cale particulierement grande. Nous développons également une méthode permettant de déterminer
si 'intervalle [0, B est & restes majorés ou bien minorés pour la suite (na) lorsque « et 3 appar-
tiennent & un méme corps quadratique. Ce chapitre a fait ’objet d’un article intitulé Répartition
des suite (na)pen et substitutions accepté pour publication dans la revue Acta Arithmetica.

Les fonctions de discrépance symbolique sont introduites au chapitre 3. Dans le cas des points
fixes de substitutions primitives, nous étudions avec précision leur comportement asymptotique.
Nous montrons que ce comportement est en partie imposé par le spectre de la matrice d’incidence de
la substitution, ce qui permet de le décrire simplement. En particulier, nous obtenons des résultats
sur la répartition des substitutions primitives de type Salem (c’est-a-dire pour lesquelles la deuxiéme
valeur propre de la matrice d’incidence, par ordre de module décroissant, est de module un). Nous
donnerons également une condition suffisante (et presque nécessaire) pour qu’un systéme associé
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&4 un point fixe de substitution primitive ait une fonction de discrépance bornée. En particulier,
nous verrons que l’ensemble des cylindres des systéemes associés aux substitutions de Fibonacci et de
Tribonacci forment des familles d’ensembles & restes uniformément bornés pour ces sous-shifts. Nous
étudions ensuite une application de ces résultats a la théorie spectrale des systémes substitutifs.
Ce chapitre fait 'objet d’un article intitulé Symbolic discrepancy and self-similar dynamics soumis
pour publication au Annales de U'Institut Fourier.

Le chapitre 4 est consacré & ’étude des propriétés d’équilibre des points fixes de substitutions
primitives et reprend 'article Balances for fized points of primitive substitutions accepté pour publi-
cation dans la revue Theoretical Computer Science. Nous introduisons deux fonctions généralisant
la notion d’équilibre. Nous montrons que, dans le cas des points fixes de substitutions primitives,
les propriétés d’équilibre et celles de répartition étudiées au chapitre 3 sont tres liées. Nous en
déduisons pour ces suites le comportement asymptotique des fonctions d’équilibre et donc notam-
ment des propriétés d’équilibre uniforme.

Dans le chapitre 5, nous reprenons I’étude des codages de rotations introduits au chapitre
1. Ces suites binaires servent de modele dans 1’étude d’opérateurs de Schrodinger discrets unidi-
mensionnels. Nous donnons une caractérisations des codages linéairement récurrents en fonction
du développement en fraction continue défini au chapitre 1; puis nous en déduisons que le support
de la mesure spectrale d’un opérateur de Schrodinger associé a une telle suite est de mesure de
Lebesgue nulle. Ce chapitre a été écrit en collaboration avec David Damanik?. II fait 'objet d’un
article intitulé Linearly recurrent circle map subshifts and an application to Schrodinger operators,
publié dans la revue Annales Henri Poincaré.

Le chapitre 6 utilise la description S-adique des codages de rotations établie au chapitre 1,
pour montrer le résultat suivant : si le développement b-adique d’'un nombre réel est un codage
binaire de rotation ou le codage naturel d’'un échange de trois intervalles non périodique, alors ce
nombre est transcendant. Ce chapitre correspond & l'article On the transcendence of real numbers
with a regular expansion écrit en collaboration avec Julien Cassaigne?! et soumis pour publication
a la revue Journal of Number Theory.

Nous continuons I’étude des répétitions intervenant dans les codages de rotations et leurs appli-
cations au chapitre 7. Nous donnons en particulier une caractérisation des codages ne contenant
pas de puissances arbitrairement grandes, en fonction du développement introduit au chapitre 1.
Nous exhibons également des codages sans aucune puissance initiale asymptotique. En particulier,
nous prouvons que, contrairement aux suites sturmiennes, les codages de rotations ne commencent
pas tous par des carrés arbitrairement longs. Nous discutons enfin de I'application de ces résultats
a la transcendance des fractions continues associées aux codages de rotations.

20Californya Institute of Technology.
2nstitut de Mathématiques de Luminy.
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Chapitre 1

Codages de rotations et phénomenes
d’autosimilarité

Dans ce chapitre nous nous intéressons & la structure dynamique et combinatoire des co-
dages de rotations. Nous exhibons un systéme S-adique décrivant le langage de ces suites. Cette
représentation sera ensuite utilisée pour obtenir certaines propriétés dynamiques, combinatoires et
arithmétiques de ces codages. Le contenu de ce chapitre a fait 'objet d’un article accepté pour
publication au Journal de Théorie des Nombres de Bordeaux.

1.1 Introduction

Etant donné un nombre irrationnel o, o € [0, 1], nous nous intéressons aux problémes de
répartition de la suite (na),en par rapport a un intervalle [0, 5[, ou 8 € [0, 1[. Plus précisément,
nous cherchons & comprendre le comportement asymptotique de la somme :

N-1

> (xppsfrat) = 5),

n=0

ol x|o,g] désigne la fonction indicatrice de I'intervalle [0, B]. L’étude de ces sommes est intimement
liée & celle de la discrépance & Porigine des suites (na)pen et constitue donc un probléme classique
de théorie des nombres. Nous rappelons que la discrépance & l'origine de la suite (na),cn est définie

par :
N-1

Dy(ae) = sup > (xp,a({na}) - B).

ﬂe[oal[ n=0

Considérons un couple (a,8) € [0,1[%, @ € Q. Introduisons alors la suite U = (uy,)nen définie sur
I'alphabet binaire {a, b} par :
a si{na} €]0,p],
Up =
b sinon.

Cette suite symbolique contient exactement l'information nécessaire et suffisante pour évaluer la
quantité que nous désirons étudier. En effet, I’égalité suivante est vérifiée :

N-1

Z (X[Oﬁ[({na}) - B) = |uguy ... un—1|la — NB.

n=0
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Remarquons que le codage U de la suite (na)pen, que nous appelons codage de rotation de pa-
rametres («, ), doit étre vu comme une opération de simplification, en ce sens qu’il parait plus
aisé d’étudier une suite définie sur un alphabet fini qu'une suite & valeurs dans 'intervalle [0, 1].
Nous devons donc a présent comprendre I’évolution du nombre de ¢ apparaissant dans un préfixe
arbitraire de U. Lorsque la suite U fait intervenir des phénomenes d’autosimilarité, c’est-a-dire si
U est liée & un point fixe de substitution, nous montrons dans [2] qu’il existe un outil puissant pour
mener cette étude.

Ainsi, notre probléme initial de théorie des nombres semble trouver sa solution & travers une
meilleure compréhension d’une classe de suites symboliques définies sur un alphabet binaire : les
codages de rotations. Dans cet article, nous traitons les codages de rotations de fagon indépendante.
Nous remarquons en effet que cette classe de suites intervient de facon naturelle dans plusieurs
domaines des mathématiques (voir par exemple [86, 87, 209] pour des approches combinatoires).
Nous pensons qu’il convient donc d’étudier dans un premier temps ces suites en tant que telles.
Gardant & ’esprit les motivations initiales, nous orientons tout de méme notre travail de fagon
a obtenir des résultat utiles pour les problemes de répartition des suites (na)pen. Ainsi, certains
résultats démontrés dans la suite serviront de point de départ pour I’étude menée dans [2].

Revenons & présent aux codages de rotations et notons que de telles suites ont une interprétation
géométrique simple puisqu’elles peuvent étre obtenues en codant ’orbite, sous ’action d’une ro-
tation d’angle irrationnel, de l'origine du cercle de périmetre unité découpé en deux intervalles.
Lorsque la longueur de 'un des deux intervalles est égale & 1'angle de rotation (divisé par 27), la
suite obtenue est une suite sturmienne; cela signifie que le nombre de facteurs de longueur n de
cete suite est exactement égal & n+ 1. Les codages de rotations constituent donc une généralisation
géométrique naturelle des suites sturmiennes. Ces derniéres fournissent certainement 1’exemple le
plus prolifique d’interactions entre la dynamique symbolique, la géométrie et la théorie des nombres,
comme en témoigne I’abondante littérature consacrée a ce sujet (voir le survol [164, Chap. 2]). Elles
peuvent étre caractérisées aussi bien par des propriétés combinatoires (par définition) que par des
propriétés d’équilibre de leur langage [68] ou encore géométriques [176]. Un résultat remarquable
montre que la connaissance du développement en fraction continue de ’angle d’une suite sturmienne
permet d’engendrer son langage, voir par exemple [23]. Il est donc naturel de se demander si les
liens des codages de rotations avec les différents domaines des mathématiques sont aussi clairement
établis que pour les suites sturmiennes.

Nous rappelons que certains codages de rotations, que nous qualifierons de non dégénérés, sont
intimement liés & des suites obtenues en codant ’orbite de I'origine sous ’action d’un échange de
trois intervalles. Nous explicitons ce lien et nous montrons, en utilisant un procédé d’induction,
qu'un codage de rotation non dégénéré peut étre obtenu en itérant quatre substitutions définies
sur un alphabet & trois lettres puis en appliquant un morphisme de projection de cet alphabet vers
lalphabet binaire {a, b}. L’ordre d’itération des substitutions est gouverné par un développement bi-
dimensionnel de type “fraction continue” des parametres de la rotations. Ce résultat est a rapprocher
de ceux de [161, 162, 163], de P. Arnoux et G. Rauzy [23], pour les suites sturmiennes, et G. Didier
[86], pour les codages de rotations. Nous montrons que notre algorithme vérifie un théoreme de
Lagrange, en ce sens que le développement d’un couple de parametres est ultimement périodique
si et seulement si ces parameétres appartiennent & un méme corps quadratique. Nous utilisons
ensuite cette propriété pour caractériser les codages de rotations faisant intervenir des phénomenes
d’autosimilarité. Nous en déduisons un résultat que nous utiliserons dans [2] pour répondre & des
problémes de répartition des suites (na),ecn. Nous appliquons finalement un de nos résultats pour
obtenir une propriété de déséquilibre du langage des codages de rotations liés & ces phénomenes
d’autosimilarité.
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1.2 Définitions et notations

1.2.1 Suites symboliques

Nous rappelons ici les définitions et les notations usuelles concernant les suites symboliques. On
appelle alphabet un ensemble A, fini et non vide. Les éléments de A sont appelés lettres. Un mot
(fini) sur A est une suite finie de lettres de A et un mot infini sur A est une suite d’éléments de A
indexée par N. La longueur d’un mot fini w, notée |w|, est le nombre de lettres le composant. Le
mot vide, noté ¢, est 'unique mot de longueur 0. On note A* I’ensemble des mots de longueur fini
sur A et AN I'ensemble des suites sur A.

Soit U = (u)ken une suite symbolique définie sur un alphabet A. On appelle facteur de U tout
mot fini de la forme u;u;1q...u;, 0 < i < 7. On note £,(U) I'ensemble des facteurs de longueur
n de U et L(U) I'ensemble de tous les facteurs de U (L(U) = U,y £n(U)). L'ensemble L(U) est
appelé le langage de U. Une suite dans laquelle tout facteur admet une infinité d’occurrences est
dite récurrente. Lorsque de plus ces occurrences sont séparées par des lacunes bornées, la suite est
dite uniformément récurrente. Un facteur w de U est appelé facteur spécial droit §’il existe deux
occurrences de w dans U suivies par des lettres différentes. Si w est un facteur de U et a une
lettre de A, alors |w|, désigne le nombre d’occurrences de la lettre a dans le mot w. On définit la
fonction de complexité de U comme la fonction qui & tout entier strictement positif n associe le
nombre P,(U) = #L,(U). L’application classique de décalage (shift en anglais), notée S, associe
a une suite U = (ug)r>o la suite S(U) = (ug)p>1. A T'aide de cette application, on associe &
toute suite U le systéme dynamique symbolique (O(U),S), ot O(U) désigne la fermeture, dans AN
muni du produit des topologies discretes, de 'orbite de la suite U sous l'action du décalage S. Un
systeme dynamique est minimal s’il ne contient pas de fermé invariant non trivial. Pour un systéme
dynamique associé a une suite symbolique, ceci est équivalent au fait que la suite soit uniformément
récurrente.

On définit sur A* une opération, dite de concaténation, qui consiste simplement & juxtaposer
deux mots. Muni de cette opération, ’ensemble A* est un monoide libre dont I’élément neutre
est €. Une application de A vers A* \ {e}, appelée substitution sur I'alphabet A, se prolonge par
concaténation en un endomorphisme du monoide A* puis en une application de AY dans lui-méme.
Etant donnée une substitution ¢ définie sur A, on appelle matrice d’incidence de £, la matrice

Me = (1€()) i ,5)e2-

1.2.2 Codages de rotations

Définition 1.2.1. Etant donné un couple (o, B) appartenant a [0,1[2, on appelle codage de rotation
de paramétres (o, B) la suite symbolique U = (uy)n>0 définie sur 'alphabet {a,b} par :

B {a si {na} €0, 4],

n — .
b sinon.

Dans la suite nous ne considérerons pas tous les codages de rotations. Le cas ou « est rationnel
ne présente que peu d’intérét, car le codage est alors périodique. Le cas ou 8 € Z + «aZ ne sera
pas traité ici, il releve plus de 1’étude des suites sturmiennes, comme le mettent en évidence les
paragraphes 1.4 et 1.8; il sera donc considéré comme dégénéré.

Définition 1.2.2. Un codage de rotation est dit non dégénéré si et seulement si ses paramétres

(c, B) vérifient :
- « est irrationnel,
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-B &7+ al.
Un tel codage est dit de parameétres admissibles si de plus o < 3.

1.2.3 Echanges d’intervalles

Les échanges d’intervalles font partie des exemples classiques de systémes dynamiques. Ils ont
été notamment étudiés par M. Keane [145], G. Rauzy [201] et W. Veech [244, 245].

Définition 1.2.3. Soient s un entier supérieur ou égal & deuz, o une permutation de [’ensemble
{1,2,...,s} et A = (A1, A2,...,As) un vecteur de R® a coordonnées strictement positives. Posons

I =[0,]A[, ot A =327, N et, pour 1 <i<s, I; = [qu‘ Aijjgi Aj [, de sorte que |I;| = \;.
L’échange d’intervalles associé au couple (X, o) est la transformation T de I dans lui-méme, définie
comme l'isométrie par morceaux qui consiste a réordonner les intervalles I; selon la permutation

o. De facon plus précise, si x € I; :

T(z) =z + a;, ot a; = Z )\(,k—Z)\k.
)

k<o=1(i k<i

Un échange de s intervalles est donc entierement déterminé par la donnée d’un vecteur A =
(A1, A2, ..., As) de R® & coordonnées strictement positives et d’une permutation o de &;. L’échange
de s intervalles associé au couple (A, o) sera noté ((A1, A2, ..., As); o). On code naturellement 1’orbite
d’un point de I, sous 'action d’un échange d’intervalles ((A1, A2, ..., Ag);0), en associant & chaque
élément de cette orbite le numéro de I'intervalle auquel il appartient.

1.3 Liens entre codages de rotations et échanges de trois inter-
valles

Etant donné un couple (o, B) appartenant & [0, 12, on s’intéresse aux suites obtenues en codant
I’orbite d’'un point = de l’intervalle unité sous l'action de la rotation d’angle « par rapport a la
partition de l'intervalle [0, 1[ en [0, B[U [B, 1[, appelée rotation de paramétres («, [3). Plus exactement,
un tel codage, C(z, Ry, ), est défini comme suit :

a si{z+na}€|0,0],

1.1
b sinon. (1.1)

C(ZU,Ra,,B) = (cn)TLENa avec Cp = {

A tout z de l'intervalle unité, on associe ainsi une suite C(z, Ry, 5) sur alphabet {a,b}. Dans
le cas ot z = 0, C(x, Ry, 3) est un codage de rotation au sens de la définition 1.2.1. Nous montrons
dans ce paragraphe que 1’étude des codages de rotations non dégénérés est intimement liée & celle
des échanges de trois intervalles.

Si A est un élément de l'intervalle |0, 1[, on définit 'application de premier retour de Poincaré
de R, sur [0, A, Py, de la facon suivante :

P/\a : [Oa)‘[ — [0a>‘[
z — {zx+na},
oun =min{k € N*/{z + ka} € [0, A[}.
Remarque 1.3.1. Dans le cas ot « est un nombre irrationnel, la densité de la suite ({na})nen

permet de définir Py pour tout élément A de 'intervalle ]0, 1[.
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F1a. 1.1 — L’application de premier retour sur [0, 3].

Dans toute la suite, o désignera un nombre irrationnel positif et strictement inférieur a 1.
Supposons que a < 3, Pg‘ est alors défini comme 1’échange d’intervalles suivant :

Remarque 1.3.2. Notons que Pﬁa est en fait un échange de deux intervalles des lors qu’il existe
un entier k strictement positif tel que B =1 — ka. Dans ce cas, Pg‘ est métriquement isomorphe a
une rotation de R/Z.

Sia< fetf#1-ka, Pg' est 'échange de trois intervalles suivant :

= (- o= |22 amne (|22 1) amt)som). s

Pour z appartenant & [0, 5[, nous noterons C(z, pg, (I1, I, I3)) la suite obtenue en codant lorbite
de z sous l'action de P§ par rapport a la partition de [0,8] en I U I U I3. Plus exactement,
C(x,Pﬂa, (I, 15, I3)) est définie par :

C(]:vpgv (117[2713)) = (pn)nENa avec p, = ¢ 2 si (Pa)n(J?) €I,

Alors :
C(ZE,Ra,,B) = QLﬂJ (C((I;’Pﬂa’ (IlaIZaI3))) )

ou, pour kK € N :

O {1,2,3} — {a,b}*
1 — a,
2 — abftl,
3 — ab”,

I’application ®;, étant le morphisme de monoide libre étendu par concaténation & {1,2,3}".
Supposons a présent que « > 3, 'application Pg‘ est alors plus complexe & décrire. Cependant,
nous allons voir que le codage de rotation de parametres (a, 3) est fortement 1ié & un codage de
rotation de parametres (o/, '), avec o < ', ce qui nous permettra de ne considérer ensuite que
les couples (a, B) pour lesquels a < 3.
Si (Up)nen € {a,b}Y, on note (Uy,)nen la suite définie par :

7= a s%Un:b,
b siU, =a.
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—(1-a)

Fig. 1.2 - Cas a > S.

Alors :

C(0, Rq, ) = aS (C(OaR(l—a)a 1- B)) ) (1.3)
ou § désigne le shift usuel sur {a,b}*. Pour cela, il suffit de remarquer que —(1 — @) = a mod 1
et —(1 — ) = B mod 1, comme l'illustre la figure 1.2. On effectue en réalité un changement

d’orientation ; on échange le role de a et de b pour tenir compte de cette nouvelle orientation et on
échange ensuite la premiere lettre du codage pour tenir compte du sens d’ouverture des intervalles
de la partition. Or, si @ > 8 alors (1 — «) < (1 — ). On peut donc obtenir C(0, R(j_q),1 — ) &
partir du codage d’un échange de trois intervalles si 1 — 5 # 1 — k(1 — «), k € Z, ce qui est le cas
dés que B ¢ Z + aZ. En résumé, si («, B) € [0, 12 avec 8 ¢ Z + aZ, alors :

@ 1) (0, P, (1, 1o, ) si o < f,

a8 (@le (C(O,Pfﬂo‘,(Il,IQ,Ig,)))) sia> B

C(0,R,,B) = (1.4)

Nous allons a présent montrer une propriété, en quelque sorte réciproque, pour certains échanges
de trois intervalles.

Définition 1.3.3. Etant donné T = ((I1,12,13);0) et T' = ((I},14,15);0"), deuz échanges de trois
intervalles, on dit que T et T' sont équivalents et on note T ~ T', si les conditions suivantes sont
vérifices :

-o=0o,

- Les vecteurs (I1,l2,13) et (I1,15,15) sont homothétiques.

Remarque 1.3.4. Deuz échanges d’intervalles équivalents engendrent la méme dynamique.

Proposition 1.3.5. Soit T un échange de trois intervalles ((l1,l2,13);0), avec o = (321). Il existe
alors un échange d’intervalles T' équivalent o T, tel que T' soit l’application de premier retour Pﬂa
sur [0, B[ d’une rotation de paramétres (o, f3).

Démonstration. Nous allons utiliser un procédé d’exduction (procédé dual de I'induction décrite
en 1.4.1). Considérons ’échange de quatre intervalles T7 = ((I1,l2,3,(2); (3412)), puis I’échange T}
normalisé, noté 17, défini par :

—~ ll 12 l3 lZ ) )
T, = , , , £ (3412) ) .
! (<11+212+13 I+2 413 420413 1y + 2y + 13 (3412)

L’application ﬁ n’est autre qu'un échange de deux intervalles avec un point marqué sur chacun,
comme on peut le constater sur la figure 1.3.
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U

TI
T(L) LT ()~ T(l)
| L (RGN ‘l
0 ~
T (1)
Fic. 1.3 — L’échange 1.
Posons alors o = —2ta et g = ltltls "ot considérons la rotation de parameétres («,3)
T L H20a+13 T L2043 p e

L’application de premier retour associée a cette rotation, sur 'intervalle [0, 5], Pﬂa, est, comme le
montre la figure 1.4, 'échange de trois intervalles suivant :

(1) B ‘P,Tm‘

0 [3—1+( [¥]+1)u ¢ B

F1a. 1.4 — L’application de premier retour sur [0, 3].

I Iy I3
Pg = : : :(321) ) .
b (<11+212+13 I+ 20 +13 11+212+l3> ( )>

Et ainsi : PE“ ~T. O

Ce résultat souligne donc un peu plus la grande interaction existant entre les codages de rotations
et les échanges de trois intervalles.

1.4 Echanges de trois intervalles satisfaisant 2 la condition
I.D.O.C.

Dans ce paragraphe, nous étudions l'induction de Rauzy pour les échanges de trois intervalles
satisfaisant & une condition introduite par M. Keane [145], dite condition I.D.O.C., que nous
définissons un peu plus loin. Dans [201], G. Rauzy utilise le terme d’échanges réguliers.

1.4.1 Induction de Rauzy pour les échanges de trois intervalles

Commencons par rappeler les définitions utiles pour étudier I'induction de Rauzy. Nous donnons
ces définitions dans le cas d’échanges de trois intervalles; le lecteur pourra se reporter a [201] pour
le cas général.

Définition 1.4.1. Une permutation de G, s € N*, est dite irréductible si elle ne laisse invariant
aucun ensemble de la forme {1,...,t}, avec t < s.

Remarque 1.4.2. Si o € &3 nest pas irréductible, alors Tisy), | = (I1,12,13) € (R%)3, peut étre
décomposée en (au moins) deuz transformations (échanges d’intervalles avec moins d’intervalles),
Pune sur [0,a] et Uautre sur [a, |l|[ avec a € {l1,11 + l2}.
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Les permutations irréductibles de trois éléments sont (321), (312) et (231). Nous noterons &9
I’ensemble des permutations irréductibles de trois éléments.
Définition 1.4.3. Si (0,1) € &9 x (]Ri)3, posons 0 = a1 <as =0l <ag=l1+1ls <ag =11 +I+]13.
L’application T,y satisfait a la condition I.D.O.C. si les deur ensembles {T*(az), k € Z} et
{T*(a3), k € Z} sont infinis et disjoints. Ce qui s’écrit de manicre équivalente :

TF(a;) =aj,ietj€ {23}, k€Z= (k=0 ceti=j).

Remarque 1.4.4. Si T, ) satisfait a la condition 1.D.O.C. alors T(,y est minimal (voir [145]).

Définition 1.4.5. Soit T(, ;) un échange d’intervalle minimal. Un intervalle de la forme 0,7, ou
0 <r <|l|, est dit admissible pour T,y s’il existe k € Z et i € {1,2,3}, tels que :
i) T(]f;,l)(ai) =T,
i1)  si k>0, pour tout k tel que 0 < h < k, T'Z_ ) (a;) ¢ [0,r],
si k <0, pour tout k tel que k <h <0, T (a;) ¢ [0,7].

Nous allons maintenant présenter les principaux résultats concernant I’induction de Rauzy dans
le cas des échanges de trois intervalles. Les énoncés et les démonstrations sont donnés, dans le cas
général, dans [201].

Proposition 1.4.6. Avec les notations de la définition précédente, l'intervalle [0,11[ est admissible
et l'intervalle [0, max (a3, T(4,) (ag(3)))[ est le plus grand intervalle admissible pour T\ ).

Le principal résultat de [201] est le suivant :

Théoréme 1.4.7 (Rauzy [201]). Etant donné T4,y un échange de trois intervalles satisfaisant a
la condition 1.D.0.C., si I = [0,r] est un intervalle admissible pour T4y, alors la transformation
S induite par T(q;y sur I est définie partout. Il existe T € Y et pe (Ri)?’ tels que S =Ti; ;) ; de
plus T(; ;) satisfait a la condition 1.D.0.C.

Définition 1.4.8. L’induction de Rauzy pour les échanges de trois intervalles satisfaisant a la
condition 1.D.O.C. est ’application suivante :

U . IET3 — IETg
Toy = Ty

ot Ty 11y est Uapplication induite par T(, ;) sur le plus grand intervalle admissible, a savoir linter-
valle [0, max(as, T(s1)(ax(3)))[ et IET3 désigne I’ensemble des échanges de trois intervalles satisfai-
sant & la condition 1.D.O.C.

Etudions, pour chaque élément de &Y, 'induction de Rauzy.
e Cas 1: 0 = (321)
Sil; <ls,ona:

T(O,l)

T(O.l)(I3) T((i,l)(lz)

T (L)

Alors, le plus grand intervalle admissible pour T{, ;) est [0, [2 +13[. L’échange d’intervalles induit
est représenté sur la figure 1.5.
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Tio. 1)
T (1) T (1)
\ | \

T 1) (I])

Fic. 1.5 - Echange d’intervalle induit.

=1 1 00
1 — U1
Donc : o/ = (312) et I =1y , ouencore: =1 0 1 0 | ().
lh=1I3—1 1 01
1 00
Onnotera: A1 = 0 1 0 |.SiU est la suite obtenue en codant ’orbite du point 0 sous ’action
1 01
de T{4,) et V' la suite obtenue en codant I'orbite du point 0 sous Paction de T, ;) alors :
o1 (V) = U,
1 — 13
ou o est la substitution définie sur {1,2,3}* par : 2 +—— 2 . La matrice A; est la matrice
3 — 3
d’incidence de o7.
Sily >3, 0ona:
Il I2 I?
L0
> T o1
T (L) T (1)
\ ! ! \
T((Ll) ( I})
=0lL-1
La substitution associée & I'échange induit par T(, ;) est o' = (231). Et il vient ¢ I =13 ,
lh =1y
1 10 1 10
ouencore[= | 0 0O 1 | (/). On notera alors: Ay = [ 0 0 1 |].On obtient avec les nota-
010 010
tions précédentes :
o4(V) =1,
1 — 1
ou o4 est la substitution définie sur {1,2,3}* par : 2 +—— 13 . La matrice A4 est la matrice
3 — 2

d’incidence de oy4.

e Cas 2 : 0 = (312).

Alors max(ag,T(a,l)(ag(g,))) = a3 si et seulement si l; + o < [{ + I3 et donc si et seulement si
l2 < I3. De méme max (a3, T(q,)(as(3))) = T(qs) est équivalent & lo > I3.
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=1

Sily <3, la substitution associée a 1’échange induit par T{, ) est o' = (321) et b=l ,
Iy =13 —1o
1 00 1 00
ouencore/ = 0 1 0 | (I'). Onnotera: A3 = | 0 1 0 |. On obtient avec les notations
0 11 0 11
précédentes :
03(V) = Ua

[a—y

1
ou o3 est la substitution définie sur {1,2,3}* par : 2 23 . La matrice As est la matrice
3

Ll

d’incidence de o3.

=0
Silz > I3, la substitution associée & I"échange induit par T,y est o' =B12)et ¢ lh=1y—13 ,
3=13
1 00 1 00
ouencorel = | 0 1 1 ] (I'). Onnotera: Ao = | 0 1 1 |. On obtient avec les notations
0 01 0 01
précédentes :
o9(V) =T,
1 — 1
ou o9 est la substitution définie sur {1,2,3}* par : 2 +—— 2 . La matrice A est la matrice
3 — 23

d’incidence de o9.

e Cas 3 : 0 = (231).

Alors max(a3, T, (as(3))) = a3 si et seulement si l; + I < l2 + I3 et donc si et seulement si
Iy < 3. De méme max (a3, T(q,)(as(3))) = T(q4) €St équivalent a [y > I3.

!
=1
1 1
Sily < I3, la substitution associée & I'échange induit par T(,;) est o' = (231) et ¢ 15 = I> ,
5=1Il3—h
1 00
ouencorel=| 0 1 0 | (I'). On obtient avec les notations précédentes :
1 01
o1 (V) =0,
ou oy est la substitution définie précédemment.
h=0lL-1
Sily > I3, la substitution associée a I"échange induit par T,y est o' = (321) et ¢ Iy =13 ,
I =1y

ou encore [ =

O O =

10
0 1 | (). On obtient avec les notations précédentes :
10

ou o4 est la substitution définie précédemment.
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100 110
010 (001)
101 <1, 010 o, 1<13

100)
001 @_/ (100)
010
I<l, 1oo\ L<l 110 1<1. 101
(010) (001)
011 010

F1a. 1.6 — Graphe d’induction de Rauzy pour les échanges de trois intervalles.

Nous pouvons résumer ’étude précédente & 'aide du graphe G suivant :

Ainsi, I'orbite positive d’un échange de trois intervalles satisfaisant & la condition I.D.O.C. sous
Iaction de ¥, I'induction de Rauzy, peut se représenter par un chemin infini sur le graphe G.

1.4.2 Codages de rotations et condition I.D.O.C.

Nous avons vu que 'induction de Rauzy était bien définie pour les échanges de trois intervalles
satisfaisant a la condition I1.D.O.C. 11 est donc naturel de se demander & quelles conditions sur
(e, B) un échange d’intervalles associé, par induction comme au paragraphe 1.3, & une rotation de
parametres (o, ) satisfait a la condition I.D.O.C. C’est cette question que nous allons traiter &
présent.

Lemme 1.4.9. Soit U une suite obtenue en codant l'orbite du point 0 sous ’action d’un échange
de trois intervalles. Si I’échange satisfait & la condition 1.D.O.C., alors :

Vn e N, P,(U)=2n+1,

sinon,
Jk € N* tel que Vn € N*, P,(U) <n+k.

La suite (Pp(U))nen+ désigne ici la fonction de complexité de la suite U définie au paragraphe 1.2.

Démonstration. Notons T 1'échange de trois intervalles ((I1,l2,13);0), (I1,l2,13) € (R%)3, a1=0,
as=l1, ag=ly + lo et ay=ly + l2 + l3. Notons également, comme au paragraphe 1.3, Iy, Is et I3 les
trois intervalles de 1’échange T'. Si '’échange satisfait & la condition I.D.O.C., alors d’apres [145]
l'orbite du point 0 sous P’action de T est dense dans [0, 1[. Nous pouvons donc affirmer que pour
tout agay ...a, € {1,2,3}"* :

apay ...an € LWU) & T U, )NT- DU, _)N...0 (L) # 0. (1.5)

Remarquons & présent que si [a, b[C [0, 1] alors T~'([a, b[) est une union disjointe d’intervalles semi-
ouverts & droite dont les extrémités appartiennent & I’ensemble {T*I(a), T-Y(b),a1,as,as3, a4}. En
appliquant cette remarque aux intervalles I;, j € {1,2,3}, on en déduit que pour tout entier N
et tout 5 € {1,2,3}, T N (I;) est une union disjointe d’intervalles semi-ouverts & droite dont les
extrémités appartiennent & I’ensemble

On = {T7%(a),0<k<N,l€{1,2,3}}U{as}
= {Tﬁk(al), 0<EkE<N,l¢€ {2,3}} U {al,a4}.
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Un raisonnement par récurrence sur la longueur des mots conduit alors & montrer, en utilisant
Iéquation (1.5), que pour tout entier n, P,(U) = #(0,) — 1. Comme T satisfait & la condition
1.D.O.C., on est assuré que pour tout entier N

#(Ony1) — #(On) = 2.

Ainsi, P;(U) = 3 implique :
Vn e N*, P,(U) =2n+ 1.

Lorsque T ne satisfait pas & la condition I.D.O.C., I’équation (1.5) n’est plus nécessairement
vérifiée, mais on est tout de méme assuré que pour tout agay ...a, € {1,2,3}"+! :

agar . ..an € LWU) =T "I, )NT~ DU, )N...0(IL,) # 0.

On en déduit alors que pour tout entier n, P,(U) < #(0,) — 1. Or le fait que T ne satisfait pas &
la condition I.D.O.C. implique

JK € N tel que Vn > K, (#(On+1) — #(On)) < 1.
Ceci entraine, comme (P, (U))nen+ est soit strictement croissante soit ultimement constante, que
3j € N tel que Vn > j, (P,+1(U) — P,(U)) < 1.

Et ainsi :
Jk € Ntel que Vn e N, P,(U) <n+k.
O

Proposition 1.4.10. Soit T' un échange de trois intervalles ((I1,12,13); (321)) , associé, par induc-
tion, & une rotation de paramétres (o, ). Si o & Q et si f ¢ Z+aZ, alors T satisfait & la condition

1.D.O.C.
Pour démontrer cette proposition, nous avons besoin d’établir le lemme suivant :

Lemme 1.4.11. Soit U=(up)nen- une suite sur l'alphabet A={1,2,3} et vérifiant :
Jk € N* tel que Vn € N*, P,(U) <n+k.

Alors étant donné un alphabet fini B et un morphisme de monoide libre o de A* vers B*, étendu
par concaténation de AN vers BY :

k' € N* tel que Vn € N*, P,(o(U)) < n+ k.

Démonstration du lemme 1.4.11. Considérons donc o, ot 0 : A* — B*, avec B = (b1, b2,...,bp)
et posons V =0(U), V =vivy...v;..., avec v; € B. Nous devons alors montrer qu’il existe k' € N*
tel que Vn € N*, P,(V) < n + k’. Considérons également le morphisme suivant :

o: A — {L2,...,|0(1)| +|o(2)] + |o(3)|}"
1 — 12...|0(1)],
2 = (o) +1)...(Jo(W)] +[o(2)),
3 = (oM +le@)[+1)... (lo(D)] +|o2)] + |o(3)])-
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La substitution & est ainsi parfaitement définie sur AN par concaténation. Posons V = a(U) et
considérons le morphisme :

P:{1,2,...,l0c(1)] +|0(2)] +|e3)|} — B*

o (1) sii < |o(1)],
T si ()] < < (jo(1)] + |o(2)),
o3)i—(o)+lo) st (lo(D)] +|o(2)]) <.
Ainsi P(V) = V et P étant une projection “lettre A lettre” :

Vn € N* P, (V) < P, (V).
II nous suffit ainsi de montrer que :

' € N* tel que Vn € N* Py(V) < n+ k.

Notons V' = 9103 ... 0; ... et considérons 9;U;t1 ... 04 € L(V) tel que 0;0;41 ... 0;1; admette deux
prolongements & droite dans V (il ne peut évidemment pas en avoir plus pour [ assez grand compte
tenu de I'hypothese faite sur U et de la définition de o). Ceci revient & dire que :

A(r,s) € {1,2,...lc(1)] + |0(2)] + |o(3)|}%, r # s, tel que

ViUj41 - .. VT € [,(V) et V;Ui41...0;418 € E(V)
Par construction de o :
=l UjUjy] .- Up € ﬁ(U) tel que W&(Uju]'+1 ce uh)W' = ViVit1 - Vjply

ou W et W' sont respectivement suffixe strict et préfixe strict d’images de letrres par o. Donc
W'r etW's sont préfixes d’images de lettres par o. Or r # s implique W' = ¢ (car les images de
lettres distinctes par ¢ n’ont aucune lettre commune). Ainsi 9;0;41 ... 041 = Wo(ujujir ... up), ot
UjUjy1 ... up est un facteur spécial droit de U.

Considérons alors deux facteurs spéciaux droits de 17, I~/1 et 172, de méme longueur suffisamment
grande. D’apres ce qui précede :

171 = Wyo(Uy), ou U; est un facteur spécial droit de U

et W7 est suffixe strict d’image de lettre par o,
172 = Wyo(Usy), ou U, est un facteur spécial droit de U

et Ws est suffixe strict d’image de lettre par o.

De plus, pour tout ¢ dans {1,2,3}, o(i) ¢ L(W;), 7 € {1,2}. Si V1| est assez grande alors |U7] et
|Uz| sont assez grandes pour affirmer que U; est suffixe de Uy (ou inversement). En effet, 3k € N*
tel que P,(U) < n+k et donc (Pp11(U) — P,(U)) <1, si n est assez grand.

Supposons, par exemple que U; soit suffixe de Us. Alors, si Uy # Uz Ji € {1,2,3} tel que
o(i) € L(W7), ce qui est impossible car W est suffixe strict d’image de lettre par o. Donc U; = Us.

En notant U = Uy = Us, on obtient Zl - WIZ(U) .
Vo = Waa(U)

Par construction de o, 3! ¢ € {1,2,3} tel que Wy € L(c(3)) et 3! 7 € {1,2,3} tel que Wy €
L(5(§)). Donc 5(iU) et 5(jU) sont deux facteurs spéciaux droits de V et ainsi iU et jU sont deux
facteurs spéciaux droits de U. Mais alors iU est suffixe de jU (ou inversement), ce qui implique
1 = j puis W7 = Wy et finalement ,I}I = ,I}; Ceci montre l'existence de k' € N* tel que Vn €
N P(V)<n+k. O
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Démonstration de la proposition 1.4.10. Soit T' = ((I1,12,3); (321)) un échange de trois intervalles
associé a une rotation de parametres («, ), avec 8 ¢ 7Z + aZ. Notons U la suite obtenue sur
lalphabet {1,2,3} en codant l'orbite du point 0 sous 'action de I’échange T et V le codage de
rotation de parametres («, ). Alors, il existe un morphisme o de {1,2,3}* vers {a,b}* vérifiant
o(U)=V.Orsip ¢ Z+ o, d’apres [209]

AN € N* tel que Vn e N*, n > N : P, (V) = 2n.

Donc, d’aprés le lemme précédent il ne peut exister d’entier k pour lequel Vn € N* P, (U) < n + k.
Le lemme 1.4.9 entraine alors que 1’échange T' doit satisfaire la condition I1.D.O.C. U

Lorsque 8 € Z + aZ, ’échange d’intervalles obtenu par induction & partir de la rotation de
parametres (a, 3) est en fait un échange de deux intervalles ou un échange de trois intervalles ne
satisfaisant pas a la condition I.D.O.C.; c’est-a-dire qu’aprés un nombre fini d’étapes d’induction,
I’échange obtenu sera un échange de deux intervalles. C’est une des raisons expliquant que le cas
B € Z + oZ releve davantage des suites sturmiennes. Dans [209], G. Rote montre également que la
nature de la fonction de complexité d’un codage de rotation de parametres («,3) dépend du fait
que B appartienne a Z + «Z ou non.

1.5 Algorithme d’induction pour les rotations de parametres ad-
missibles
Nous avons précédemment défini une application ¥ de I ET3 dans lui-méme, appelée induction

de Rauzy. Nous pouvons, a présent, donner une expression précise de ’application ¥, similaire &
celle donnée par F. Schweiger [219, pp. 93-101], sous la forme suivante :

U IETy — IET;

( [ ((I1,12,13 — 11); (312))
. sily > 1y,
0= G20 (14— 1,1, 1y); (231))
L sily > lg,
( ((l13l2 - l3a l3)7 (312))
. sily >3,
T = ((l1,l2,13);0) — ¢ sio = (312), < (I 2[2 l33— l»); (321))
L sils > lg,
[ ((I1,12,13 — 11);(231))
3 . si lg > ll,
o=@ (14 = 15,1, 1y); (321))
{ L sily > 1s.

Considérons alors G1, G2 et Gj3, les trois sous-graphes, du graphe G introduit au paragraphe
1.4, que nous définissons a 'aide de la figure 1.7. On peut aisément vérifier a l'aide de la définition
précédente de W, que si l'orbite positive d’un échange de trois intervalles 7', sous l'action de ¥,
était ultimement contenue dans 'un des sous-graphes G, i € {1,2, 3}, alors une des longueurs des
intervalles d’un des échanges ¥"(T'), n € N, serait nulle, ce qui est impossible puisque les échanges
U™ (T) satisfont la condition I.D.O.C. Ainsi, si 'on considére la suite (o, )nen des permutations
données par 'orbite de T sous 'action de ¥, cette suite contient une infinité de fois chacune des
trois permutations irréductibles possibles.
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Y

G (T Cab L G Gid (w) G, GG (i)

-~ v -

Fic. 1.7 — Les graphes G1, G5 et G3.

Notamment, lorsque o = (321), on peut étre assuré qu’il existe un entier positif n tel que
on = (321). Ceci nous permet d’établir une version multiplicative de I’algorithme d’induction de
Rauzy pour les échanges dont la permutation est (321), sous la forme suivante :

Uy (RY)? — (R}

(11,12 - MT%J (Is — 1), —ls + ([lglEhJ n 1) (I3 — l1)>

sily <l
(11,2, 13) —> (—;ﬁgﬂ | 1) (1 )k — | o | (0 1),03)

l1—I3
sily >3 .

Si Ay, Ao, A3 et Ay désignent les matrices introduites au paragaphe 1.4, alors en notant pour tout
entier k, Ay = (A1 A5 A3) et By = (A4A%Ay), il vient :

t
( 3
A[lb J lo sily <ls,
I3—1l l3
Uar(ly,l2,1l3) = ¢
l
B_ll2 Iy sily > ls.
Lll_lBJ l
L 3

La matrice A® désignant, dans I’expression ci-dessus, la transposée de la matrice A.
On obtient alors, en posant £k = min{n € N* tel que o, = (321)}, I’égalité suivante :

(Uar(ly,la,13); (321)) = WF ((Iy, 1o, 13); (321)) .

Remarque 1.5.1. Cette version multiplicative de l'induction de Rauzy est propre aux échanges de
trois intervalles. En particulier, il ne s’agit pas de ’algorithme proposé par A. Zorich dans [252].
Nous utilisons la symétrie du graphe G, introduit au paragraphe 1.4, pour privilégier d’une certaine
facon la permutation (321). L’algorithme étudié dans [252] ne distingue aucune permutation, mais
prend plutot en compte la nature des transitions intervenant entre les différentes permutations.

Soit T' = ((I1,12,13); (321)) un échange de trois intervalles, satisfaisant & la condition I.D.O.C.
Notons U la suite obtenue en codant I'orbite du point 0 sous 'action de T" et V la suite obtenue en
codant l'orbite du point 0 sous l'action de ¥*(T'), ot k = min {n € N* tel que 0, = (321)}. Il vient
alors :

la
<ala£’3“Ja3> (V)=U, sily <ls,

lo
<0401{51_13JU4> (V)=U, sil;>Is.



Nous proposons maintenant de généraliser cette remarque. Considérons un échange de trois
intervalles, T = ((19,19,19); (321)), satisfaisant & la condition I.D.O.C. Pour tout entier n, notons

Iy . 0 st I} <I¥
non o gny\ _ \n 0 70 50 _ 2 _ 1 3
(7,05, 05) = V(11,03 13)), an = {l?—l?J et ln—{ 1 si >
Ainsi, i, = 1 si la permutation de I’échange de trois intervalles induit, par I'induction (addi-

tive) de Rauzy U, a partir de Péchange d’intervalles (U7,((19,13,19)); (321)) est la permutation
(231) et i, = 0 si cette permutation est (312). Le coefficient a, nous renseigne lui sur le nombre
d’étapes d’induction additive de Rauzy nécessaires pour obtenir & partir de I’échange d’intervalles
(T7,((19,19,19)); (321)) un échange d’intervalles dont la permutation est & nouveau (321). Ces co-
efficients ont ainsi une interprétation géométrique simple dans le graphe G de la figure 1.6.

Notons également U™ la suite obtenue en codant 'orbite du point 0 sous Paction de Péchange
de trois intervalles ((IT,15,1%); (321)). Alors :

U(U) — ((0105003)i0 (040?004)172-()) ((0105103)i1
(oiofton)' ™)

(1057 00)™ (aofran) ) (D),

Ce résultat est simplement obtenu en itérant la remarque précédente. Le fait que i, € {0,1}
implique que soit 7, = 0 soit 1 — 4, = 0.
Proposition 1.5.2. Awvec les notations précédentes, il vient :

U© = lim ((Ulagjag)lj (04(7;”04) _Z’> (1).

n—00
Jj=0

Démonstration. Le fait que, pour tout entier n, U™ commence par la lettre 1 nous permet d’affir-
mer que []7_, ((010(2” Ug)ij (04077 04) _Zj> (1) est préfixe de U©). 11 nous suffit donc & présent de
montrer que I’expression lim,, s H?:o ((010(2” Ug)ij (040(1” 04)1_ij> (1) a un sens pour la topologie
produit des topologies discretes sur {1,2,3}" et définit bien une suite infinie. Or (04077 04)(1) =
12% et (0105703)(1) = 13. On obtient ainsi I'égalité : H?i& ((Ulagjag)ij (040?-04)1—@) (1) =
H?:o ((Ulo;jag)ij (U4Ufja4)1_ij) (IWhi1), Wiy € {1,2,3}*. Ceci implique alors que le mot
H?:o ((Ulagj Ug)ij (040? 04)1_ij) (1) est un préfixe du mot H?i(} ((Ulagj Ug)ij (04(7;” 04)1_ij) (1)

N . . a; i a; 1—12;
et nous pouvons donner un sens & ’expression lim,, H?:o ((0102J 03) J (0401104) ’) (1). De

plus ‘H?i(} ((O’la'gfgg)ij (0'40'?3'0-4)1—%') (1)‘ Z ‘H;’L:O ((O_lo_gjo_g)ij (0.40.;%'0_4)1—%') (1)‘ et l’inégali—
té est stricte si i, = 1 ou ap4+1 > 0. Ceci ce produit infiniment souvent d’apres I’étude menée au
début de ce paragaphe sur les graphes Gj, i € {1,2,3}. Nous pouvons alors affirmer que le mot

limy, 00 [ 79 ((UlU;j 03)ij (040’ 04)1721') (1) est infini et ainsi conclure. O

Remarque 1.5.3. Nous avons proposé un algorithme linéaire dépendant de trois variables pour ob-
tenir les coefficients a; et i;. Ceci peut sembler naturel puisqu’il s’agit d’un algorithme de décomposi-
tion des longueurs d’échanges de trois intervalles. Cependant, la décomposition est la méme pour
deux échanges équivalents. C’est pourquoi, nous proposons dans la suite un algorithme de deux
variables fournissant ces mémes coefficients.
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Considérons la transformation projective suivante :

D 10, 1[xR, —]0, 1[xR".

( {755}
(Ly__\_lzJa;_l IJ) 37; y>13
y—1 y—1 y—1 y—1

(b - 1)) i <1,

(z,y) — 1

\ (0,1) sioy=1.

SiT = ((l1,12,13); (321)) est un échange de trois intervalles satisfaisant & la condition I.D.O.C.,
posons Ty = lll-ilz’ Yo = éfig’ (zo €]0,1[ et yo € RY) et (@n,yn) = D™ (w0, y0) pour n € N. Le fait
que ’échange T vérifie la condition I.D.O.C. assure que y,, # 1 pour tout entier n et nous permet

.1 sy <1
Je“”_{o sioyp>1°

Proposition 1.5.4. La suite de coefficients (an,in)nen est la méme que celle définie dans la pro-
position précédente.

Tn
yn—1

ainsi de poser a, = {

Preywve. La preuve se fait par récurrence sur n.

Définition 1.5.5. Considérons un couple de paramétres admissibles («, 3) et I’échange de trois
intervalles T qui lui est associé. Nous appellerons développement D associé au couple (a, B) la suite
(Gn,in)nen, obtenue comme nous 'avons décrit précédemment a partir de ’échange T'.

Si (o, B) € [0,11%, a € Q et B & Z+ aZ mais a > B, nous appellerons développement D associé
au couple (o, B) le développement D associé au couple de paramétres admissibles (1 —a,1 — f3).
Théoreéme 1.5.6. Si U désigne un codage de rotation non dégénéré de paramétres (o, ) et
(Gn,in)nen le développement D associé au couple («, 3), alors :
sia < f,

U= lim ¢ (][] ((Ulagjaa)ij (0401”04)1%) 1],

n—o00 .
J=0

st a >,

n
. a; ] a; 1—12;
U= nlLIgO aS ¢L%J 1—10 ((0102J 03) I (0’40’1J0'4) J) (1)
J:
ou les applications S, ¢ et — sont celles définies dans le paragraphe 1.5.
Preuve. La preuve est immédiate d’apres les propositions 1.5.4 et 1.5.2 et I’équation (1.4).

Corollaire 1.5.7. Avec les notations du théoréme précédent, le systéeme dynamique symbolique
associé a un codage de rotation non dégénéré de paramétres («, 3), est engendré par la suite :

n—00

lim ¢ 1-5 H ( o109 03) j (040;”04)17%‘) (1) ], sia<p,

st a> .
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Preuve. La preuve est immédiate d’apres le théoreme précédent car le systéme est minimal si
a g Q.
Corollaire 1.5.8. Pour tout x € [0, 1] et tout couple de paramétres non dégénérés (a, ), le langage
de la suite C(x, Ry, ) définie par l’équation (1.1) est le méme que celui de la suite :

n .
lim 925 ey H( 0102 03 i (04(7;”04)1_”) (1) ], sia<p,

n—o0

st a> .

Preuve. 11 suffit d’invoquer la densité de la suite {z + na}, pour « irrationnel, et le corollaire
1.5.7.

Les deux corollaires précédents sont tres proches du résultat de [86]. Cependant le travail de G.
Didier présente deux inconvénients majeurs pour notre étude. Tout d’abord, les parametres (a, 3)
des codages de rotations considérés dans [86] vérifient a < min{f3,1 — S}. Cette condition n’est pas
du tout adaptée au probléeme de théorie des nombres qui a motivé notre étude, contrairement a la
condition, arithmétiquement et combinatoirement plus naturelle, 8 € Z + «Z. Ensuite, le théoréme
principal de [86] donne la constuction, pour tout couple («, 3) vérifiant « < min{g3,1 — 8}, d’une
suite du systéme dynamique engendré par le codage de rotation de parametres (o, 3); mais ne
construit pas le codage de rotation de parametres («, ), comme nous le faisons dans le théoréme
1.5.6. La encore, pour répondre aux probléemes de répartition des suites (na)nen, il est nécessaire
de construire explicitement ce codage. C’est pourquoi nous n’avons pu utiliser le résultat de [86].

1.6 Caractérisation des couples (¢, 5) dont le développement D est
ultimement périodique

Nous cherchons a caractériser les couples pour lesquels le développement D associé, introduit au
paragraphe précédent, est ultimement périodique. Ceci revient & déterminer les couples («, 3) pour
lesquels 'orbite, sous ’action de 'induction de Rauzy V¥, de ’échange de trois intervalles associé a
la rotation de parametres («, 3) peut se représenter par un chemin ultimement périodique dans le
graphe G introduit au paragraphe 1.4.

Proposition 1.6.1. Etant donné un couple (o, §) € [0,1[2 vérifiant o« € Q et B & Z+ o, si « et
B appartiennent ¢ un méme corps quadratique alors le développement D associé au couple (o, 3)
est ultimement périodique.

Pour démontrer cette proposition, nous avons besoin du résultat de M. D. Boshernitzan et C. R.
Carrol [48], dont une version affaiblie et adaptée aux échanges de trois intervalles peut étre donnée
sous la forme suivante :

Théoréme 1.6.2 (Boshernitzan et Carrol [48]). Soit T, T = ((l1,l2,03);0), un échange de
trois intervalles satisfaisant & la condition I.D.0.C. Si les longueurs Iy, 1y et l3 appartiennent a un
méme corps quadratique, alors [’orbite de I’échange T, sous ’action de ¥, est représentée par un
chemin ultimement périodique dans le graphe G du paragraphe 1.4.
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Démonstration de la proposition 1.6.1. Si (a, ) est un couple de parameétres admissibles au sens
de la définition 1.2.2, alors I’échange de trois intervalles associé, par induction, & la rotation de
parametres («, 3) est donné, d’apres I'équation (1.2), par :

(o5 (52 ) ).

Si de plus « et § appartiennent & un méme corps quadratique, il en est alors clairement de méme
pour les longueurs des trois intervalles de I’échange T'. Ainsi, l'orbite de T, sous I'action de ¥, est
représentée par un chemin ultimement périodique dans le graphe G. C’est-a-dire, le développement
D associé au couple («, 3) est ultimement périodique.

Dans le cas ou « et 8 appartiennent & un méme corps quadratique, mais que o > 3, alors le
couple (1 — a, 1 — f3) vérifie les conditions suivantes :
1 — a et 1 — (3 appartiennent & un méme corps quadratique et 1 —a <1 — /.
D’apres la définition 1.5.5, le développement D associé au couple (a, 3) est 14 encore ultimement
périodique. O

Nous allons & présent démontrer la propriété réciproque, a savoir :

Proposition 1.6.3. Etant donné un couple (a,8) € [0,1[2 vérifiant « ¢ Q et B & Z + aZ, si
le développement D associé a ce couple de paramétres est ultimement périodique, alors « et B
appartiennent ¢ un méme corps quadratique.

Pour établir cette proposition, nous utilisons le résultat suivant démontré dans [48] :

Proposition 1.6.4. Soit T, T = ((I1,l2,l3);0), un échange de trois intervalles satisfaisant a la
condition 1.D.0.C. et dont le Z-module engendré par les longueurs ly,ly et I3 est de rang 2. Si
lorbite de I’échange T, sous l'action de U, est représentée par un chemin ultimement périodique
dans le graphe G du paragraphe 1.4, alors l’échange T est équivalent & un échange dont les longueurs
l1,ls et l3 appartiennent ¢ un méme corps quadratique.

Démonstration de la proposition 1.6.3. . Soit («,3) un couple dont le développement D est ulti-
mement périodique et tel que o < S. Notons T' = ((I1,l2,13); (321)) 'échange de trois intervalles
associé par induction & la rotation de parameétres («, 3). Ainsi, d’apres 1’équation (1.2) :

(lh,12,13) = (B—a,l— {%J a—B,B+ Q%J +1>a—1>. (1.6)

L’ultime périodicité du développement D associé au couple (o, #) implique que l'orbite de T' sous
I’action de 1) est représentée par un chemin ultimement périodique dans le graphe G. L’irrationalité
de « entraine que le Z-module engendré par les longueurs [1,ls et I3 est de rang supérieur & 2. En
normalisant I’échange 7', on obtient I’échange T défini par :

T = , , £(321) ) .
((ll+l2+13 ll+lg+l3 ll+lg+lg ( )

Le Z-module engendré par les longueurs de I’échange T est encore de rang supérieur a 2, mais le fait
d’étre normalisé lui interdit évidemment d’étre de rang maximum, & savoir 3. Ainsi, le Z-module
engendré par les longueurs de I’échange T est de rang 2. De plus T est équivalent a T" et donc l'orbite
de T sous 'action de 9 est elle aussi représentée par un chemin ultimement périodique dans le graphe
G. D’apreés la proposition 1.6.4, il existe donc un échange de trois intervalles T" = ((I1,15,15); (321)),
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équivalent & ZN“, dont les longueurs appartiennent a un méme corps quadratique. Mais le fait que T
soit normalisé et qu’il soit équivalent & T” implique 1’égalité suivante :

~ I [ I
T = ! . . ;(321) ) .
<(z'1+zf2+zg’z;+z;+zg’z;+z'2+z'3>’(3 )>

Les longueurs des intervalles de ’échange T appartiennent donc aussi au méme corps quadratique.
=80
D’apres ’équation (1.6), il en est de méme pour les quantités ’3‘%0‘ et %’ ce qui entraine
que « et B appartiennent également au méme corps quadratique.
Si le couple (a, B) vérifie a > 8 et que le développement D associé a ce couple est ultimement
périodique, alors le raisonnement précédent conduit & montrer que (1 — «a) et (1 — /) appartiennent

a un méme corps quadratique. On en déduit immédiatement qu’il en est de méme pour a et 5. [

Nous pouvons, a présent réunir les deux propositions précédentes pour obtenir le théoreme
suivant :

Théoréme 1.6.5. Soit (o, 3) € [0,1[%, « € Q et B € Z + aZ. Le développement D associé au
couple (o, B) est ultimement périodique si et seulement si o et 8 appartiennent ¢ un méme corps
quadratique.

1.7 Caractérisation des suites primitives substitutives obtenues
comme codages de rotations

Dans ce paragraphe, nous cherchons a déterminer pour quels parameétres, («, ), le codage de ro-
tation de parametres («, §) définit une suite substitutive primitive. Nous pourrons alors déterminer
les codages de rotations faisant intervenir des phénomeénes d’autosimilarité.

1.7.1 Le cas des couples de parametres admissibles dont le développement D
est ultimement périodique

Lorsqu’une famille de suites symboliques peut étre engendrée par un systeme adique, les suites
obtenues par un développement ultimement périodique dans ce systéme sont liées & un point fixe de
substitution. Nous allons a présent exploiter cette remarque dans le cas des codages de rotations.
Commencons par rappeler quelques définitions liées & la notion de substitution.

Définition 1.7.1. Une substitution &, définie sur un alphabet A, est dite primitive s’il existe un
entier k tel que pour tout élément B de A et tout élément v de A, v soit facteur de £¥(3).

Remarque 1.7.2. Le fait qu’une substitution & soit primitive est équivalent au fait que sa matrice
M d’incidence soit primitive, c’est-a-dire admette une puissance dont tous les coefficients soient
strictement positifs.

Définition 1.7.3. Une suite U définie sur un alphabet A est dite primitive substitutive s’il existe
une substitution primitive § sur un alphabet B et un morphisme ¢ : B* — A* tels que ¢(X¢) = U
ou X¢ est point fize de la substitution .

Proposition 1.7.4. Soit («, 8) un couple de parameétres admissibles au sens de la définition 1.2.2.
Si «a et B appartiennent & un méme corps quadratique, alors le codage de rotation de paramétres
(v, B) définit une suite substitutive primitive.
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Démonstration. Si « et  appartiennent & un méme corps quadratique, alors d’apres le théoreme
1.6.5, le développement D, (ayp, in)nen, associé au couple («, ) est ultimement périodique. 1 vient
donc : 3k € Net T € N* tels que Vn > k (ant1,in+1) = (An,in). Or le théoréme 1.5.6 entraine,
en notant U le codage de rotation de parametres («, 3), que :

ﬁ ( 010y 03 '(040 04)1_ij> (1|,

U = lim ¢

1
n— 00 LTBJ

n—o0

+ y .
= lim qﬁl_ﬂj H ( 0’10’ 0’3 J (0’40’ilj0'4)1—lj> 1) ],

n— 00

= lim gb 1:[ ( 0102 03 ' 0401 04) 7ii> (1) |,

ouf = Hk+T ! ((010;j03)j 0401 04 ) On pose alors :
k+T—1 . o
QS = QSLMJ H ((0_10_310_3)77 (0’40’?0‘4) ZJ) ,
[e3
j=k

¢ :{1,2,3}* — {a,b}*. On obtient

U = ¢( lim £"(1)),

n—o0

ou encore U = ¢(£°°(1)), out £°(1) = limy, 00 £™(1) est point fixe de la substitution £&. De plus, £(1)
commence par 1 et |{(1)] > 2, car

1ol o4)(1) = 12% et (o109 03)(1) = 13.
1 2

Il ne reste donc plus qu’a montrer que ¢ est une substitution primitive. Notons, pour tout entier
k, Ay = (A1 A5A3) et By = (A4AYAy), on les matrices A;, i € {1,2,3,4}, ont été introduites au
paragraphe 1.4. Alors, si 'on note M la matrice associée & la substitution £, on a

k+T—1

Me= T] (AZ)(Ba, ).

J=k

Si (C,D) € M3(R)?, C = (¢ij), D = (d;;), nous dirons que C > D si ¢;j > d;;, V(i,5) €
{1,2,3}?. De méme, nous dirons que C' > D sic; j > d; ;, ¥(i,5) € {1,2,3}2. Si C est positive, alors
pour tout entier k, les quatre inégalités suivantes sont vérifiées :

AxC > C, C Ay > C, B,C > C et CBy, > C.

Ap =13+ A}, avec A) >0
By =1I3+ B; avec B}, >0

Dans le paragraphe 1.5, nous avons vu que l'orbite d’un échange de trois intervalles associé a
une rotation de parametres admissibles (a, ), sous laction de Iinduction de Rauzy ¥, n’est pas
ultimement contenue dans I'un des sous-graphes G, i € {1,2,3}, définis dans ce méme paragraphe.
Ceci entraine :

Pour cela, il suffit de constater que {
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Jjie{k,k+1,...,k+T -1} tel que ij =0,

Jjo € {k,k+1,...,k+T -1} tel que i, =1,

Jjze{k,k+1,...,k+T -1} tel que aj;, > 1.

Or, pour deux entiers k et [ tels que k > [, Ay > A; > 0 et By > B; > 0. Les remarques précédentes
permettent d’affirmer que 'une au moins des quatre inégalités suivantes est vérifiée :

M¢ > AgBy = P > 0,

Me > AiBy =P, >0,

M¢ > BiAg = P3 > 0,

Mg > Bo Ay =Py > 0.

. Ny . ; i k;
Or, on vérifie aisément que Vi € {1,2,3,4}, 3 k; € N tel que Pik’ > 0. Donc M§maX et 224 (i) >0
et ainsi ¢ est bien primitive. O

Notons que la primitivité de la substitution & est créée par la répétition des blocs de matrices Ay,
et By. Les matrices A;, i € {1,2,3,4} n’étant pas supérieures a 'identité (au sens de 'ordre partiel
utilisé dans la preuve), un raisonnement similaire sur ces matrices est impossible. Notre algorithme
multiplicatif d’induction permet donc de mettre plus naturellement en évidence la primitivité de la
substitution &.

1.7.2 Réciproque

Soit (c, 8) un couple de parameétres admissibles ne satisfaisant pas & la condition : « et
appartiennent 4 un méme corps quadratique. Alors le développement D associé n’est pas ultimement
périodique. Autrement dit, la description que nous obtenons du codage de rotation de parameétres
(c, B), ne le présente pas comme définissant une suite substitutive primitive. On pourrait pourtant
envisager qu’en utilisant un systeme de recodage différent de I'induction de Rauzy, ce méme codage
de rotation puisse étre décrit comme une suite substitutive primitive. En utilisant un résultat de F.
Durand [99], nous allons montrer qu’'un tel codage de rotation ne définit pas une suite substitutive
primitive.

Si U désigne une suite minimale sur un alphabet A et v = ujus ... u, un préfixe non vide de
U, nous appellerons mot de retour sur u, tout facteur uj; ;_1)(= uiti+1...uj-1) de U ou i et j sont
deux occurrences distinctes de v dans U. L’ensemble H/,, désignant 'ensemble des mots de retour
sur u, tout élément de ’H’f],u admet une unique décomposition en éléments de Hy,, concaténés.
Ainsi, la suite U peut s’écrire de maniere unique sous la forme U = mgmq ... m; ..., ou les m; sont
des mots de retour sur . La minimalité de U nous permet d’affirmer que Hys,, est un ensemble fini
pour tout préfixe non vide u de U. Nous pouvons donc considérer une bijection Ay, de Hy,y, sur
I'ensemble {1,2, ..., card(Hyu)} = Nuu, ce qui revient simplement & numéroter les mots de retour
sur u. Posons alors D, (U) = Ay (mo)Apu(mi) ... Ayu(m;) ... ; cette suite sur Palphabet Ny, est
appelée suite dérivée de U. Ainsi, & tout préfixe v de U, on pourra associer une suite dérivée D, (U).
Dans [99], F. Durand a obtenu le résultat suivant :

Théoréme 1.7.5 (Durand [99]). Une suite U est substitutive primitive si et seulement si le
nombre de ses différentes suites dérivées est fini.

Nous proposons maintenant d’établir le résultat suivant :

Proposition 1.7.6. Si le codage de rotation de paramétres admissibles (c, 3) définit une suite
substitutive primitive, alors a et B appartiennent d un méme corps quadratique.

Démonstration. L’idée principale de cette démonstration est de remarquer que certaines étapes de
I'induction de Rauzy pour un échange d’intervalles consistent a regarder des mots de retour sur la
suite codant ’orbite du point 0 sous I'action de cet échange.
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Considérons U, un codage de rotation de parametres admissibles («, #) dont le développement
D n’est pas ultimement périodique. Nous avons vu au paragraphe 1.3, qu’il existe un morphisme
de monoide libre ¢ de {1,2,3}* vers {a,b}* tel que ¢(V) = U, ou V désigne la suite de {1,2,3}"
obtenue en codant 1'orbite du point 0 sous I'action de I'échange de trois intervalles T, ; induit par
la rotation de parametres («, 3) sur 'intervalle [0, 3[. Alors, par définition méme de lapplication
de premier retour, nous obtenons que

V =D,(U) .

Plus précisément, il n’existe que trois mots de retour sur a qui sont ¢(1), ¢(2) et ¢(3). L’échange
de trois intervalles T}, satisfait & la condition I.D.O.C. car («,[3) est un couple de parametres
admissibles. Notons [ = (ly,l2,l3), nous savons que o = (321); Uintervalle [0,/ est, comme nous
I'avons remarqué dans la proposition 1.4.6, un intervalle admissible pour 7}, ;. De plus, si I'on note
T4y 'échange de trois intervalles induit par T{, ) sur [0,/1[, un argument de G. Rauzy [201] nous
permet d’affirmer que o’ = (321). Notons V' la suite obtenue en codant Porbite du point 0 sous
action de T{,;). Nous savons qu'il existe une substitution ¢, définie sur I'alphabet {1,2,3}, telle
que O(V'") = V. Ici encore et par définition méme de I'application de premier retour, nous obtenons
que :
VI=Dy(V).

Plus précisément, il n’existe que trois mots de retour sur 1 qui sont 6(1), 6(2) et #(3). Introduisons
la suite d’échanges de trois intervalles suivante :

Ta,lo = T((r,l)a
T(s,,.,) est application de premier retour induite par T{4,,)
sur le premier intervalle de T(, ).

Puis, pour tout entier n, notons U™ la suite obtenue en codant Porbite du point 0 sous I’action
de T(4,,)- Ainsi, UO = v et UN = V', Alors, U = D,(U) et de plus pour tout entier n,
U+ = D (U™). Nous rappelons un résultat de F. Durand [99], concernant les suites dérivées :

Proposition 1.7.7. Considérons une suite symbolique U et u un préfize non vide de U. Si v est un
préfize non vide de Dy (U) alors il existe un préfive w de U, non vide, tel que Dy(Dy(U)) = Dy (U).

Cette proposition nous permet donc d’affirmer que la suite (U("))neN est une suite de suites
dérivées de U. De plus, G. Rauzy [201] montre que si [0, A[ est un intervalle admissible pour 7T,

alors l'application Ty, ;,, induite par T,; sur [0, A[, vérifie :

I n €N tel que Tp, ;, = ¥ (T5),

PRIN
ou V¥ désigne 'induction de Rauzy introduite au paragraphe 1.4. Autrement dit, I'induction de
Rauzy “passe en revue” tous les intervalles admissibles. En particulier, si o = (321) et A = [y, il
existe un entier n; tel que [y = U} (I), ou ¥)s désigne la version multiplicative de I'induction de
Rauzy introduite au paragraphe 1.5. Notamment, il existe une suite strictement croissante d’entiers
(kn)nen telle que, pour tout entier n, [, = \Ifﬁ; (1). Ainsi, pour tout entier n, la suite U™ peut étre
obtenue en codant 'orbite du point 0 sous I'action de I’échange de trois intervalles ((\I/]X}} (1)); (321)).

Supposons que la suite U soit substitutive primitive, alors d’apres le théoreme 1.7.5, la suite
(U™),en ne prendrait qu'un nombre fini de valeurs dans {1,2,3}". Il existerait donc deux en-
tiers distincts n; et ny tels que UM™) = U2) et donc deux entiers k,, et k,, tels que \Ifﬁzl (1)

et \Ifﬁ;r" (I) soient homothétiques. Ainsi, les deux échanges ((\Ifﬁgl (1)); (321)) et ((\Ifﬁgz (1)); (321))
seraient équivalents. Ceci entrainerait que le chemin, dans le graphe G du paragraphe 1.4, suivi
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par lorbite de T},; sous l'action de ¥ serait ultimement périodique de période inférieure ou égale
a |kn, — kn,|, car deux échanges équivalents suivent le méme chemin dans le graphe G. Ceci im-
plique que le développement D associé au couple («, 3) est ultimement périodique. Finalement, le
théoreme 1.6.5 entraine que « et 8 appartiennent & un méme corps quadratique. ]

Nous sommes, & présent, en mesure d’énoncer le résultat suivant :

Théoreéme 1.7.8. Le codage de rotation de paramétres admissibles («, 8), définit une suite substi-
tutive primitive si et seulement si a et B appartiennent a un méme corps quadratique.

Preuve. La preuve est immédiate d’apres les propositions 1.7.4 et 1.7.6.

Remarque 1.7.9. D. Crisp, W. Moran, A. Pollington et P. Shiue [69] caractérisent les suites
sturmiennes caractéristiques qui sont points fizes de substitutions non triviales en fonction du
développement en fraction continue de leur angle. En utilisant les arguments que nous avons
développés dans ce paragraphe, on peut montrer qu’une suite sturmienne caractéristique est substi-
tutive primitive si et seulement si son angle est un nombre quadratique.

La méthode basée sur l’étude des mots de retour, développée pour démontrer la proposition 1.7.6,
pourrait également se généraliser au cas de linduction de Rauzy pour les échanges de n intervalles.

1.8 Application

Nous allons maintenant établir une version précisée du théoreme 1.7.8 que nous utilisons dans
[2] pour obtenir des résultats sur la répartition des suites (na),ecn. Nous déduirons alors d’un de
ces résultats une propriété de déséquilibre pour les codages de rotations étudiés au paragraphe 1.7.

1.8.1 Application a la répartition des suites (na),en

Le théoréme suivant représente d’une certaine facon une syntheése de I'étude que nous avons
menée sur les codages de rotations non dégénérés. Il montre que lorsque les parametres d’un codage
de rotation non dégénéré appartiennent & un méme corps quadratique, des phénomenes d’autosi-
milarité interviennent dans ce codage. Il permet ainsi d’établir le bon cadre d’étude du probleme
de répartition des suites (na)pen que nous traitons dans [2].

Théoréeme 1.8.1. Soit U un codage de rotation non dégénéré de paramétres («, 3). Supposons que
a et B appartiennent a un méme corps quadratique, alors :

si a < B (respectivement o > f3), il existe un morphisme de monoide libre ¢ de {1,2,3}" wers
{a,b}N et une substitution & sur {1,2,3} tels que :

U = ¢(X¢) (respectivement U = aS($(X¢)),

ot X¢ = limy, 00 £"(1) est point fize non périodique de & et S désigne le shift usuel sur {a, b,
De plus, dans les deux cas, & vérifie :

i) & est une substitution primitive, (1) commence par 1 et |£(1)] > 2,

i) la matrice d’incidence de & admet trois valeurs propres simples réelles 6, 1 et %, avec 0 > 1.

Démonstration. Nous avons vu dans la démonstration de la proposition 1.7.4 que si a < 3, il existe
un morphisme de monoide libre ¢ de {1,2,3}" vers {a,b}" et une substitution primitive & sur
{1,2,3}N tels que :

U = ¢(X)
ot X¢ = limy, 50 (1) est point fixe non périodique de &. De plus, £ est une substitution primitive
telle que (1) commence par 1 et |£(1)] > 2.
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Lorsque a > f3, nous rappelons que 'équation (1.3) entraine que U = aS(V), ou V est le
codage de rotation de parametres (1 — o, 1 — /). Ainsi, V = ¢(X¢), ol ¢ et X¢ sont donnés comme
précédemment car 1 —« > 1 — . Finalement, on obtient que V' = ¢'(X¢), ol ¢’ est un morphisme
de monoide libre de {1,2,3}" vers {a, b}", puisque Papplication — est également un morphisme de
monoide libre.

Démontrons a présent la partie ii) du théoreme. Notons M la matrice d’incidence de la sub-
stitution £. Le polynome caractéristique de My, Py, (t), est de degré trois et a coefficients dans Z,
car Mg € M3(N). Il existe donc trois entiers relatifs a, b et c tels que Py, (t) = —t3 4+ at®> + bt +c.
Dans la preuve de la proposition 1.7.4, nous avons introduit des matrices Ay, et By et montré que la
matrice M¢ est obtenue comme produit de matrices de cette forme. Comme pour tout entier &, le
déterminant des matrices Ay, et By est égal a 1, le déterminant de la matrice M est lui aussi égal a
L. Ainsi Py, (t) = —t3 4+ at? + bt + 1. Or, il est facile de vérifier que pour tout entier k, les matrices

1
Ay, et By, admettent le vecteur | —1 | comme point fixe et ainsi 1 est valeur propre de M. Il vient
1
donc Py, (1) =0, d’olt @ = —b. Finalement Py, (t) = —t3 4+ at? — at + 1, avec a € Z. Le polynome
Py, est donc un polynéme réciproque a coefficients dans Z et admettant 1 comme racine. Comme
de plus M, est une matrice primitive positive, d’apres le théoreme de Perron-Frobenius, une des
valeurs propres de M; est réelle positive et domine strictement toutes les autres en module; notons
la 0. 11 suit que M admet trois valeurs propres réelles disctinctes (et donc simples) 6, 1 et %. ]

Le fait que, dans le théoreme 1.8.1, 1 soit valeur propre de la matrice d’incidence de la sub-
stitution & est capital pour I'obtention des résultats que nous exposons dans la suite. Bien qu’il
existe des arguments géométriques profonds pour le justifier (voir [245]), il est intéressant d’en ob-
tenir une démonstration matricielle élémentaire. Celle que nous donnons dans cette preuve utilise
le fait que les matrices Ay et B ont un point fixe commun, ce qui n’est pas le cas des matrices A;,
i€ {1,2,3,4}. Ainsi, comme pour la preuve de la primitivité de la substitution &, notre algorithme
multiplicatif d’induction permet 'obtention d’une preuve naturelle et simple. A 1’aide notamment
du théoreme 1.8.1, nous montrons dans [2] le résultat suivant :

Théoréme 1.8.2. Considérons un couple (o, 3) € [0,1[> tel que o soit un nombre irrationnel et
B &€ 7+ aZ. Supposons de plus que a et B appartiennent a un méme corps quadratique, il existe
alors une constante c strictement positive telle que :

N-1

> (xw,s({nat) — B)| > clog N,

n=0
pour une infinité d’entiers N.

La démonstration de ce théoréme est basée sur 1'utilisation du théoreme 1.8.1 et d’un systeme
de numération généralisé associé a un point fixe de substitution, introduit par J.-M. Dumont et A.
Thomas [92] et G. Rauzy [205]. Ce résultat est & rapprocher de celui de V. T. Sés [232], que nous
rappelons ici :

Théoréme 1.8.3 (S6s [232]). Soit & un nombre irrationnel. Il existe une constante c, strictement

positive et indépendante de «, telle que pour presque tout B au sens de la mesure de Lebesgue sur

10,1, on ait :
N-1

> (Xpsi({na}) = B)| > clog N,

n=0

pour une infinité d’entiers N.
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D’apres un résultat de H. Kesten [146], notons que pour tout « irrationnel et 8 € Z + oZ la

suite (Zﬁ;ol (x70,51({nec}) — ﬁ))neN* est bornée.

1.8.2 Propriété de déséquilibre pour les codages de rotations non dégénérés

Nous allons & présent utiliser le théoreme 1.8.2 pour prouver que le langage de certains codages
de rotations non dégénérés est assez irrégulier en un sens que nous précisons.

Définition 1.8.4. Considérons un alphabet fini A et un mot infini w, w € AN. On dit que w est
C-équilibre si :

Vie A, V(v,w) € L(w), |v]| =|w|=>—-C < |v]; —|w|; <C.
On dit que w est équilibré lorsque w est 1-équilibré.

Les suites équilibrées apériodiques sur un alphabet binaire ont été caractérisées par E. M. Coven
et G. A. Hedlund [68], ce sont les suites sturmiennes. Une généralisation de ce résultat au cas d'un
alphabet fini quelconque est donnée par P. Hubert [135] qui utilise un résultat de R. L. Graham
[122]. Un théoreme de H. Kesten [146] implique que la condition § € Z + aZ est équivalente au
fait que le codage de rotation de parametres (o, 3) est c-équilibré, pour un certain ¢. Dans le
méme esprit, les auteurs de [63] exhibent des suites d’Arnoux-Rauzy qui ne sont pas des codages
naturels de rotations bi-dimensionnelles (au sens de [23]) en montrant qu’elles ne satisfont pas a
la propriété de c-équilibre (pour aucun c). Dans [41], V. Berthé et R. Tijdeman introduisent une
mesure d’équilibre pour des suites multi-dimensionnelles dont une version unidimensionnelle est
donnée par la définition suivante :

Définition 1.8.5. Etant donnée une suite U définie sur un alphabet fini A, on définit la fonction
d’équilibre de U de la fagon suivante :

By(n) = max max wlg — |w' .
v(n) = max o BX {[lwla = |w'la|}

Ainsi une suite est c-équilibrée si et seulement si sa fonction d’équilibre est majorée par c.
Notamment, lorsque 8 ¢ Z + aZ, la fonction d’équilibre du codage de rotation de parametres (a, )
n’est pas bornée. Nous allons a présent préciser ce résultat.
Théoréme 1.8.6. Soit U un codage de rotation non dégénéré de paramétres (o, 3). Supposons
que « et B appartiennent a un meéme corps quadratique, il existe alors une constante c strictement
positive telle que :

By (N) > clog N,

pour une infinité d’entiers N.

Démonstration. Considérons c un réel strictement positif vérifiant les hypotheses du théoreme 1.8.2.

I1 vient alors :
N—1

> (xpsi{nal) = B)| > clog N,

n=0

pour une infinité d’entiers N. Ceci implique, d’apres la définition 1.2.1, que :
||lUn|a — NB| > clog N pour une infinité d’entiers N, (1.7)

ou Uy = upuy ... un—_1 désigne le préfixe de longueur N de U.
Raisonnons par I'absurde en supposant que :

dNy € N tel que Vn > Ny, By(n) < clogn. (1.8)
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Pour tout k£ > Ny, notons wg, wi € Lx(U), un mot vérifiant :
Vw € Li(U), |w|qg > |wkla-
Alors, pour n > Ny, [ > Ny et w € L,;(U), il vient d’apres (1.8) :
0 < [wla — lwnla < I(clogn)

et
0 < [wlo — nlwla < n(clogl).

En soustrayant, on obtient :
—n(clogl) < nlwila — lwala < U(clogn),
puis

_clogl < lwila  |wala < Clogn‘
=1 n T n

La suite (%) N est donc une suite de Cauchy. Il existe ainsi un réel A, limite de cette suite,
ne

vérifiant :

1
< o8

|wn|a
n n

0<A— (1.9)

Souvenons-nous que I’équation (1.8) entraine, pour n > Ny :
0 < |Unla — |wnla < clogn,

c’est-a-dire
0< Unla  |wnla < Clogn‘

n n n

En retranchant 1’équation (1.9), il suit :

< |Unla -2 < Clogn‘

n n n

logn

—C

La suite (%) converge donc vers A. Mais 1’équirépartition modulo 1 de la suite (na)pen
n

implique alors que A = . Finalement, on obtient :
anN(]a ||Un|a—’I’LB| SCIOg’I’L,
ce qui contredit 'équation (1.7). O

Dans ce paragraphe nous avons obtenu des propriétés arithmétiques et combinatoires pour
certains codages de rotations non dégénérés. La comparaison de ces résultats aux différentes tra-
ductions que nous avons données, dans ce méme paragraphe, du théoreme de H. Kesten [146],
met en évidence la différence des comportements arithmétiques et combinatoires des codages de
rotations suivant que leurs parametres («, ) vérifient ou non 8 € Z + oZ.
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1.9 Quelques remarques et compléments sur ’article

Nous avons montré comment associer a un échange de trois intervalles ou & un codage de
rotation, un développement (an,%,),>0 qui permet de décrire certaines de leurs propriétés (voir
paragraphe 1.5). Nous verrons dans la suite, aux chapitres 5, 6 et 7, qu’il peut s’avérer tres utile
de suivre la démarche inverse, & savoir, considérer dans un premier temps une suite (ay, i,) ayant
telle ou telle propriété, puis en déduire un résultat sur les échanges d’intervalles ou les codages de
rotations associés. Mais existe-t-il toujours un codage de rotation associé et au quel cas combien
peut-on en trouver 7 Nous allons & présent étudier cette problématique.

Définition 1.9.1. Une suite (an, in)n>0, an € N, i, € {0,1}, est dite admissible si la suite (ay)n>0
n’est pas nulle & partir d’un certain rang et si la suite (in)n>0 n'est pas constante a partir d’un
certain rang.

Proposition 1.9.2. Soit (ay,in)n>0 une suite admissible, alors il existe un unique échange d’in-
tervalle, ¢ homothétie preés, telle que le développement D associé a cet échange soit (ay,iy). De plus
cet échange d’intervalles satisfait d la condition 1.D.0.C.

N

Démonstration. Considérons une suite admissible (a,,iy)n>0. On peut associer &
produit infini de matrices
+00
in Rl—i
I Az.8..
n=0

ou les matrices Ay et By ont été introduites au paragraphe 1.7. Alors il existe au moins un échange
de trois intervalles dont le développement D est égal & (ay,i,). En effet, si

A3 =A{(z,y,2) Ry, z+y+2z=1},

cette suite le

la suite
(H Azn Bl zn> ( )

est une suite décroissante d’ensembles fermés non vides. L’intersection de ces ensembles est donc
non vide. I1 suffit alors de considérer un échange de trois intervalles défini par n’importe quel élément
de cette intersection. La suite (a,,in)n>0 étant admissible, on vérifie aisément qu’un tel échange
d’intervalles satisfait nécessairement & la condition I.D.O.C. (la définition de I'admissibilité a été
congue pour cela). Plus précisément, pour un échange de trois intervalles T' ne satisfaisant pas & la
condition I.D.O.C., il existe un intervalle admissible tel que I'induit de I’échange sur cet intervalle
soit un échange de deux intervalles (ou de facon équivalente, un échange de trois intervalles dont
une longueur est nulle). Ceci entraine justement que si

—+o0
Te (H Af:;BM) (As),
n=0

alors la suite (ay,in)n>0 n'est pas admissible.

Considérons a présent un échange d’intervalles 7" dont le développement D est (an,%,)n>0. Un
résultat de W. Veech (Lemme 1.7 dans [244]) implique que le nombre de mesures de probabilité
ergodiques distinctes pour I’échange T est égal a la dimension de I’ensemble limite

+o0
S(T) = (H AZZBini") (Asz).
n=0
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Comme tout échange de trois intervalles est uniquement ergodique (ce sont des induits de rotations
uniquement ergodiques), on obtient que la dimension de S(T') est égale & un. Ainsi, T est unique a
homothétie pres. O

Nous pouvons également préciser la proposition 1.3.5, en donnant le résultat suivant.

Proposition 1.9.3. Soient T = (X;(321)) un échange de trois intervalles et k un entier. Alors
il existe un unique couple (o, 8), a < B, tel que Uapplication de premier retour de la rotation R,
sur Uintervalle [0, B[, notée P g/(Rq), soit un échange de trois intervalles homothétique a T, et

2=k

Démonstration. La preuve de l'existence est analogue & celle de la proposition 1.3.5.

Soit T' = ((I1,12,13);321) un échange de trois intervalles et k& un entier. Considérons I’échange
de quatre intervalles T} = ((I1, o, I, (k + 1)l5 + ki3); (3412)), puis I’échange T} normalisé, noté T7,
défini par la permutation (3412) et le vecteur :

ll l2 l3 lZ
<ll+(k‘-’-l)lZ—’—k‘lg’ll+(k‘—i-l)lQ+k‘lg’ll+(k‘-i-l)lQ+k‘lg’ll+(k‘+1)12+k‘lg> '

— la+l3 — li+lo+1s : o -8 _—
Posons alors @ = PERCES)TIRNTA et f§ = T ()l Rl On obtient aisément que |—=] = k.

Considérons alors la rotation de parametres («, 3). L’application de premier retour associée a cette
rotation, sur l'intervalle [0, 3], Pg‘, est ’échange de trois intervalles suivant :

I Iy Iy
P R,) = - (321 .
0,5 (Ba) (<11+212+13’11+(k+1)12+kl3’11+(k+1)12+k13>’( )>

Ainsi, P[o,ﬁ[(Ra) ~T.

Pour démontrer 'unicité du couple («, 3), supposons qu’il existe deux couples (a, 8) et (o, 5')
vérifiant les conditions précédentes. Nous avons déja remarqué au paragraphe 1.3 que 'application
Py g1(Ra) est alors homothétique a I’échange de trois intervalles normalisé suivant :

. ((ﬁ;a,l—kg—ﬁ,ﬁJr(k—;l)a—l);(321)>

et que ’application P[O,ﬂ/[(Ra/) est homothétique a ’échange de trois intervalles normalisé :

T = ((ﬁ,_al,Pkal_ﬁl,ﬁlﬂkﬂ)a,_l) ;(321)).

g g g
Comme par hypothese Py gi(Ra) et Py g{(Rqy) sont homothétiques, il vient 7' = T". On en déduit
alors facilement que o = o' et 8 = 3. O

Nous pouvons alors en déduire la proposition suivante.

Proposition 1.9.4. Soient (ay,in)n>0 une suite admissible et k un entier, alors il existe un unique
codage de rotation de paramétres admissibles (a, B) (voir définition 1.2.1), dont le développement
D est (ap,iy) et tel que L%J =k.

Démonstration. La preuve découle des deux propositions précédentes. O
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Chapitre 2

Répartition des suites (na),,>q et
substitutions

Dans ce chapitre nous utilisons les résultats démontrés précédemment pour étudier la répartition
des rotations quadratiques du tore de dimension un. Ce chapitre a fait 'objet d’un article accepté
pour publication dans la revue Acta Arithmetica.

2.1 Introduction

I1 est connu depuis les travaux de H. Weyl [249], P. Bohl [46] et W. Sierpinski [226, 227], que la
suite (na)pen est équirépartie modulo 1 si et seulement si « est irrationnel. Etant donné un nombre
irrationnel «, a € [0, 1], on définit la discrépance a Porigine de la suite (na)pen par :

N-1
Dy(a) = BSGI[BI’)I[ nz% (xp,81({na}) — B)].

Cette quantité mesure la déviation de la suite (na),cn par rapport & une répartition idéale. (Ici
{z} =z — |x] désigne la partie fractionaire de z.) De nombreux auteurs ont étudié D} (a) pour «
irrationnel, notamment pour les plus récents citons : C. Baxa [25, 26], C. Baxa et J. Schoissengeier
[27], Y. Dupain [95], Y. Dupain et V. T. Sé6s [97], J. Lesca [158], L. Ramshaw [198], H. Niederreiter
[179], J. Schoissengeier [217, 218], V. T Sés [232]. De nombreuses références complémentaires pour-
ront étre trouvées dans 'ouvrage de L. Kuipers et H. Niederreiter [152] et plus récemment dans
celui de M. Drmota et R. F. Tichy [89].
Si B € [0, 1], on définit également la quantité

N-1

Ax(e,8) =Y (xpa({na}) = B)|,

n=0

que nous appellerons discrépance locale & 1'origine de la suite (na),en en (. Les principaux résultats
concernant ’étude de la discrépance locale des suites (na),cn ont été obtenus par H. Kesten [146],
Y. Dupain [94], Y. Dupain et V. T. Sés [96]. Plus récemment C. Pinner [192, 193], a obtenu des
résultats similaires en étudiant certaines sommes liées & la discrépance des suites (na)pen. Notons
que :

Dy (a) = sup (Ax(a,B)).
Belo,1]
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De facon générale, les résultats de discrépance sur les suites (na),en ont été obtenus en utilisant
le développement en fractions continues du nombre « et des systémes de numérations directement
issus de ce développement, comme le systéme de numération d’Ostrowski [186].

Notre but est d’étudier le comportement asymptotique de A} (e, 3) lorsque a est un nombre
quadratique et 5 € Q(«). Pour cela, nous n’utilisons pas les systéemes de numérations classiques
évoqués précédemment. Nous basons notre travail sur I’étude, menée dans [5], d’'une classe parti-
culiére de suites symboliques définies sur un alphabet binaire. Dans le paragraphe 2.4, nous intro-
duisons un systéme de numération généralisé associé a une substitution, introduit par G. Rauzy
[205], J-M. Dumont et A. Thomas [92]. Cet outil est fondamental pour notre étude, il remplace en
quelque sorte le systéme de numération d’Ostrowski utilisé habituellement.

Le travail que nous présentons ici est fondé sur une idée introduite, & travers un exemple, par
G. Rauzy [203, 205]. Un des intéréts de cette nouvelle approche est d’obtenir ultérieurement des
résultats de répartition pour des suites multi-dimensionnelles. En effet, ’absence de bon équivalent
multi-dimensionnel au développement en fractions continues constitue un frein important a la
compréhension des suites de Kronecker par des méthodes généralisant directement celles utilisées
usuellement en dimension 1. De plus, les seuls exemples connus d’ensembles non triviaux & restes
bornés pour les suites de Kronecker sont obtenus & l'aide du systeme de numération que nous
utilisons au paragraphe 2.4. Ces ensembles sont a frontiere fractale et possedent de nombreuses
propriétés géométriques, ergodiques et combinatoires. Le plus célebre d’entre eux est étudié par G.
Rauzy [202], il est connu sous le nom de fractal de Rauzy.

2.2 Résultats et notations

Considérons un couple («a, 8), (o, B) € [0,1[2 et a € Q. Introduisons la quantité suivante :
N—1
whi(e, 8) =Y (xpa({na}) = B).
n=0
Alors :
A (e, B) = |wy(a, B)|.
L’intervalle [0, B[ sera dit & restes majorés (respectivement minorés) si la suite (w3 (c, B))nen est
majorée (respectivement minorée). Il sera dit & restes bornés s’il est & la fois & restes majorés et
a restes minorés, ce qui revient a dire que la suite (A% (o, 3))nen est bornée. Il est déja connu,
d’apres un résultat de H. Kesten [146], que la suite (A% (o, 5))nen est bornée si et seulement si
B EZ+ al.
Dans le paragraphe 2.5, nous démontrons les résultats suivants :

Théoreme 1  Soit (o, 8) € [0,1[%, tel que a soit un nombre quadratique et B € Q(a). Nous
exhibons un algorithme calculant les quantités :

logn

lim sup,, .,

wit (o,8)
logn

lim inf,,

An(a,f)

logn

et limsup,_, .

De plus, lintervalle [0, 8] est a restes majorés (respectivement minorés) pour la suite (na)pen si et

+ +
seulement st limsup,,_, o, % =0 (respectivement lim inf,,_, w’fo(gf) =0).
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Corollaire  Considérons un couple (o, ) € [0,1[% pour lequel o désigne un nombre irrationnel
quadratique, B € Q() et B & 7+ aZ. Il existe alors une constante ¢ strictement positive, calculable
explicitement, telle que :

Al (o, B)

log N > 6

pour une infinité d’entiers N.

Rappelons que V. T. Sés [232] a montré que la conclusion du corollaire précédent est en fait vérifiée
par presque tout 3 au sens de la mesure de Lebesgue sur |0, 1[. Nous proposons donc une réalisation
effective, pour certains 3, du résultat métrique de V. T. Sés.

Dans le paragraphe 2.6, nous obtenons également, en appliquant notre méthode dans le cas d’un
exemple précis, le résultat suivant :

D* V3-1 A* \/§,1’ 1
lim sup M = lim sup M
n—00 logn n— oo log n

2.3 Liens entre problemes de répartition et suites symboliques

Etant donné un nombre irrationnel a, o € [0,1[, nous nous intéressons aux problemes de
répartition de la suite (na),en par rapport & un intervalle [0, 5[, ou 8 € [0, 1[. Plus précisément, nous
cherchons & comprendre le comportement asymptotique des quantités wy; (e, B) et donc A% («, B),
introduites aux paragraphes 2.1 et 2.2. Nous montrons, dans ce paragraphe, que cette étude est
intimement liée & la bonne compréhension de certaines suites symbolique. Nous exhibons parmi ces
suites symboliques celles faisant intervenir des phénomeénes d’autosimilarité.

Considérons donc un couple (a, 3) € [0,1[%, a ¢ Q. Introduisons alors la suite U = (uy)nen
définie sur 'alphabet binaire {a, b} par :

a si{na} €[0,f],

n = ) (2.1)
b sinon.

Cette suite symbolique contient exactement ’information nécessaire et suffisante pour évaluer les

quantités que nous désirons étudier. En effet, ’égalité suivante est vérifiée :

N-1

> (xp{na}) = B) = |uous ... un—1]a — NB.

n=0

Remarquons que le codage U de la suite (na),cy doit étre vu comme une opération de simplification,
en ce sens qu’il parait plus aisé d’étudier une suite définie sur un alphabet fini qu'une suite a
valeurs dans l'intervalle [0, 1[. Nous devons donc & présent comprendre I’évolution du nombre de
a apparaissant dans un préfixe arbitraire de U. Lorsque la suite U fait intervenir des phénomenes
d’autosimilarité, c’est-a-dire si U est liée & un point fixe de substitution, nous verrons au paragraphe
2.4 qu’il existe un outil puissant pour mener cette étude.

Nous avons précédemment montré le résultat suivant :

Théoréme 2.3.1 ([5]). Soit (o, 8) € [0,1[%, un couple tel que a soit un nombre quadratique,
B€Q), BEL+ al et U la suite définie sur l’alphabet {a,b} & partir du couple (c,3), comme
en (2.1). Alors :
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si a < B (respectivement o > f3), il existe un morphisme de monoide libre ¢ de {1,2,3} wers
{a,b}" et une substitution & sur {1,2,3}" tels que :

U = ¢(X¢) (respectivement U = aS($(X¢)),

ot X¢ = limy, o0 £"(1) est point fize non périodique de & et S désigne le shift usuel sur {a, b,
De plus, dans les deux cas, & vérifie :

i) & est une substitution primitive, (1) commence par 1 et |£(1)] > 2,

i) la matrice d’incidence de & admet trois valeurs propres simples réelles 6, 1 et %, avec 0 > 1.

Dans [5], nous remarquons qu’une suite U associée & un couple («, ) comme en (2.1) est
intimement liée & un échange de trois intervalles. Nous montrons, par un raisonnement d’induction,
qu’il est possible d’obtenir cette suite en itérant quatre substitutions définies sur alphabet {1, 2, 3}
& partir de la lettre 1 puis en projetant la suite ainsi obtenue & 1’aide d’un morphisme de monoide
libre de {1,2,3}* vers {a,b}*. L’ordre d’itération des substitutions est déterminé par un algorithme
de type “fractions continues” développant les parametres « et 5. Nous montrons que cet algorithme
vérifie un théoréme de type Lagrange, le développement associé au couple («, 3) étant ultimement
périodique si et seulement si « et 8 appartiennent & un méme corps quadratique . Les conditions
imposées sur les parametres («, 3) dans le théoréme précédent sont donc équivalentes au fait que le
développement de type “fractions continues” associé aux parametres soit ultimement périodique.
Notons que ce développement nous permet de déterminer les applications ¢, £ (et donc la valeur
de €) introduites dans le théoreme 2.3.1.

Dans toute la suite les couples (a,3) considérés vérifieront les hypothéses du
théoreme 2.3.1.

Supposons que a < 3. D’apres le théoréeme 2.3.1, la suite U est alors obtenue comme image du
point fixe de la substitution £ par la projection ¢. Soit U,, = uguy ... u,_1 le préfixe de longueur n
de la suite U. Si X}, = wowy ... 711 désigne le préfixe de longueur k de la suite X, il existe alors
un unique entier N, tel que ¢(zozy ... znN, 1) soit un préfixe de upuy ... up—1 et uguy ... up_1 SOit
un préfixe strict de ¢p(zoz;...zN,).

Posons :
Sp(U) = #4{0 < k < n,u :a}+%#{0§k<n,uk:b}.
Alors : (0. f)
wi (a,
="

4

Ainsi, en associant respectivement les “poids” 1 et % aux lettres a et b, le poids S, (U) du préfixe
de longueur n de la suite U est un multiple de w;' (a, 8). Nous allons maintenant montrer qu’en
associant les “bons poids” aux lettres 1, 2 et 3, les poids des préfixes du point fixe de la substitution
¢ nous renseigneront sur w, («, 3). Cette étape nous permettra de travailler directement avec la
suite X¢ et d’oublier ensuite la projection ¢. Pour cela, nous introduisons I'application f définie de
{1,2,3} dans R par :

£G) = 190)a + 57100 pour i € {1,2.3). 2:2)

Sim € {1,2,3}*, on pose

sOmy =1, sim=e,
>j—1flaj) sim=aias...a, a; € {1,2,3}.
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Alors, comme 8 —1<0:

S (Xn,)+ o P Sp(U) < SV (Xy,) +C,

g—1
ou C' = max{|¢p(1)|,|4(2)],]4(3)|}. On obtient donc :
(1= 8D (Xy,) - CF <wf(e.p) < (1-pSV(Xn,) +C(1-p)

et ainsi

wy (e, B) = (1 — B)SYV(Xy,) + O(1). (2.3)

On remarquera de plus que N, <n < C(N,, + 1), et du fait que la suite (IV,),en prend toutes les
valeurs entieres, nous pouvons déduire les égalités suivantes :

+ (f) (f)
limsupM =(1-8) 1imsupw =(1-8) 1imsupw (2.4)
n— 00 log n n— 00 log Ny, n—00 log n
et
+ (£ (f)
i inf P 1 - gy i ing S ENa) (g gyl e S Kn) (2.5)
n—oo  logmn n—oo  log N, n—oo  logn

D’apres [179] les quantités introduites dans les deux équations précédentes sont finies dés que « est
a quotients partiels bornés, ce qui est bien siir le cas lorsque « est quadratique.

Remarque 2.3.2. Le théoréme 2.3.1 implique que les égalités (2.3), (2.4) et (2.5) sont vérifiées
méme si o > 3.

Il est déja connu, d’aprés un résultat de H. Kesten [146], que la suite (A% (o, B))nen est bornée
st et seulement si B € Z + aZ. C’est pourquoi, il ne faut pas voir la condition B & 7 + aZ. comme
trop restrictive pour notre étude.

D’aprés équation 2.3, Uintervalle [0, B[ est un intervalle & restes majorés (respectivement mi-
norés) pour la suite (na)pen si et seulement si la suite (SU)(X,))nen est majorée (respectivement
minorée).

2.4 Systemes de numération généralisés et substitutions

Nous voila ainsi conduits & évaluer une somme liée & un point fixe de substitution primitive.
Pour cela, nous allons utiliser un systéme de numération associé a la substitution £- Ce systéme est
introduit par J. M. Dumont et A. Thomas [92] sous une forme classique. Dans [205], G. Rauzy en
donne une version plus visuelle a ’aide de "automate des préfixes. C’est ce point de vue que nous
avons choisi d’adopter.

Définition 2.4.1. Considérons une substitution o sur un alphabet A. Le sous ensemble de A*
formé des préfixes stricts des images par o des éléments de A sera noté Pref ou Pref, si une
confusion est possible. L’automate des préfixes associé a la substitution o est défini par :
— A est ’ensemble des états de 'automate,
— Pref est ’ensemble des étiquettes,
— il existe une fleche de ’état a vers l’état b étiquetée par le mot m
st mb est un préfize de o(a).
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e i::>]3J32

] 1,1322

U 1.132

Fic. 2.1 — Exemple d’automate des préfixes dans le cas de la substitution 1 ——— 13,2 +——
13223,3 — 1323.

Définition 2.4.2. Un chemin étiqueté C reconnaissable par l'automate des préfizes associé a o
sera noté sous la forme

(0,91, Eo), (i1,92, E1)y - . ., (in—1,in, En_1)),

ij € A pour 0 <j<n, Ej € Pref, pour 0 < j <n—1. L’entier n désigne la longueur du chemin.
On appellera suite des états associée au chemin C la suite (ig,i1,...,1,) et suite des étiquettes
associée au chemin C la suite (Eg, E1, ..., Fp_1).

L’ensemble des chemins étiquetés de longueur n reconnaissables par l'automate des préfizes associé
a o sera noté CJ}.

On appellera chemin reconnaissable par l'automate des préfizes associ€ a o, une suite (ig,i1,...,ip),
ij € A pour 0 < j < n, pour laquelle il existe un chemin étiqueté reconnaissable par l'automate des
préfizes associé a o dont la suite des états est (ig, i1, ..., in).

Le principal théoréme concernant I’automate des préfixes associé & un point fixe de substitution
est le suivant :

Théoréme 2.4.3 (Dumont et Thomas [92], Rauzy [205]). Conservons les notations de la
définition 2.4.1 et supposons de plus qu’il existe a € A tel que o(a) commence par a et |o(a)| > 2.
Notons alors X, l'unique point fize de o commengant par a.
i) Pour tout entier N, il existe un unique chemin étiqueté reconnaissable par ’automate des
préfizes associé o Xy, partant de a et étiqueté par la suite (Eo, Ey...Ey) tel que Ey # € et
Xy =0"(Ey)o™ Y (Ey) ... E,, ou Xn désigne le préfize de longueur N de la suite X,.
i) Inversement, o un tel chemin correspond un unique préfize non vide de X, donné par la formule
précédente.
iii) De plus, |0™(a)| < N < |o"*(a)].

Revenons pour U'instant & notre substitution £. Pour m € {1,2,3}*, notons L(m) = (|m|;)1<i<3-
Alors

L(&(m)) = Mg(L(m)).

Donc, si i et j sont fixés dans {1,2,3}, la suite (|€"(5)|i)nen vérifie une relation de récurrence dont
les coefficients sont ceux du polynome minimal de M. Ainsi il existe des reéls A; ;, )\;,j et )\;’ ; tels
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que pour tout entier n :

1
€ ()i = Xigf" + Xij + A5 (5)" (2.6)

car, d’apres le théoreme 2.3.1, My admet trois valeurs propres simples réelles qui sont ¢, 1 et %,
avec 6 > 1. De plus, ces coefficients sont déterminés par la relation :

i 111\ G
Njp =16 1 3 €)1
N 02 1 (})? 1€2()];

Par primitivité de ¢, la suite positive (|¢"(4)|i)nen est non bornée. On a donc A;; > 0. D’apres

(2.6), il vient
3 3 3 1\"
) = (Z m) o+ (Z A;,]) v (Z A;',]) (5) 2.7
=1 =1 =1

DEn() =S €M G)af ()
= (S s f @) 0+ (S0 N G0)
+ (X NG EG@)) ()

et

D’apres 1’équation (2.7), on obtient :

Den) = (S xigf() (6"@)!(2 - A?)AZ(]Z)Z IA;'])@)TL)

i=1

F LN+ (S 16) (G

Or, de I’équirépartition uniforme des suites (z + na)pen pour z € [0, 1], on déduit aisément que
pour tout j € {1,2,3}
L s0En))
im ———
n—oo  |€7 (7))

11 suit que, pour tout j € {1,2,3}, (Zf 1 ,Jf()) =

Ainsi SU)( (ZA ) (ZA > % Finalement, pour tout j € {1,2,3}, il

X (i) X7(5)
existe deux nombres réels calculables explicitement, \'(j) et \’(j), tels que pour tout entier n on
ait :

=0.

. . 1
DEr() = N@) + A" (2.8)
Posons maintenant pour m € {1,2,3}* :
0 sim = e,
)\'(m) = k , . o
ijl)\(aj) sim=aaz...a;, a; € {1,2,3},

et

" 0 sim=c¢,
A'(m) = p .
Z] (AN(aj) sim=aiaz...a a; € {1,2,3}.
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Pour tout (i,5) € {1,2,3}? tel que la suite (i,5) est un chemin reconnaissable par 'automate des
préfixes associé a &, on pose :

My; j = max {X'(E), ou (i,j,E) € C¢ }
et

my(

y =min {N(E), ot (i,j,E) € C} } .

Nous allons a présent introduire deux nouveaux automates associés a la substitution ¢ et construits
& partir de automate des préfixes associé a &.

()

Définition 2.4.4. Nous appellerons Ay,qqz¢ associé a X¢, Uautomate défini par :

— {1,2,3} est l’ensemble des états de l’automate,

— lensemble des étiqueltes est formé des nombres M ; ;) introduits
ci-dessus,

— il existe une fleche de I’état i vers I’état j, s’il existe m € Pref tel
que mj soit un préfize de £(i) ; cette fleche est alors étiquetée par le
mot M; jy.

Définition 2.4.5. Nous appellerons Ayine associé a X¢, 'automate défini par :

— {1,2,3} est l’ensemble des états de l’automate,

— lensemble des étiqueltes est formé des nombres m; ;) introduits
ci-dessus,

— il existe une fleche de I’état i vers I’état j, s’il existe m € Pref tel
que mj soit un préfize de £(i) ; cette fleche est alors étiquetée par le
mot my; jy.

Remarque 2.4.6. Par construction de Apaze et Aming, on est assuré que les ensembles des che-
mins (non étiquetés) reconnaissables par chacun des trois automates que nous avons définis sont
identiques. En fait Apoge et Apine peuvent étre vus comme deux “sous-automates” de 'automate
des préfizes associé a &, en ce sens que tout chemin (non étiqueté) reconnaissable par l'un de ces
deuz automates est un chemin (non étiqueté) reconnaissable par l'automate des préfizes associé a
¢.

On peut remarquer que dans les deux automates définis précédemment, une fleche de I’état i vers
I'état j est nécessairement étiquetée par le nombre M(; ;) dans le premier automate et m; ;) dans le
second. Nous pourrons donc confondre les notions de chemin et de chemin étiqueté reconnaissable
par ces automates. On notera ainsi (ig,41,...,%,), pour chacun de ces deux automates, I'unique
chemin (étiqueté) de longueur n dont la suite des états est (ig,%1,...,%,). Compte tenu de cette
nouvelle notation et de la remarque 2.4.6, nous pouvons définir les deux quantités suivantes pour
tout chemin (ig,71,...,0n41) € C?H :

n
Par(io, i1y - yint1) = g Mikyik+17
k=0
et

n
Pm(i[]ail,---ain+1) - g mik,ik+1'
k=0

Nous devons & présent définir une notion tres utile pour obtenir des résultats précis a ’aide de
ce type d’automates.
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Définition 2.4.7. Etant donné un automate dont I’ensemble des états est noté A, on appelle boucle
élémentaire tout chemin étiqueté reconnaissable par automate de la forme

((Z-Oaila EO)a rey (in—lain’En—l))a (Z-Oaila s 7Zn) € An+1’

satisfaisant les deux conditions suivantes :

-t =1n

—ik#ij,VOSj,k‘<n.

On notera EI 'ensemble des boucles élémentaires de [’automate.

Remarque 2.4.8. Comme les deuz automates, Amamg et Ammg, ne comportent que trois états
puisque & est définie sur un alphabet d trois lettres et que chacune de leurs fleches ne porte qu’une
seule étiquette, ils ne peuvent compter plus de 8 boucles élémentaires, a état de départ prés. Ces
boucles sont, si elles existent :

(1,1),(2,2),(3,3),(1,2,1),(1,3,1),(2,3,2),(1,2,3,1),(1,3,2,1).
Dans le cas de 'automate de la figure 2.1, les boucles élémentaires sont :

(1,1),(2,2),(3,3),(1,3,1),(2,3,2),(1,3,2,1).

2.5 Les principaux résultats

On introduit les quantités suivantes :

M:maX{P"'g(,F), B Eé’l},

m = min{PTé,f), B e El} ,

A = max{|M]|,|m|}.

Nous rappelons que 0 est la valeur propre dominante de la matrice d’incidence de ¢ introduite dans
le théoreme 2.3.1.

Théoreme 2.5.1. Avec les notations précédentes, les égalités suivantes sont vérifices :

wy (o, 8) _ (1-B)

li = M
lfznjgp logn logf '
+ 1—
nco  logn log 6
et A* )
N—s 00 logn log 0

Remarque 2.5.2. Soit (a,8) € [0,1[2, un couple tel que a soit un nombre quadratique, B € Q(«),
B & Z+ aZ. Le théoréeme 2.5.1 nous dit que l’on peut alors calculer algorithmiquement les quantités

wit (o,8)
logn ?

lim sup,,

wi (,8)
logn

lim inf,,

Ay (e,B)
logn

et limsup,_,

a laide de lalgorithme développé dans [5] qui, partant du développement ultimement périodique d’un
couple de paramétres («, [3), produit la substitution & et la projection ¢ définie dans le théoréme
2.8.1.
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Dans le lemme suivant, nous montrons que les poids Pys(ig,%1,...,0n) €t Pp(io,i1,...,0,) as-
sociés & un chemin (49,41, ...,i,) peuvent étre obtenus, & une constante pres indépendante de n,
en sommant des poids de boucles élémentaires. Ce résultat traduit simplement que, d’'une part, le
petit nombre d’états des automates contraint tout chemin & repasser régulierement par les mémes
états et donc & effectuer des boucles, et que d’autre part, I’addition des poids commute avec la
concaténation.

Lemme 2.5.3. I existe une constante C' > 0, telle que pour tout chemin reconnaissable par l’au-
tomate des préfives associé a X¢ dont la suite des états est (io,i1,...,1n), il existe (B, B, ..., By)
€ (E¥, k éventuellement nul, tels que :

i) |Parlioyin,.vin) = S0y Par(B)| < €,
i) ‘Pm(ig,il,...,in) — Sk PaB)| <,
iii) |n— S, |Bil| <2

Démonstration. Raisonnons par récurrence sur la longueur n du chemin. Introduisons la quantité
C" = 2max {max{|Pr (i, 5)|, |Pm (i, j)|}, (4,5) € {1,2,3}?}. Considérons un chemin de longueur 1,
(ip,i1). Alors |Pys(ig,i1) — 0] < C" et |Pp(ig,i1) — 0] < C'. La propriété est ainsi vérifiée pour
n = 1. De méme si (ip,%1,i2) désigne un chemin de longueur 2, | Py (ig,1,72) — 0| < |Par(io,91)] +
|Par(1,42)] < C" et |Pp(io,i1,12) — 0] < |Py(io,i1)| + |Pm(i1,i2)] < C'. De plus l'assertion 4i7) est
satisfaite puisque k est nul. La propriété est donc également vérifiée pour n = 2.

Supposons a présent que n > 3 et que la propriété est satisfaite pour tout chemin de longueur
strictement inférieure & n. Alors comme (ig,i1,...,4,) € {1,2,3}, on est assuré qu’il existe (I,h) €
{0,1,2,3}2, 1 < h, tel que 4; = ij. Nous pouvons alors poser k' = min {m, m > [, tel que i, = 4;}.
Ainsi (4, . .., i) est une boucle élémentaire et (ig,. .., %, %441, - - -, i) €st un chemin reconnaissable
par lautomate des préfixes associé a & dont la longueur est strictement inférieure a n. D’aprés
I’hypothese de récurrence, il existe (By, By, ..., By) € (€1)*, k pouvant étre éventuellement nul, tel
que :

k
PM(iﬂa---ailaih’—l—la"'7in) _ZPM(Bz) < Cla
=1

k
P (ioy .- iy ing1s - yin) = 3 Pm(Bi)| < C'
=1
et
k
(n— (' =1))=> |Bil| <1.
i=1
Or
PM(iOaila-"ain) :PM(iOa"'ailaih’+1a"'a7;n)+PM(ila"'aih')
et
Pm(i()aila"'ain) :Pm(i(]a---7il7ih’+17"'7in)+Pm(il7"'7ih’)'
Ainsi, en posant Bgy1 = (if,...,ip), il vient :
k+1

Puy(io,irs - -in) = > Pu(Bi)| < C',
i=1
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k+1
Po(ioy ity - .- yin ZP )<
et
k+1
n—> |Bi|| <1,
i=1
ce qui acheve la démonstration. O

Démonstration du théoréme 2.5.1. Considérons un entier N. D’apres le théoreme 2.4.3, il existe un
unique chemin reconnaissable par 'automate des préfixes associé a X¢, partant de 1, étiqueté par
(Eo, E1,...,Eny), Eo # ¢, et dont la suite des états est (ig,%1,...,0ny ), tel que :

N =E"W (B LB ... B,

N
On a donc N
N
SD(xn) =Y SU(EF( By 1))
k=0

Puis, d’apres I'équation (2.8)

ny ny 1
= Z A,(ERN—k) + Z X,(ETLN—/C)(E)k'
k=0 k=0

Puisque les E} appartiennent a I'ensemble fini Prefs et que 6 > 1, on peut en déduire que

SO (Xy) = gv: N(Eny—k) +O(1),
k=0

ou la constante dans le O est indépendante de N. Il vient alors :

Po(ioyit, ... iny) +O01) < SY(Xn) < Parlio,it, ... iny) + O(1).

D’apres le lemme 2.5.3, il existe des boucles élémentaires By, Bs, ..., By, tels que :
k k
> Pu(Bi) +0(1) < SV (Xy) <> Puy(Bi) + O(1).
i=1 i=1
D’ou
k | B;| k | B
P, (B; Py (B;
> Z (B) ) 4 o) < sV (xy) <> 1Y Ml; ) 4 o(1),
i=1 \j=1 | i=1 j=1 | 7,|
puis
k | B;| k | B;|
MDY m ] +0) <sPXy) <Y [ Y M) +0(). (2.9)
i=1 \j=1 i=1 \j=1

De plus, d’apres le iii) du théoreme 2.4.3, [€"V (1)] < N < |¢€"~*+1(1)]. Ceci implique notamment
que
log N

N log 6’

(2.10)
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et d’apres le i) du lemme 2.5.3

()
m < S (XN) < M

1).
logN — log0+0( )

On en déduit que :
S (Xy) M

i
ljffrl_?;p logN ~ log6
ot )
lim inf S KN) o _m

N—ooo logN ~ logh’

Finalement, d’apres les équations (2.4) et (2.5), il vient

f(e.8) _ M- p)

lim sup

Nooo logN = logh
et
lim inf N(a 5) m(1 — f)
N—ooo logN =  logh

Nous allons maintenant construire deux chemins optimisant les inégalités précédentes. Considé-
rons (ig,%1,...,Ip) € £l vérifiant

PA/[-(iO-,il,...-,ip) _u
|(’Lo,21,. .. ,’Lp)|
La primitivité de ¢ impliquant la récurrence de la suite X, 'automate des préfixes associé a £ est
fortement connexe. Il existe donc un chemin reconnaissable par 'automate des préfixes associé a
¢ partant de 1 et joignant ig. Notons ((ag, a1, Ey), (a1,a92, F1),. .., (aj—1,%, Ej—1)) un tel chemin
étiqueté, avec donc Ey # € et ap = 1. Pour tout entier k£, on considere le chemin étiqueté suivant :

((a0, a1, Eo), (a1,a2, E1), ..., (ai-1,%0, Ei—1) ,
(iovilv Mio,il)a ) (ip—laipa Mipq,ip)) .

~—
itéré k fois

Ce chemin de longueur [ 4+ kp est reconnaissable par 'automate des préfixes associé a &, commence
par 1 et vérifie Ey # . D’apres le ii) du théoréeme 2.4.3 et I’étude précédente, il existe un entier Ny,
tel que :

p—1
N(Xn,) Z,\/ +’fZMZm+1+O( ),
7=0
et de plus
log (V)
I+ k
(I +kp) log 0

Il vient ainsi

N(Xy,) Zx ) + kM| (ig, i1, - - - »ip)| + O(1)

et donc

N(Xn,) ZA’ )+ kpM + O(1).
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Finalement

S(f)(XNk) M

lim = .
k—o0 IOg(Nk) 10g0
En considérant un chemin (iy, i, ... ,i,) € £ vérifiant
Pl B, 1})
(i, s -+ )| ’

on construirait de facon analogue une suite de préfixe de X¢, (X N,’c)kEN vérifiant :

. s! (XN,;) m
lim = .
k—oo log(NV}) log 0

Ceci acheéve la démonstration d’apres les équations (2.4) et (2.5). O

Le corollaire suivant est & rapprocher des résultats obtenus par Y. Dupain et V. T. Sés [96] et
plus récemment par C. Pinner [193].

Corollaire 2.5.4. L’intervalle [0, [ est a restes majorés (respectivement minorés) si et seulement
si M =0 (respectivement m = 0).

Démonstration. Le fait que (1) commence par 1 implique que (1,1,¢) est un chemin étiqueté
reconnaissable par 'automate des préfixes associé & 0. Comme N (g) = 0, on obtient que m < 0 <
M. Le résultat découle alors immédiatement de ’équation (2.9), obtenue dans la démonstration du
théoreme 2.5.1, et de la remarque 2.3.2. U

Remarque 2.5.5. Soit (a, B) € [0,1[%, un couple tel que a soit un nombre quadratique, 3 € Q(c)
et B & 7 + at. Le corollaire 2.5.4 nous dit que 'on peut alors répondre algorithmiquement, a
Uaide de lalgorithme développé dans [5], d la question : lintervalle [0, B[ est-il 4 restes majorés ou
minorés pour la suite (na)pen ?

Corollaire 2.5.6. Etant donné un couple (a, ) € [0,1[%, si a désigne un nombre irrationnel
quadratique, B € Q(a) et f & Z + aZ, alors il existe une constante c strictement positive telle que :

A*
N(aa B) > c,
log N
pour une infinité d’entiers N.

Démonstration. D’apres le théoreme 2.5.1, il vient avec les notations précédentes :

, An(a, ) _ (1-P)
1 AT A M :
sy = Tog f max{| M|, |m/}

Comme % > 0, il suffit de montrer que max{|M]|,|m|} > 0, pour tout couple («, 3) satisfaisant

les conditions demandées. Or d’aprés un théoréeme de H. Kesten [146], I'intervalle [0, 3] est & restes
bornés si et seulement si § € Z + «Z. Ainsi, pour les couples («, 3) que nous considérons, I'inter-
valle [0, B[ n’est jamais & restes bornés. Nous sommes donc assurés, par le corollaire 2.5.4, que les
quantités m et M ne peuvent étre simultanément nulles. Ceci implique donc la stricte positivité de
max{|M]|, |m|}. O

Le corollaire 2.5.6 est & rapprocher des résultats métriques obtenus au début des années 80 par
V. T. Sés [232] et & ceux plus généraux obtenus par R. Tijdeman et G. Wagner [240].
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Théoréeme 2.5.7 (S6s [232]). Soit « un nombre irrationnel. Il existe une constante c, strictement
positive et indépendante de «, telle que pour presque tout B au sens de la mesure de Lebesgue sur
10,1, on ait :
Ay (a
N( aﬁ) > c,
log N

pour une infinité d’entiers N.

2.6 Un exemple détaillé

Dans ce paragraphe, et afin de clarifier I’étude précédente, nous détaillons notre méthode dans
le cas d’un exemple précis. Nous en déduisons, en utilisant un résultat de J. Schoissengeier [218],
une propriété sur la discrépance de certaines suites (na),en.

Considérons le nombre quadratique a = @ Nous nous intéressons & la répartition de la suite
(na)nen par rapport a intervalle [0, %[ Notons U = (uy)nen la suite définie par :

B {a si {na} € [0, 1],

n — .
b sinon.

En utilisant I’algorithme d’induction que nous décrivons dans [5], G. Rauzy [203] montre que :

ou ¢ est le morphisme de monoide libre défini par :
QS : {17273}N — {a‘vb}N
1 — a,
2 +— abb,
3 — ab,

et X¢ est 'unique point fixe commencant par 1 de la substitution primitive ¢ définie par :

¢ {1,2,3}" — {1,2,3}"

1 — 13,
2 — 13223,
3 — 1323

On introduit alors lapplication f définie, comme dans 1’equation (2.2), par :

f: {1,2,3} — R
1 — 1,
2 — 1-1-1=-1,
3 — 1-1=0.

Nous allons & présent calculer les coefficients A'(j), j € {1,2,3}, introduits dans 1’équation (2.8).
La matrice d’incidence de £, notée M, est donnée par :

111
Me=|0 2 1
12 2
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Le polynéme caractéristique de M est le polynome réciproque suivant :
Py (t) = —t° + 5> — 5t + 1.

On en déduit que M¢ admet trois valeurs propres simples réelles qui sont

1
0=2+3, let - =2—3.

0
Les coefficients A;yj, (i,7) € {1,2,3}2, introduits dans ’équation (2.6), sont alors déterminés par les
relations : .
Aij 1 1 1 €0
XNj | = 2+v3 1 2-V3 1€(5) s
y 2+Vv3)* 1 (2-V3)? 1€2(5)];
Apres calcul, on obtient :
>‘,1,1 % ) >‘,1,2 1_% >‘11,3 =
Nyg=—3 Ma=35 A3=0],
o1 o 1 r.=0
3,1~ 2 3,2 2 33
puis
N1y =1, N(2)=—-1et N(3) =0, (2.11)
car

3
N(j) =D N f ().
i=1

L’automate des préfixes associé a la substitution & est représenté sur la figure 2.1. A partir de ce
dernier et de I’équation (2.11), nous sommes en mesure de représenter les deux automates Ay,qz¢
et Apning, comme le montrent les figures 2.2 et 2.3.

0

oy

F1G. 2.2 — L’automate Aj,qqe¢-
On obtient immédiatement, M et m désignant les quantités introduites au début du paragraphe
2.5, que
M=1et m=0.
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of

F1G. 2.3 - L’automate A, ine.

Finalement, le corollaire 2.5.4 entraine que l'intervalle [0, %[ est a restes minorés pour la suite

(n(%)) N et donc que l'intervalle [3, 1] est & restes majorés pour la suite (n(%)) . De
ne ne
plus, d’apres le théoreme 2.5.1, on obtient :
* (\/3'271 %) 1
lim sup —* 2 = : 2.12
el logn 2log(2 + V3) (2.12)

En remarquant que le développement en fractions continues de ‘/3)2*1 est [0;2,1], un résultat de
[218] nous dit que :

Dy (V3 2
lim sup nl( ) = .
n—00 ogn 410g <1 + \/511>
T

On en déduit alors, d’apres 1’égalité (2.12), le résultat suivant :

D* V31 * (V31 1
lim sup M = limsup i) (2.13)
n—00 logn n— oo logn

Remarque 2.6.1. Un résultat identique est vérifié par d’autres couples comme par exemple :

a=v2-1 et ﬁ:%,
a=+v2-1 et ﬁz@,
a=v2-1 et ,6:\/5—%,
a:@ et ,6:\/%)"

Question On ne connait pas pour l'instant d’exemple de couple vérifiant les hypothéses du
théoréme 2.5.1 pour lequel les conclusions de l'exemple (2.18) ne sont pas vérifiées. Les exemples
précédents laissent penser que (2.13) est vérifié par tout couple (o, B) € [0,1[2, tel que « soit un
nombre quadratique, 5 € Q(a) et B € Z + «Z. Il serait donc intéressant de déterminer, « étant
fixé, quels sont les éléments B, [ € [0,1], pour lesquels le couple (o, B) vérifie les conclusions de

(2.13).
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Le fait que les conclusions de (2.13) soient vérifiées par tout couple (a,3) € [0,1[2, tel que «
soit un nombre quadratique, 5 € Q(«) et 8 ¢ Z + aZ, impliquerait que la constante ¢ intervenant
dans le corollaire 2.5.6 pourrait étre choisie indépendamment de S bien sir, mais également de a.
En effet, d’apreés un résultat de [97], nous savons que :

inf (lim sup ‘?nf@) = lim sup M > 0.

@R \ nooo logmn N—00 logn

Nous serions de plus en mesure d’exhiber une constante optimale donnée donc par :

Di(v2-1 1
lim sup n(v2-1) =
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Deuxieme partie

Discrépance et équilibre des
substitutions primitives
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Chapitre 3

Discrépance symbolique et
dynamiques auto-similaires

Dans ce chapitre, nous étendons I'étude du chapitre 2 au cas des points fixes de substitutions
primitives. Ce chapitre fait 'objet d’un article sousmis pour publication aux Annales de [’Institut
Fourier.

3.1 Definitions and main results

Let U = (ug)ren be a symbolic sequence defined over the alphabet A. The frequency of the
letter a in U is defined by

lim |UOU1 e 'UIN71|a
N—oo N ’
when this limit exists.

A sequence in which all the factors have an infinite number of occurrences is called recurrent.
When these occurrences have bounded gaps, the sequence is called uniformly recurrent. Moreover,
if there exists an integer K such that, for any factor w of U, two consecutive occurrences of w are
bounded by K|w|, the sequence U is said linearly reccurent with constant K (or simply K-LR).

Substitutions and spectrum

Endowed with concatenation, the set A* is a free monoid with unit element . A map from A
to A*\ {e} can be extended by concatenation to an endomorphism of the free monoid A* and then
to a map from A" to itself. A substitution o on the alphabet A is such a morphism satisfying

(i) There exists a € A such that a is the first letter of o(a),

(ii) For all b € A, lim;,_, o |0™(b)| = +00.

Then, it is easily seen that (6" (aa...))nen converges in AN, endowed with the product of the
discrete topologies on A, to a sequence U. This sequence is a fized point of o, i.e., o(U) = U. More
generally, a sequence which is the image by a morphism of a fixed point of a substitution is said
substitutive.

Given a substitution o defined on A = {1,2,...,d}, we call the matrix M, = (|o(4)]i) (s j)c.a2
the incidence matriz associated with o. The composition of substitutions corresponds to the mul-
tiplication of incidence matrices. A substitution is called primitive if there exists a power of its
incidence matrix for which all the entries are positive. For a primitive substitution, the Perron-
Frobenius theorem implies that its incidence matrix admits a simple real eigenvalue greater than
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one and which is greater than the modulus of all the others eigenvalues (see for instance [195]).
This eigenvalue is called the Perron eigenvalue of the substitution. In the following, we need to
order the spectrum Sy, of the incidence matrix M, associated with a primitive substitution o. We
thus write

Sy, = {02', 2<1 < d,} U{01 = 9},

where 0 is the Perron eigenvalue of o, d’ is the number of distinct eigenvalues and

|9l| > |0k)|7

(3.1)
or |91| = |9k| and (6% Z Ay

V2<ik<d, i<k:>{

where «; + 1 means the multiplicity of the eigenvalue 6; in the minimal polynomial of M,. Fur-
thermore, if |6;] = |0x] = 1, @; = ag, 6; is not a root of unity and 6 is a root of unity, then
1 < k.

Remark 3.1.1. In the case where two distinct eigenvalues have the same modulus and the same
multiplicity in the minimal polynomial of M, this way of ordering is not always well-defined. We
obtain that one can give several orders satisfying our conditions. This is in fact not a problem
because our results do not depend on the choice of such an order. Then in the following, when
we will use this notation, one should understand that we have made an arbitrary choice for the
corresponding order.

Substitution of order 2

Let o be a primitive substitution defined over the alphabet A and U an associated fixed point.
Let A denote the alphabet {1,..., Py(2)}, where Py is the complexity function of U. We can
thus consider a map ©2 from Lo(U) to Ay wich associates with each factor of length 2 its order
of occurrence in U. If ¢ denotes a letter of the alphabet Ay, we can conversely associate with i a
unique word 05 (i) = wow; € Lo(U) since Oy is one-to-one. If

o (©71(i)) = o (wowr) = You1 - - - Yjo(wo) |~ 1Yo (wo)| - - - Ylo(wows)| 1>
then, we define the substitution of order 2 for o by :

o2(i) = O ((yoy1) W192) - - - Wio(wo)|-1Y|o(wo)])) -

It is proved in [195] that o9 is primitive and that its Perron eigenvalue is equal to the one of o
(denoted by #). Following Equation (3.1), we can note

SM'(72 = {02,1', 2<1 < dg} U {9} (3.2)

the spectrum of the incidence matrix associated with o,. We can also note ay ; for the multiplicity
of the eigenvalue 65 ; in its minimal polynomial.

Landau symbols

Let f and g be two real positive functions. We recall the definition of some Landau symbols :
f=0(g) if 3C > O, such that f(z) < Cg(z), Yz € Ry,
f=o(g) if limg_, e % =0,
f=9(g) if f#olg), that is, im{ > 0.
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We introduce now a notation that we will use in the most of our results. We will write
f=(0nQ)(g),

if both f = O(g) and f = Q(g). This a priori just means that g is, in a certain sense, an optimal
asymptotic upper bound for the function f. However, in this study, the fact that f = Q(g) will be
in most of cases more significant than the relation f = O(g).

Remark 3.1.2. The relation f = (O N Q)(g) does of course not imply that f ~ g, but, in this
paper we study some functions which could be oscillating, and we are essentially interested in their
maximum values. So, we will sometimes write, by abuse of language, that the order of magnitude
of the function f is g, as soon as the relation f = (O NQ)(g) holds.

Main results

We first consider sequences obtained as fixed points of primitive substitutions. We show how the
discrepancy of such a sequence, with respect to the probability measure given by the frequencies of
its letters, is in part ruled by the spectrum of the incidence matrix associated with the substitution.

Theorem 3.1.3. Let U = (ug)r>0 be a fized point of a primitive substitution o defined over the
alphabet A, 0, 05 and ay defined as in Equation (3.1) and (3.2), A the natural probability measure

associated with U and
N—-1

An(A,U) = max > (Xqay () — (@) |,
k=0
where x(q) denotes the characteristic function of the set a. Then, the following holds :

(1) if |02| < 1, then AN(A,U) is bounded ,
(i3)  if |62 > 1, then An(ATU) = (0N Q) ((log N)2 NUoge 1621

(133) if |02] = 1 and 02 is not
a root of unity, then

An(A,U) = (0N Q) ((log N)lez+D) |

(tv) if |02] =1 and 6y is

a root of unity, then
either Ay # 0 and AN(AU) = (0NQ) ((log N)(a2+1)) :
or Apy =0 and An(A,U) = (0N9) ((log N)=),

where the complex number Ay (which just depends on the pair (o,U)) is defined in Section 3.3.3
and could explicitly be computed.

Remark 3.1.4. All the different cases are covered by Theorem 3.1.3. In the three first cases, the
order of magnitude of the discrepancy just depends on the incidence matrixz and thus on the abelian
part of the substitution, contrary to case (iv).
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Corollary 3.1.5. A fized point U of a primitive substitution o has a bounded discrepancy function
AN(A,U) if and only if one of the following holds :

(i) 162 <1,

(ii) |62] =1, ap =0, 02 is a root of unity and A,y = 0.
Remark 3.1.6. [t is easy to see that the discrepancy An(u,U) of a minimal sequence U is boun-
ded if and only if each cylinder associated with a letter of A is a bounded remainder set for the
subshift associated with U (we refer to Section 3.5 for a definition of bounded remainder sets and
an application of them).

Next, we consider dynamical systems arising from primitive substitutions. It is well-known that
such a subshift is uniquely ergodic (see [171, 172]). We show how results for the discrepancy of these
systems, with respect to their unique invariant measure, could be deduced from Theorem 3.1.3.

Theorem 3.1.7. Let U be a fized point of a primitive substitution o, 0, 022 and a2 defined as in
Equation (3.1) and (3.2), X = (O(U), T, ) the dynamical system arising from U, and

N-1
Dy(X)= sup  sup | > xu)(T*(V)) = Nu([w])].
Veo(U) weL(U) | k=0

Then, the following holds :

(1) if 62,2 < 1, then Dy (X) is bounded ,
(i5)  if |f22| > 1, then Dy (X) = (0N Q) ((log N)o22NUogs [022))

(i13) if |022] =1 and O29 is not

= (CM s +1)
a root of unity, then Dy(X) = (0nQ) ((log N){@22FV)

('L’U) Zf |0272| =1 and 92,2 18

= (o2,2+1)
a root of unity, then Dy (X) = O ((log N) )

and Dy (X) = Q ((log N)®2:2) |

Remark 3.1.8. In Theorem 3.1.3 we study the discrepancy of a sequence which takes its values in
the finite set A, while the sequences considered in Theorem 3.1.7 take their values in the infinite
compact set O(U).

In particular, we obtain that such dynamical systems are uniformly well distributed with respect
to their unique ergodic measure, that is :

Corollary 3.1.9. Let U be a fized point of a primitive substitution o, X = (O(U),T,u) the
dynamical system arising from U, then we have that

N-1

1
sup

= Wl (TF(V)) = p([w
S Nk:OX[ (T(V)) = p([w])

vanishes uniformly in V€ O(U).
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Remark 3.1.10. The method developed in the following allows to compute explicit constants for
the bounds given in all the previous results. We can easily deduce from o classical result generally
attributed to Curtis, Lyndon and Hedlund (see for instance [160]), that the order of magnitude of
the functions Ay(U) and Dy(X), as it is the case for the complexity function (see [194]), are
topological invariants (that is, are preserved by a topological isomorphism between two subshifts)
but obviously not measure-theoretical ones. It seems that 622 and a2 could be respectivly replaced
by 02 and ao in Theorem 3.1.7, but this cannot be proven at this point.

3.2 Notations and preliminary results

In this section, we introduce the main tools and notions that we will have to use for our study.

3.2.1 The S (N) functions

In order to estimate the discrepancy of a symbolic sequence U, it is useful to associate a “weight”
with each letter of A. Then, the study of the discrepancy takes the following formulation : what
is the number of occurences of each letter in a given prefix of U7 We already used this way of
reasonning in [2] for particular sequences, and we propose now to give a more general statement of
this fact.

Definition 3.2.1. Let U = uguy ... Uy ... be a symbolic sequence defined over the alphabet A =
{1,2,....d}. If f = (f(i))ica € C! and N € N*, then we define :

d
S(];(N) = Z |u0u1 e UN_1|if(i).
i=1

Just as, if w € A", we define :
d

ST w) =) lwlif(@).

i=1
The properties of (S{;(N ))Nen+ were investigated, in particular for some sequences related to
the distribution of digits in arithmetical sequences, in [51, 66, 81, 91, 92, 93, 205].

Definition 3.2.2. Let U = ugu; ... uy, ... be a sequence defined over the alphabet A =1{1,2,...,d}
and such that each letter of A admits a positive frequency in U. Let A = (A;)ica € C? denote the
frequencies vector of U. Then, for 1 <i <d — 1, we introduce the vectors f;, defined by

fi(j) = {lAi rI=t (3.3)

T else
3

We can notice that the f; are well-defined because 0 < A; < 1 and form a basis of the orthogonal
vectorial space of A.

We recall that the discrepancy function of the sequence U is defined by

N-1

Z (X{a} (uk) - Aa)

An(A =
n(A,U) = max

= o uN_1]e — NAg| -
I&%H“O“l uN-1la al
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With the previous definition, it is relatively easy to see that

An(AU) = max  (1-A)|SH(N), (3.4)
i=1,2,...,d—1

and we thus can state the two following propositions.

Proposition 3.2.1. The two following assertions are equivalent :

(1) An(A,U) = O(g(IN)) (respectively o(g(N))),

(i6) Vf = (f())iea € T, f LA, SL(N) = O(g(N)) (respectively o(g(N))).

In (i), the constant in the O just depends on U and in (ii), it depends on U and f.

Proof. It comes directly from (3.4) and from the fact that the f; form a basis of A™*. O

Proposition 3.2.2. The two following assertions are equivalent :

(i) An(A,U) = Q(g(N)),

(i) 3 f = (f(i))iea € T4, f LA, SL(N) = Q(g(N)).

Proof. Tt comes directly from (3.4). O

3.2.2 Preliminaries

Now, for any word w € A*, let us introduce the vector L(w) = (Jw]|;)ic.4. Then, we have
L(o(w)) = My (L(w)), (3.5)

where M, denotes the incidence matrix of o. In this way, if ¢ and j are fixed in A, the sequence
(lo™(4)]i )nen satisfies a linear reccurence whose coefficients are those of the minimal polynomial of
M,. There thus exist complex numbers )\f’]l and ); j such that for every n € N, we have

Qg

dl
o™ ()i = X" + Y (Z Aﬁjnloz> . (3.6)
k=2 \I[=0

Let us notice that Equation (3.5) and (3.6) imply that, for each letter j, the vector (X;;)ic4 is an
eigenvector of M, associated with the Perron eigenvalue ¢. There thus exists a complex number ¢;
such that \; ; = €;A;. Then, for any vector f = (f())i=12,..d € C? lying in the orthogonal vectorial
space spanned by A, it follows :

SI(e™(5)) =L, 10" () f ()

d : 3.7)
- (z Ai,jfm) 0"+ s (5% (S0 A F()) o) e
i=1

0

We thus deduce from (3.1) :
§7(a"(4)) = O (n™216]").,

where the constant in the O just depends on j, if we assume f and o fixed. Then, for every word
we A*
ST (6™ (w)) = O (n®2|0,"), (3.8)

90



where the constant in the O just depends on w, if we assume f and o fixed. In order to make the
following more friendly readable, let us introduce, for any word w = wjws...w,, defined over A
and any such a vector f, the notation :

m d
Frpi(w) =) (Z A%J@)) :

j=1 \i=1
It thus follows with the previous notation :

d ap
ST(o™(w)) =D Frralw)n'op. (3.9)
k=2 1=0
3.2.3 A numeration system associated with a substitution

We present now a generalized numeration system associated with a substitution, introduced
simultaneously by J-M. Dumont and A. Thomas [92], and G. Rauzy [205].

Definition 3.2.3. Let o be a substitution and let us suppose that U is a fized point for o generated
by the letter 1. The subset of A* composed by the proper prefizes of the image by o of the letters will
be denote by Pref,. The prefiz automaton associated with the pair (o,U) is defined in the following
way :

— A is the set of states,
— Pref, is the set of labels,

— there is a transition from the state i to the state j labelled by

the (possibly empty) word m if mj is a prefiz of o(7).

€
e ‘///////’ﬂlﬁ—‘\\\\\\]i:::> 13,132
. 13

] 1,1322

Q 1.132

Fic. 3.1 — Example of a prefix automaton in the case of the substitution 1 —— 13,2 +——
13223, 3 — 123.

Definition 3.2.4. An admissible labelled path C in the prefiz automaton associated with a pair
(o,U) will be denoted by

(0,91, Eo), (i1,92, E1)y - . ., (in—1,in, En_1)),
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ij € A for 0 < j <mn, Ej € Pref, for 0 < j <n — 1. The positive integer n is the length of the
path. The set composed by the admissible labelled path of length n will be denoted by C.

The main theorem concerning the prefix automaton is the following.

Theorem 3.2.5 (Dumont and Thomas [92], Rauzy [205]). With the previous notations, if U
is a fixed point generated by the letter 1 of the substitution o, then we have :

(i) for every positive integer N, there exists a unique admissible path in the prefiz automaton
associated with the pair (o,U), starting from 1 and labelled by the sequence (Fy, E1 ... E,), such
that By # ¢ and Uy = 0™ (Ep)o™ Y(E}) ... E,, where Uy denotes the prefiz of U of the length N.

(ii) Conversely, to any such a path, there corresponds a unique prefix of U, given by the above
formula.

(iii) Moreover, |o™(1)] < N < |o™t1(1)].

3.3 Discrepancy for fixed points of primitive substitutions

This section is devoted to the proof of Theorem 3.1.3.

3.3.1 First upper bounds

We apply Theorem 3.2.5 in order to obtain upper bounds for the discrepancy of fixed point of
primitive substitutions.

Proposition 3.3.1. Let U be a fized point of a primitive substitution, then :

if |02| < 1, then AN(A,U) is bounded,

log |02
if |02| > 1, then An(AU) =0 ((logNO‘2)N log 6 ) ,

if |62] = 1, then AN(A,U) = O (log N2t |

where the constants in the O just depend on U.
Proof. Equality (3.8) and the fact that the words F; lie in a finite set imply :

ny
sl(N)y=0 (Z k“2|92|k> ,
k=0
and thus
ny
SL(N)y=0 <n§:, > |02|k> . (3.10)
k=0
One can notice that the assertion (i7) of Theorem 3.2.5 implies in view of Equality (3.6) that
3C >0, 3C" >0, such that CH™ < N < C'9"V,
We thus deduce

log N
log 0

‘nN - ‘ = 0(1). (3.11)
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Then, we have to distinguish three cases, depending on the modulus of the eigenvalue 65, and using
(3.10), it follows :

if |65 <1, then  ST(N) =0(1),
. f log |02]
if |62| > 1, then Siy(N) =0 | (logN)**N st )|

if |65 = 1, then  S{,(N) = O ((log N)*2 1),
where the constants in the O just depend on U and f. Proposition 3.2.1 allows us to conclude. [

The upper bounds we have obtained could seem very rough, but we will show in the following
that they yet give in most of the cases the good order of magnitude for Ay (A,U).

3.3.2 First lower bounds

We want now to show the pertinency of Proposition 3.3.1. Hence, we are going to construct
a sequence of prefixes of U with the worst possible distribution. Following Proposition 3.2.2, we
know that it is sufficient to exhibit a vector f € C¢, f L A, and an increasing sequence of integers,
(Nk)ken, such that the sequence (|S[f](Nk)|>keN takes “high” values, in a sense that we will have,

of course, to make clear.

Let us first recall the following result.

Lemma 3.3.1. Let M be a d x d complex matriz and let us denote by {(0;,c;), 1 < i < d'}
the spectrum of M, where the 6; mean the distinct eigenvalues of M and the «; their multipli-
city in the minimal polynomial of M. Let r be a positive integer and 6 a non-zero eigenvalue
of M", then the multiplicity of 8 in the minimal polynomial of M" is equal to the maximum of

{ai such that 07 =0, 1 <i <d'}.
Proof. Tt is sufficient to consider the decomposition of M into characteristic subspaces and then,

to use the fact that the minimal polynomial of a matrix which is diagonal by blocks, each block
being upper triangular, is the l.c.m. of the minimal polynomials of its blocks. U

If we apply the previous lemma to the incidence matrix associated with the primitive substitu-
tion o, we obtain the following.

Corollary 3.3.2. Let k be a positive integer. Let us denote by {0}, 2 <1 < d"}U{0'} the spectrum

2

of ¥, so that the 0. are ordered as in (3.1). Then, the following holds :
0, = 0/9’ |05| = |02|ka and a,2 = 2.

In view of Corollary 3.3.2, we can thus freely consider any power of ¢ whithout changing the
conditions which appear in Theorem 3.1.3. We are now ready to prove the following.

Proposition 3.3.2. Let U be a fized point of a primitive substitution, then :

log |05
if |02| > 1, then AN(AU)=Q ((logNaZ)N Tog? ) ,
if 02| =1, then  An(A,U) = Q (log N°2).
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Proof. 1f j is a fixed element of A and 2 < k < d', then the vectors (Af’f“’“) 4 (defined in (3.6)) are
VTS

eigenvectors associated with the eigenvalue 6; (or eventually zero vectors). That follows directly
from from Equation (3.5) and (3.6), and from the fact that the sequences (nkﬁf)n oy form a free
familly of the vectorial space spanned by complex sequences. Moreover, there exists at least one

letter jo such that the vector ()\? ]0(‘)2) M is a non-zero vector, because otherwise this would provide
i€

a polynomial P of degree less than the one of the minimal polynomial associated with M and such
that P(M) = 0. Let us consider the following vectorial subspace of C? :

- <{A} U {(Aiﬁfj‘k)ieA, 2<k<d,je A}>.

Then, because ()\i ’]-02) is a non-zero vector, this is an eigenvector associated with the eigenvalue
’ 1€EA

f2 and it thus does not lie in E. So, we obtain

e (45),.

There thus exists a vector fo = (fo(i))ica € C¢ such that fo € E- and fy L (Af’ff) R
0 /e

Because of the primitivity of o and of Corollary 3.3.2, we can assume without restriction that all
the entries of the incidence matrix associated with o are greater or equal than two, which implies :

— the prefix automaton associated with o is strongly connected, that is to say, for any pair

(i,) € A2, the path (i,7) is admissible.

— for any pair (4,7) € A2, the letter j has at least one occurence in a proper prefix of o (i).
In particular, there exists a proper prefix of o(1) in which the letter jo occurs. Let us denote by
WLWY . . . Wy—1JoWr41 - - . Wy, such a prefix. Clearly, wyws ... w,_1jp is also a proper prefix of o(1).
Then, we have to distinguish two cases :

either
r—1

(Z Ao f (')) £0,
7j=1 =1

or

<

(Z Aoz f (')) £0,

J=1

with w, = jp. In each case, there exists a proper prefix of o(1), w = wywsy ... wy, m € {r — 1,7},

such that : ;
> (Z o2 foli )) #0.

j=1 \i=1

We thus have

Z:l =1 B
>
m d’ ap—1 d
+ (Z (Z (Z o fo(z)> M;;)) ,
j=1 \k=2 \ =0 \i=1



which implies

m d
$h(o"(w) = 3 (Z A?,ﬁffo@)) n03 + o (n®263)
j=1 \i=1

>
where the constant in the o just depends on w (if we consider f; and o fixed). We thus have shown
that S/0(0"(w)) = Q ((n*26}). But w is a prefix of U since U begins with 1 and therefore o™ (w) is
also a prefix of U. Let us consider for k& € N, Ny = |o¥(w)|. Then,

‘k— log Ny, _ 0(1),

log 6

and there exists a positive constant C' such that :

log [05]
sl > C ((log N})o2 N, % ) .

log [65]
log 6

We thus deduce that S{;O(N )=Q ((log N)*®2N ), concluding the proof in view of Proposition
3.2.2. O

Remark 3.3.3. Proposition 3.5.1 and 3.5.2 give the order of magnitude of the discrepancy func-
tion An(A,U) when |03 # 1. In the case where |03] = 1, we obtain that the irreqularities of the
discrepancy lie between (log N)¥2 and (log N)®2*L. Particulary, when |62] =1 and as = 0, we are
not able to say if An(A,U) is bounded or not. The following section is precisely devoted to the
understanding of the critical case, that is to say, |62] = 1.

3.3.3 The critical case

We have just noticed in Remark 3.3.3 that the previous results are not sufficient to obtain
the exact order of magnitude of the irregularities of distribution for a fixed point of a primitive
substitution satisfying |62| = 1. We will show that in this case the knowledge of the spectrum of the
incidence matrix associated with the substitution is not always sufficient to answer this question.
However, we will give an algorithmic way of answering it in the contentious cases.

The case where 6- is not a root of unity

The following proposition states that the irregularities of the discrepancy are maximal (among
the critical cases) when 65 is not a root of unity.

Proposition 3.3.3. Let U be a fized point of a primitive substitution. If |§2| = 1 and 02 is not a
root of unity, then

An(ATU) = (0NQ) ((log N)*t).

Proof. Let U be a fixed point of a primitive substitution o and let us assume that |f2| = 1 and 6
is not a root of unity. Then, there exists a real -y, v € Q, such that €™ is a possible choice for 6.
The multiplicity of €™ in the minimal polynomial of the incidence matrix M associated with o
is thus equal to as.

We recall that the primitivity of o allows us to assume without restriction that all the entries
of M are greater than or equal to two (see Corollary 3.3.2). The same reasonning as in the first
part of the proof of Proposition 3.3.2 implies :
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— the existence of a vector fo € C? and a letter jy such that fo € E+ and fo £ ()\2’0‘2) R
S

1,50
where £ = ({a} U { (A7) p2<ksd e A},
/e
— the existence of a proper prefix of o(1), w such that Fy, 2 o, (w) # 0 (see (3.9) for a definition).
It thus follows that

§7(0"()) = Fpy 2,0, (w) n2e™ + 0 (n71),
———
#0
where the constant in the O just depends on w.
Let us consider a positive integer N. Following Theorem 3.2.5, there exists a unique admissible

path in the prefix automaton associated with the pair (o, U), beginning with 1 and labelled by
(Eo, E1,...,En,), Ey# € such that :

Uy = o™ (EO)UnN_I(El) ... E

nn-

We thus have

nnN

SE(N) =D S}(0" (Buy—k)-
k=0

The fact that the prefixes E; lie in a finite set (Pref,) implies that

ny
SP(N) = F(Bpy 1)k®2e™ + 0 ((ny)™),
k=0

where the constant in the O just depend on U. There thus exists a positive number C' independent
of N, such that :

‘550 (N)‘ > ~ C(ny). (3.12)

ny
> F(Epy i)k e*
k=0

We want now to exhibit a sequence (C;) cn of arbitrarily large admissible paths in the prefix au-
tomaton associated with the pair (o, U), starting from the state 1 and labelled by (Eo, E1,. .., Ey;),
Ey # €, such that :

nj
1S (NI > |3 F(Bny—)k2e™| = C(nj)® > M(ny)e2+D),
k=0

where the integers N; are given by

n
Nj =) |o" (Bn,—p)l.
k=0

Then, Equation (3.12) and Proposition 3.2.2 will allow us to conclude that
An(A,U) = Q((log N)*=*)
because the assertion (i74) in Theorem 3.2.5 ensures that

_loeNit_ o,

" log 0
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Since w is a proper prefix of o(1), there exists a letter jy such that wjy is a prefix of o(1). The
labelled path (1,7, w) is thus admissible. Let us denote by (ji)ren the sequence of states defined
as follows : j; is the first letter of o(jo) and more generally let jii11 be the first letter of o(ji).
Hence, for every positive integer k, the labelled path ((1, jo,w), (Jo,7J1,€), (41,72,€)s -« (Jks Jkt1,€))
is admissible. The set A being finite, we can find two positive integers kg and ki, k1 > ko, such
that jg, = ji, (for k; large enough). We have thus to distinguish two cases :

— either ji, =1,

- or jko 7& L.
We first assume that ji, = 1, as it is represented on Figure 3.2.

€

o
oReh

€
Fi1G. 3.2 — Case ji, = 1.

Let « be an irrational number and I an interval of the one-dimensional torus T, then there
exists a positive integer m such that :

VeeT,AneN, n<m, x+na€l, (3.13)

see for instance [228]. Of course, (3.13) does not hold for a rational o and the irrationality of +,
ensured by the fact that e*™ is not a root of unity, will play a full role.
Let us consider a real §, m > d > 0 and V a subset of C defined by :

V= {e%“, 5 <A <5}.

Then, there exists a positive number ¢ such that for any positive integer IV :

—

Equation (3.13) and the irrationality of v guarentee the existence of a sequence of integers (ng)ren
and of an integer m satisfying

(v1,v9,...,0n5) € VN = > cN.

VijeN, ™7 eV, ng=0and m > n; — nj—1 > ko.
It follows thus

N
Z n] (a2) 27rm]7 >CN(a2+1) (3.14)
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Let us now consider, for any positive integer j, the labelled path C; of length n; defined in the
following way :

(lajaw)a (jvjlﬂg)a vy (jko*la 1,6), (13 1,6), (13 135)3 ceny (13 1,6),

~ /

-~

(TLN 7TLN_1)7]C0 times

(lajaw)a (jajlvg)a' cey (jko*la 136)? (13 136)3 (13 1,6),. Q) (13 136)3

N J/

N~

(TLN_l 7TLN_2)7]C0 times

(laj’w)’ (j,jl,g), sy (jko*la 13 6)’ (13 13 6)’ (13 13 6)3 sy (13 13 6)3 (1,],111)

N J/

(n1—no)—ko times

This labelled path is an admissible path in the prefix automaton associated with the pair (o, U).
Moreover, since F(e) = 0 we thus deduce from Equation (3.12) and from the assertion (i7) in
Theorem 3.2.5 the existence of an integer N; such that :

J
‘sgo(zvj)‘ > 37 F(w)(ng) 2™ | — C(nj)*.
k=1
Therefore, Inequality (3.14) implies that
N (a2+1)
c(n
sfv)| > ) gy,

—|F(w)]
and because (i74) in Theorem 3.2.5 ensures that

B log N; —0(1)

j

log 6

we have

[ (8))| > M(log(N;) e+,

where M is positive and does not depend on j. Hence, the sequence of labelled paths (C;);en
provides an increasing sequence of integers (N;j);jcn such that

An; (AU) > D(log(Nj))(aerl),

which ends the proof in the case where jj, = 1 since Ay (A,U) = O((log N)?2*1) is already shown
in Proposition 3.3.1.

In the case where ji, # 1 (see Figure 3.3), it is possible to do a similar reasonning but a little bit
more technical, by using instead of (3.13) the fact that there exists a positive integer m satisfying

VzeT, I(n,0) eN*,n<m, 1 <m, z+naclandz+I((k — ko)) € I. (3.15)
O
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g\/

FiG. 3.3 — Case ji, # 1.

The case where 0> is a root of unity

We present now a definition of the complex number A, ;; used in Theorem 3.1.3 and Corollary
3.1.5. The meaning of A, is strongly connected with the notion of elementary loop in the prefix
automaton associated with the pair (o,U). We recall now the definition introduced in [2] of an
elementary loop.

Definition 3.3.4. Let o be a substitution and let us suppose that U is a fized point for o generated
by the letter 1. We call elementary loop any admissible labelled path ((ig,i1, Eo),- -, (ln—1,0n, Fn-1))
in the prefiz automaton associated with the pair (o,U), satisfying the following conditions :

72.0:2.71,7
-VO0<j<k<n, Zk;élj

We will denote by El(o,U) the set composed by all the elementary loops in the prefix automaton
associated with the pair (o,U).

Remark 3.3.5. Since A and Pref, are finite sets, El(o,U) is finite too.

Let us consider a primitive substitution o defined over the finite alphabet A = {1,2,...,d}, and
let us suppose that U is a fixed point for o generated by the letter 1.

Moreover, we first assume that o satisfies s = 1, whatever the way one orders the spectrum
of M, (satisfying of course (3.1)). For every admissible labelled path in the prefix automaton
C = ((’io, ’il, Eg), ey (’L.nfl, 'in, Enfl)) we introduce :

Ff727a2 (C) = ZFf,Z,CKQ (E])7 (3]‘6)
=0

where Fr o, (E;) is defined following Equality (3.9). Then, we can consider for any vector f € e,
the quantity
ALy = max {|F2.0,(B)], B € El(o,U)} .

For 1 <1 < d — 1, we consider the vectors f;, defined by

if j =1
fi(j):{ll\i J=h

AT else.
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The family of vectors f; provides a canonical basis of the orthogonal vector space of the eigenvector
A. Then, we can define a complex number, denoted by A, 17, just depending on the pair (o, U), by :

Ay = max {A({{U, 1<j< d} . (3.17)

Now, let us assume that 05 is a root of unity. This implies (see (3.1)) that all the eigenvalues
of M, whose modulus equals one and whose multiplicity equals a9 are roots of unity. Thus, there
exists a minimal integer ng such that o™ satisfies the condition required above, that is to say : the
spectrum of M,n, satisfies o = 1. Then, we can in this case associate a complex number with the
pair (o,U) by putting

AU,U = AU”O,Ua
where Asno 17 is obtained following the previous construction.

We can now state the following proposition.

Proposition 3.3.4. Let U be a fized point of the primitive substitution o. If 02 is a root of unity,
then

— either Ayp # 0 and Ax(A,U) = (0N Q) ((log N)(C“Z‘H)),

—or Ay =0 and Axy(A,U) = (0N Q) ((log N)*2).
Before proving Proposition 3.3.4, we need to establish the two following results.

Lemma 3.3.6. Let C' be a positive number. Then, for any sequence of complexe numbers (ag)ren
satisfying |y p—oar| < C for any positive integer m, we have

n
Zakkl = O(n'),
k=0
the constant in the O just depending on C.

Proof of Lemma 3.3.6. It comes directly from a classical Abel transformation. In fact, let us consi-
der Sj = Y7 _, ar. We thus have :

n

n
Zakkl = Z(Sk — Sp_1)k!
k=0

k=1

n—11-1 I )
<C ZZ()’“J +n' | — ag,

k=1 j=0
which ends the proof. O

Lemma 3.3.7. Let U be a fized point of a primitive substitution and f be a vector in C¢ such that
f L A. Then, there exists a constant C > 0 such that for any admissible labelled path C in the prefiz
automaton associated with the pair (o,U), one can find (By, By, ...,By) € (E1)*, k possibly equal
to zero, satisfying

<G,

k
Fr2a-2(C) =Y Fraa,(Bi)
=1

where Fr o o,(B;) is defined following Equality (3.16).

100



Proof of Lemma 3.3.7. Let us reason by induction on the length n of the path. Let us consider
C = max {Ff,2,a2 ), CcecCk k< d}. If C means an admissible path of length smaller than or
equal to d, then by definition of C' we have

|Ff2,0,(C) = 0] < C,

which shows that the proposition is satisfied for n < d.

Now, let n € N, n > d, and let us assume that the proposition is satisfied for any admissible
path of length k, k < n. If C = ((40,%1,Fo),- -, (in—1,%n, Fn—1)) is an admissible labelled path of
length n, then there exists (I,h) € {0,1,2,...,n}?, [ < h, such that 4, = i}, since the cardinality of
A is finite and equal to d. Let us denote by A’ the minimum of {m, m > [, such that i, = i;}. It
follows that (i, ...,in) is an elementary loop and ((ig, %1, Eo), .-, (ityin 11, Ep)y -y (fne1,in, Fpn))
is an admissible labelled path of length smaller than or equal to n. Thus, the induction hypothesis
implies that there exists (By, Ba,...,By) € (E1), k eventually equal to zero, such that :

k
Ff,27a2 ((ioailaEU)a ) (ilaih’-l-laEh)a ) (inflainaEn)) - ZFf,Q,Oéz(Bi) <C.
=1

But
Fr90,(C) = Froa, ((G0,01,E0)s .-y (iryinrg1,s Epr)s e ooy (in1,in, En_1))
+ Ff,2,a2 ((ilvil-l—laEl)a RN (ih’flaih'aEh’fl)) )
and thus if By = ((i, 9401, F1)y -+, (ip—1, 00, Epr 1)), it follows that

k+1
F120:(C) =Y Fra.a,(Bi)| < C,
=1

concluding the proof. O
Proof of Proposition 3.5.4. We can assume without restriction that o = 1.

We first assume that A, = 0. Let f be a vector in C? such that f L A and N be a positive
integer. Following Theorem 3.2.5, there exists (Ep, F1,...,Ep,) € (Prefy)"¥ such that :

SHIN) =Y S} (0" (Bny ).
k=0

The fact that the F; lie in the finite set Pref, implies that

nnN

SHIN) = 3" Froa(Bny—0)k® + 0 ((nn)?)
k=0

where the constant in the O just depends on U. We thus have to show that

ny

> o (Buy— 1)k = O ((ny)™) .
k=0

Lemma 3.3.7 implies the existence of a positive C and (By, By, ..., By) € (€l(c,U))* such that
ny kn
Z Ff727a2 (EnN_k) - Z Ff727a2 (BZ) S C?
k=0 i=1
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since by definition
ny
Z Ff72aa2 (Eank) = Ffa27a2 (C)'
k=0

But if A,y =0, then Fyy,,(B) =0 for any B € £l(o,U), which gives

<C

ny
Z Ff72aa2 (Eank)
k=0

Since C' does not depend on the path C and thus on the integer N, Lemma 3.3.6 implies that

nnN

N Froan (Buy 1)k = O ((nn)®),
k=0

where the constant in the O does not depend on the choice of N. Following Proposition 3.3.2, we
obtain that Ay (A, U) = (0O N Q2)((log N)*?) because ny = log N + O(1).

Now, let us assume A,y # 0. There thus exists a vector f;, defined as in (3.3), such that
Ai{U # 0. Let us denote by B = ((io, i1, Eo), ..., (ip—1,ip, Ep_1)) an element of £I(o,U) satisfying

f4
|Ff] ,2,042 (B) | = AO'],U'

Since the prefix automaton is strongly connected, there exists an admissible labelled path starting
from the state 1 and ending in ig. Let Co = ((ao, a1, Ey), (a1, a2, EY), ..., (a_1,%, E]_,)) be such
a path, with Ef, # ¢ and ap = 1. For every positive integer k, we introduce the following labelled
path :

((aOaalaE[l])? (ala az, Ei)? ) (a’l*I’iO’Ellfl) )
(7;0,7:1’ EO)a sy (ip—laip?Ep—l));

.

iterated k times

This path of length [ + kp is thus admissible, begins with 1 and satisfies Ey # £. Following the
proposition (i7) in Theorem 3.2.5, there exists a positive integer Ny such that :

kp
S[J;J (Nk:) = Z Ffj,Q,CQ (E(m mod p))mm + 0(1)
m=0

Moreover, following Equality (3.11), we have

log (k)
log 60

pN

which implies that
sPav| oAb

U
= 0.
el (log Ni)(e2+1)  log 6 >

Finally,

S{;j (N)‘ = Q((log N)(@2+1)) | which ends the proof in view of Proposition 3.2.2 and 3.3.2.
O
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Remark 3.3.8. It is also often possible to compute in the case where 0y is a root of unity and
Ay # 0 the quantity

lims AN(Aa U)

imsup —————.

Nosoo (log Nzt
We do it for particular sequences in [2].

Proof of Theorem 3.1.3. It comes directly from Proposition 3.3.1, 3.3.2, 3.3.3 and 3.3.4. O

3.4 Discrepancy for primitive substitutive subshifts

The goal of this section is to prove Theorem 3.1.7. We proceed as follows; we first generalize
Theorem 3.1.3 (see Proposition 3.4.3) and next we study the discrepancy of the derivative sequences
associated with a fixed point of a primitive substitution (see Lemma 3.4.4 and 3.4.5). Then, a
finitude argument due to [101] (Theorem 3.4.3) will allow us to conclude.

Discrepancy functions associated with a symbolic sequence

We give here a generalization of Theorem 3.1.3. The discrepancy function associated with a
symbolic sequence U measures the speed of convergence of the vector

(|UOU1 e UN—1|a>
N acEA

towards the frequencies vector of the sequence U. We want now to introduce a similar notion but
with words playing the role of letters. Let U be a symbolic sequence defined over the alphabet A.
Then, we can define, for any positive integer n, a discrepancy function of order n for U, in the
following way :

AP () =
N( ) wglﬁi}((U)

b

N—1
S X (TH(U)) - Nps(w)
k=0

where |ul,, denotes the number of occurrences of the word w in the word u. We obtain in particular
Ag\l,)(U) = An(U). In view of the previous study, it is quite natural to ask if we can estimate the
growth order of these discrepancy functions in the case of fixed points of primitive substitutions. In
particular, is it possible to obtain such an information in terms of the incidence matrix associated
with the substitution ?

In order to answer this question, we recall now a useful construction which can be found in [195].
Let ¢ be a primitive substitution defined over the alphabet A and U an associated fixed point. For
any positive integer [, A; denotes the alphabet {1,2,..., Py(l)}, where Py is the complexity function
of U. We can thus consider a map ©; from £;(U) to A; wich associates with each factor of length
[ its order of occurrence in U. If i denotes a letter of the alphabet A;, we can conversely associate
with 7 a unique word @l_l(i) = wowy ... w;—1 € Li(U) since Oy is one-to-one. If

o(©7 (i) = o(wowy ... wi—1) = Yoyi - - - Ylo(wo)|—1Y|o(wo)| - - - Y|o(©-1(3)| =15
then, we define the substitution of order [ for o by :

o)) = O ((yoyr - - yi—1) (W12 - - 91) - - Wio(yo) =1 - - - Yiolyo)| +1-2)) - (3.18)

So defined, |oy(7)| = |o(wo)|-
We recall now some results about the previous construction.
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Proposition 3.4.1 (Queffélec [195]). For every positive integer l, the substitution of order [ for
a subtitution o admits the sequence U; = 07°(1) as a fized point. Moreover, if U = uouy ... U, ...
means 0 (1), then the sequence @fl(Ul) is composed by all the factors of length | of U without
repetition and in the same order as in U, that is to say,

@l_l(Ul) = (UOU1 e ul,l)(u1u2 e ul) e (unun_H e un+l,1) e

0, 0 (0)

We can already notice that if Uy = uy’u;” ... up’ ..., then
|ugl)ugl) uD i = Juguy .. Unlo-1(j)- (3.19)

This implies in particular the following corollary.

Corollary 3.4.1. The order of magnitude of the discrepancy function of order | for U is the same
as that of the discrepancy function (of order one) of Uj.

Proposition 3.4.2 (Queffélec [195]). If o is a primitive substitution then for every positive
integer 1, the substitution o is primitive too and its incidence matriz M; has the same Perron
eigenvalue as the one of .

The eigenvalues of My, I > 2, are those of My with perhaps in addition the eigenvalue 0.
Moreover, if Py is the minimal polynomial of Mo, then there exists an integer m such that P, =
P, X™, where P, means the minimal polynomial of M;.

Following Equation (3.1), we can note
Sm,, = {0, 2<2 < i} U{0,1 =6}

the spectrum of the incidence matrix associated with o;. Proposition 3.4.2 implies that §; = 0,
012 = 022 and oo = g2, where o; 2 means the multiplicity of 6; 5 in the minimal polynomial of
M;. In view of Corollary 3.4.1 and Proposition 3.4.2, we can state the following result.
Proposition 3.4.3. Let U be a fixed point of a primitive substitution o. Then, we have for every
integer | > 2 :

(1) if |62,2] < 1, then A%)(U) is bounded ,
(i) if |B22] > 1, then AV () = (01 Q) ((log N)o22 N (oo [022)) |

(i13) if |022] =1 and B2 is not

a root of unity, then A%)(U) =(On9 ((log N)(az’ﬁl)) ’

('L’U) Zf |0272| =1 and 92,2 18

l [0
a root of unity, then Asv)(U) =0 ((log N)( 2,2+1)) :

and AV(U)B = Q((log N)°22).
Moreover, in the case where 022 is a root of unity, then :

= cither V1 > 2, AQ(U) = (0N Q) ((log N)*22),
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— or there exists an integer m > 2 such that,
for 1 <m, AQ(U) = (0N Q) ((log N)™22),
and for 1 > m, AS@(U) =(0nNQ) ((log N)a2,2+1).

Before proving Proposition 3.4.3, we need to establish the following lemma.

Lemma 3.4.2. Let | be a positive integer, U an infinite sequence defined over the alphabet A and
suppose that there exists a function f such that A%)(U) = Q(f(N)). Then, we have AS\Z,H)(U) =
Q(f(N))-

Proof. Let P, be the projection map defined from £;1(U) to £;(U) by :

P((wow ... wi1)) = (wowr - .. wy).

Then, we obtain that
©r0 P o0, (Uiy1) = U

The sequence Uj is thus the image by a letter-to-letter morphism of the sequence U; 1, which implies
that
l
As\,—H)(U) =Q(f(N)), as soon as Ax(U;) = Q(f(N)).

Finally, we obtain by Corollary 3.4.1 that
N (U) (f(N)), as soon as N(b) Q(f(N)),

concluding the proof. O

Lemma 3.4.2 points out the fact that the order of magnitude of the discrepancy functions
A%)(U) associated with a symbolic sequence U could not decrease with respect to [.

Proof of Proposition 3.4.3. Equality (i), (i7), (i7i) and (iv) come directly from Corollary 3.4.1,
Proposition 3.4.2 and Theorem 3.1.3. Then, the last point of Proposition 3.4.3 is a consequence of
Lemma 3.4.2. ]

Discrepancy for derivative sequences

We exhibit here some connections between the discrepancy of a linearly reccurent sequence and
the one of its derivative sequences.

We first present the main definitions concerning the notion of return words introduced in [99].
Let U be a uniformly recurrent sequence over the alphabet A and let u be a nonempty factor of
U. A return word to u of U is a factor uf; p_q (= ujjt1 - .. ug—1) of U such that ¢ and k_ are two
consecutive occurrences of u. If j denotes the first occurrence of u in U, the sequence T7(U) can
be written in a unique way as a concatenation of return words to u. Let Ry, be the set of return
words to u in U. Then T9(U) = wow; ...w;..., where w; € Ryy. The fact that U is uniformly
recurrent implies that R, is a finite set. We can therefore consider a bijective map Ay, from
Ry to the finite set {1,2,...,Card(Ry,)} = Av,u, where, for definiteness, the return words are
ordered according to their first occurrence (i.e., Aalu(l) is the first return word wy, A51u(2) is the
first w; which is different from wy, and so on). The derivative sequence of U on u is the sequence
with values in the alphabet A, given by

Du(U) = AU,u(wO)AU,u(wl) N AU,u(wi) N
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To such a sequence we can associate a morphism O, from Ay, to A* defined by :
®U,u (Z) = W;.

We obtain O, (Dy(U)) = T7(U). The morphism Oy, is called the return morphism to u of U.

Theorem 3.4.3 (Durand [101]). Let U be a uniformly recurrent sequence. Then, Der(U), the
set of its derivative sequences, is finite if and only if U is a primitive substitutive sequence.

Proposition 3.4.4 (Durand [100]). Let U be a linearly reccurent sequence with constant K and
1 be an invariant measure for the subshift associated with U. Then, for any factor w of U the
following holds :

0 < Jwlp([w]) < K.

Now, if wi,ws, ..., w; denote some factors of U, we define the quantities :

N-1
An(Uswi) = | X (THU)) = Np([w])
k=0

and
AN (Uswr,wa, ... wg) = lfg%XkAN(U;wi)-
Then, we can state the following.

Lemma 3.4.4. Let U be a K-linearly reccurent sequence, w be a factor of U and V' be the derivative
sequence of U on w. Then, there exists a constant C' such that :

Vm e N, In e N, n< Km, ApV)<CA(U;wi,ws,...,w),
where wy, wo, . .., w, denote the return words of U to w.

Lemma 3.4.5. Let V be a derivative sequence of a K-LR sequence U. Then, there exists a constant
Cy such that for any factor w of U satisfying D(U) =V the following holds :

Vn e N*, 3m e N, m <n, A,(U;w) < CyA,(V).

Proof of Lemma 3.4.4. Let w be a factor of the sequence U and V = D, (U) be the derivative
sequence of U on w. Let j denote the first occurrence of W in U and r the cardinality of the set
Ruw. The invariant measures associated with U and V' are respectivly denoted by p and v (we
refer the reader to [100] for a proof of the unique ergodicity of a linearly recurrent subshift). We
will write © instead of O .

We thus obtain that (V) = T7(U), where T denotes the usual shift. With any integer m, we
can associate an integer n such that :

O(Vov1 ... Um) = Ujljq1 ... Uy
and

r
k=1

Since U is K-LR, we have that j < Km. Moreover, we have by definition of a return word :
n
o001 - vmli =Y X (TH(U)).
k=0
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Then

> Xy (TH(T))
k=0 . |UOU1 Um|7,
n T ’
Z |1)01)1 PN vm|k|wk|
k=1
which implies
v(t
) = 40—,
> (k) |wgl
k=1

for i € {1,2,...r}. It thus follows that for i € {1,2,...r} :

n <Z|U0U1"'UM|k|wk|> y(z)
ZX[“’J (Tk(U)) — np(w;) = |vovy ... Ui — h=l T
- > vk

k=1

r
Z |1)01)1 . .vm|k|wk|
k=1

= |lvgvy ... Vi — mr(i) +v(i) | m — F=—

> vik)lwl

k=1

,
= |vgvy « . . Uy |; — mu (i) + ,ﬂ# (Z |wg|(mv (k) — |vovy . .. Um|k> .
> v(k)|wg] M=

k=1

Let us now consider the following d x d real matrix :

v(l v(l (1
IR R (CL Z0)
v(2 v(2 (2
O T v(2)
M: N . ,
@ @ ............ 1+$

r
where & =3 v(k)[wg]. It thus follows that :
k=1

luouy - .. tp|w, —np(wy) |wy|(my (1) — |vgvy . .. vm|1)
. -y .

luour - .. Up |y, — np(wy) |lwg|(mr(r) — |vovy ... v r)
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By a simple computation one can check that M is invertible if and only if

d i v(l) 1 41

=t v(k)|wg| Z k) |wg|

k=1 k=1

This implies the existence, for every 1 < j < r, of coefficents (agj),agj), . ,ag)) € R" such that
for any integer m there exists an integer n < Km satisfying

|1)01)1 ... vm|j Z a’k |U0U1 Un|wk - lj'(wk))

and therefore the existence of a positive number C' satisfying
Ap (V) < CAL(U; wy,wa, ...y wy),
concluding the proof. O

Proof of Lemma 3.4.5. We keep here the notation of the previous proof. Let us introduce the vector
fw = (fw(?))ierr defined by f, (i) = 1 — |w;|pu(w). By definition of a derivative sequence, we are
allowed to claim that

n—1
> X (THO) = np(w) = ST (m) — jp(w),
k=0

where j denotes the first occurence of w in the sequence U and m and n are defined as above (we
recall in particular that m < n < K'm). By definition of the measure u, we have

n—1
Y x| (THO)) = npp(w) = o(n),
k=0
and thus
Sle (m) = o(m).
In view of Equality (3.7), we obtain that f,, L A’, where A’ = (v(4));=1,..., is the frequencies vector
of the sequence V. As we have already noticed, the familly of vectors (fi), 1 < k < r — 1, defined

by
, 1 ifi =k,
@) =19 v I
sh—1  ©lse,

is a basis of the vectorial subspace A’*. Then, there exist coefficients (b, ...,b, 1) € R such that

r—1
fw = Zbk fr- The coefficents b, depend on f,, and thus on the word w, but since Proposition

k=1

3.4.4 claims that |w|pu(w) < K, we have 0 < |w;|u(w) < K? and thus || fu|lsoc < K2. The fact that
S‘};’“ (m)=0-v(k )) (lvovy - .. v |k — mr(k)) implies ‘Sf’“ ‘ < Ay (V). Moreover, by linearity we

have S;; / ¥ ( Z kaf ¥(m) and it thus follows :

r—1

An(Usw) < bpAn (V) + jip(w) < ZbkA
=1
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This proves, since ||fu|leoc < K2, the existence of a constant Cy-, which does not depend on the
choice of w, and such that A, (U;w) < Cy Ay, (V), hence the proof. O

Proof of Theorem 3.1.7. Let U be a fixed point of a primitive substitution o and X = (O(U), T, i)
the dynamical system arising from U. In order to fix the ideas, we assume that |f22| > 1 and we
note f(N) = (log N)*22 N 192.2) Then, Proposition 3.4.3 implies that Dy (X) = Q(f(N)) and
that for any word w € L(U), Ax(U;w) = O(f(N)). It remains to prove that Dy (X) = O(f(V)).
If wy,ws, ..., wq, denote the return words of U to w, we thus deduce that there exists C; > 0 such
that

AN(U; W1, Wy« ,wd) = lrilla.é(d AN(U; wi) < le(N)

Now let V' be the derivative sequence of U on w. Lemma 3.4.4 thus implies the existence of Cy > 0
satisfying An (V) < Caf(N), because f is a sublinear function (that is, V(z,y) f(z +vy) < f(z) +
f(y)) and hence

sup An(V) < C3f(N),
VeDer(U)

with C5 > 0 since, following Theorem 3.4.3, Der(U) is a finite set. Therefore, Lemma 3.4.5 implies

sup Ay (U;w) < Cyf(N),
weL(U)

for some Cy > 0.

Let W = (wg)k>0 € O(U) and j be the first occurrence of the word wy ... wy_1 in U (such
an occurrence always exists by minimality). Since U is linearly reccurent, there exists K > 0 (just
depending on U), such that j < KN. Then, we have

Ay(Wiw) < Aj(Usw) + Ajn(Usw) < Cuf (KN) + Cof (K +1)N) < C5f(N),

where C5 neither depends on W nor on w, since f is increasing and sublinear. Finally, we obtain
that Dy (X) = O(f(N)), which achieves the proof because the other cases could be dealt exactly
in the same way. O

3.5 An application to spectral theory

In this section, we show how our results can be used to obtain a spectral information for primitive
substitutive subshifts and thus for their measure-theoretic isomorphic dynamical systems.
Around Kesten’s Theorem

Let X = (X, B,u,T) be an ergodic dynamical system. For any B € B and 2 € X, we consider

AN(T; Bio) = | (xn(T (@) - u(B))]|.

k=0

N-1 ‘

By Birkhoff’s ergodic theorem, for any B € B and almost all x € X,
1
NANT;B;z) = 0,

when N tends to infinity. A set B is called a bounded remainder set for T if Ay (T'; B; x) is bounded
on a set of measure one.

If we consider an irrational rotation on the one-dimensional torus, H. Kesten [146] gives the
following characterization of bounded remainder sets which are intervals.
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Theorem 3.5.1. Let T be a translation on T by an irrational a. Then, an interval I is a bounded
remainder set for T if and only if its length belongs to Za mod 1.

Remark 3.5.2. The “if” part is due to E. Hecke in 1922. One can construct bounded remainder sets
without any measurability assumption (see [204]). Although these examples are quite pathological,
this shows that intervals correspond to a really particular case. In this direction we also mention
a negative result in [159] which states that no non-trivial cartesian product of intervals could be a
bounded remainder set for a rotation in dimension higher than or equal to two.

In the symbolic framework, intervals could naturally be replaced by cylinders. Therefore, we
can translate the previous problematic by : given a subshift, does there exist cylinders which are
bounded remainder sets ?

Our study answers partially this question in the case of primitive substitutive subshifts. In
particular, we obtain that, for a substitution satisfying the condition #35 < 1 (for instance the
Fibonacci or the Tribonacci substitutions as it is shown in Section 3.6), all the cylinders are bounded
remainder sets. Theorem 3.1.7 proves even that in this case there exists a uniform bound. Moreover,
the method developed in this paper allows, for any fixed primitive substitution ¢ and any fixed
factor w, to answer the following : is [w] a bounded remaider set for the subshift arising from o 7
We are also able to give then an explicit bound.

Number of problems (in particular related with toral translations) are strongly connected with
the notion of bounded remainder sets. For instance, it was believed that an Arnoux-Rauzy sequence
(see [23]) would be a natural coding of a rotation on the two-dimensional torus. The authors of
[63] provide a counterexample to this conjecture by proving an Arnoux-Rauzy sequence to have
an unbounded discrepancy function. In the same spirit, symbolic dynamical systems arising from
a Pisot type substitution (that is, the Perron eigenvalue is a Pisot number and the characteristic
polynomial is irreducible) are expected (when they satisfy some additional technical conditions) to
be measure-theoretically conjugate with a minimal rotation on a torus (see for instance [202, 57]).
The fact that a fixed point of a Pisot type substitution admits a bounded discrepancy function
plays a full role in this conjecture in view of [204] and [110].

An extension of Kesten’s theorem related to spectral theory

We present here a nice result making relevant the notion of discrepancy in ergodic theory. H.
Fiirstenberg and al. [119] (see also K. Petersen [191] and G. Haldsz [123]) proved the following
strong generalisation of Kesten’s theorem.

Theorem 3.5.3. Let (X,B,u,T) be an ergodic dynamical system. If a subset B of B is a bounded
remainder set for the transformation T, then e2™"B) is an eigenvalue for T. Moreover, if €2™" is

an eigenvalue for T, there exists a bounded remainder set B € B such that u(B) = .

We can easily translate this result in terms of discrepancy, in particular to provide a simple
condition of non-weak mixing for primitive substitutive subshifts.

Proposition 3.5.1. Let U be a fixed point of o primitive substitution o and X be the associated
subshift. If Ax(A,U) is bounded, that is, if one of the following holds :

(i) 162] <1,

(ii) |62] =1, ap =0, 02 is a root of unity and Ay =0,
then, X could not be weakly mizing.

In particular, we recover that the subshift arising from a Pisot type substitution is never weakly
mixing. This result, mentioned in [222], derives from one of B. Solomyak [230] (but we do not
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require the irreducibility of the characteristic polynomial of the incidence matrix associted with the
substitution in Proposition 3.5.1, contrary to the hypothesis done in [230]).

An important point is that Corollary 3.1.5 and Theorem 3.1.7 provide a concrete way to obtain
eigenvalues for primitive substitutive subshifts. In fact, since the sets considered are cylinders, one
expects to be able to compute their measures. In the case, for instance, of the Fibonacci or of
the Tribonacci subshifts, we obtain in this way all the eigenvalues by proving that any cylinder
corresponds to a bounded remainder set and using that the eigenvalues form an additive group.
It seems that such a result is also true for all Pisot type substitutions. For the Morse subshift,
Theorem 3.1.7 does not allow to show that the discrepancy function of the system is bounded.
However, the Rokhlin stack representation (see for instance [194], Chapter 5) of this subshift makes
clear that every cylinder is a bounded remainder set, providing again all the eigenvalues.

3.6 Applications to toral translations

In this section, we give some applications of our results. Since toral translations provide certainly
the most important class of well distributed sequences (which are of great interest at once in number
and ergodic theory) we have chosen to focus exclusively on examples given by these transformations.
However, the class of sequences (or systems) concerned by this work is obviously not reduced to
the one arising from rotations (we refer the reader to [1] for a larger zoo of examples).

Rotation with golden ratio and the Fibonacci substitution

The Fibonacci substitution o is defined over the alphabet {1,2} by :

1—12
2—1

Let us denote by U the unique fixed point of this substitution. It is well-known that one can obtain
U by coding the sequence ({n(@)}) . with respect to the partition of T in [0, V51 [ and
ni

2
[‘/5271, 1 [ The incidence matrix associated with the Fibonacci substitution admits two distincts

simple eigenvalues :

0= and 0y = 5
VB—1
It thus follows that [2] < 1. Let A = | 2 /5 | be the frequencies vector associated with U.

2
We have, in view of Corollary 3.1.5 that Ax(A,U) is bounded. A more precise study of the prefix
automaton associated with the pair (o,U) allows one to compute an explicit bound. In fact, the

computation gives f; = Vi1 | and Fp o0 = V5 (these quantities are respectively defined in
T2
(3.3) and (3.9) of Section 3.2).

It thus follows from Figure 3.4 that

Dy(8,U) = (1-5L) sl ()




IeoBn0

Fi1G. 3.4 — The prefix automaton associated with the Fibonacci substitution

which is an optimal result. This implies

sup Dy(A,U) <5 -5,

Veo(U)

which means that the interval [0, \/52_1 [ is a bounded remainder set (bounded by 5 — +/5) for the
)
sequence ({n( ) e

We want now to construct the Fibonacci substitution of order two. It is well-known that U
is a Sturmian sequence and thus admits three factors of length two, more pecisely, Lo(U) =
{(12),(21),(11)}. Then, we obtain ©~1(1) = (12), ©71(2) = (21), and ©~1(3) = (11), where
the map O is defined as in the beginning of Section 3.4. Since o(12) = 121, 0(21) = 112 and
o(11) = 1212, it follows that the substitution of order two for o is defined by

o2(1) =12, 02(2) =3, and 02(3) = 12.

We thus obtain that the incidence matrix associated with the Fibonacci substitution of order two
admits three simple eigenvalues :

1 -1
{0 = \/52+ y 92,2 = \/52 and 0273 = 0} .

Theorem 3.1.7 thus implies that the Fibonacci subshift admits a bounded discrepancy function.

Quadratic rotations and substitutive Rote sequences

Let us consider the quadratic number a = @ We define the sequence U = (up)nen by :
1 if {na} €10, %[,
=
2 else.

This sequence is called coding of rotation of parameters (o, 1) (see for instance [5, 12, 86]) and is
included in the class of sequences of complexity 2n considered in [209]. It is shown in [203] (using

the self-similarity of a quadratic three-interval exchanges) that

U= ¢(V0)a
where ¢ is the morphism defined by
{]—7 27 3} — {]—7 2}
1 — 1
2 — 122
3 — 12
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and V is the fixed point of the substitution o defined by

{1,2,3} — {1,2,3}
1 — 13
2 — 13223
3 — 1323

The incidence matrix associated with o admits three simple eigenvalues :
1
0=2+3, 92:1and03:§:2—\/§.

We thus obtain 8 = 1 and a = 0. In particular, 85 is a root of unity and we have thus to consider
the constant A, ;. Using the algorithm described in Section 3.3.3, we can show that A, is not
equal to zero (see [2] for more details), which gives

ANn(A,V5) = (0N Q) (log(N)) .

where A means the natural probability vector associated with V. This implies, if A denotes the
uniform probability vector on {1,2}, that

An(A,U) = O (log(N))

but a priori not necessarily
ANn(A,U) = Q(log(N)) -

However, Ax(A,U) = Q2 (log(N)) comes from Lemma 3.4.4 since V, is the derivative sequence of
U on the letter 1 (this is proved in [5]).

More generally, it is shown in [5] that if U means the coding of rotation of quadratic parameters
(av, B), that is, « is a quadratic number and 3 lies in the quadratic extension of «, then

An(A,U) = (0N Q) (log(N))

An(AU
and a way of computing the quantity lim sup M is exposed. In the case described above, we
N—o00 log N
obtain for instance
U 1
lim sup v (U)

Nooo logN — 2log(2+ v3)

If X denotes the subshift associated with a coding of rotation of quadratic parameters («, 3), we
thus obtain that Dy (X) = Q(log N) since Dy (X) > Anx(A,U). Moreover, Dy(X) = O(log N) is
implied by the fact that « has bounded partial quotients in its continued fraction expansion (a
proof is given in [152]).

The method used here shows that Theorem 3.1.3 could sometimes be extended to the study of
substitutive sequences which are not necessarily fixed points of substitutions.
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Two-dimensional rotation and the Tribonacci substitution

G. Rauzy introduced in [202] the Tribonacci substitution, which is defined over the alphabet
{1,2,3} by :
1+—12
2+—13
3—1

Let us denote by U its unique fixed point. The incidence matrix of o admits three disctinct simple
eigenvalues which are the roots of the polynomial

X3 - X2 - X —1.

It thus comes that |f#3] < 1. Following Corollary 3.1.5 we have that Ax(U) is bounded. Let «
be the unique real root of X3 — X2 — X — 1. In [202], G. Rauzy exhibits a measurable partition
Q of a fundamental domain of R? in three subsets Q;, i = 1,2, 3, with fractal boundaries and
whose union is known as the Rauzy fractal. He shows that the natural coding, with respect to
the Q;, of the Kronecker sequence (na,na?) modulo Z? is the Tribonacci sequence U. The fact

Fia. 3.5 — The Rauzy fractal

that Ayx(U) is bounded means that each set €; corresponds to a bounded remainder set for the
two-dimensional toral translation by the vector (o, @?). G. Rauzy provides like this one of the first
example of a non-trivial bounded remainder set for a two-dimensional rotation (see also [235] for
such an example with a parallelogram). Similar constructions give examples of bounded remainder
sets for Kronecker sequences in higher dimensions (see for instance the k-bonacci substitutions in
[170]). It is also possible, as we have done in the Fibonacci case, to make more precise the result

1

Loulle

F1a. 3.6 — The prefix automaton associated with the Tribonacci substitution

of G. Rauzy by giving an explicit bound for the remainder sets 2;. Then, a more detailed study of
the prefix automaton described in Figure 3.6 allows to obtain that A(A,U) < 2,76.
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We want now to construct the Tribonacci substitution of order two. It is well-known (see [23])
that U is a sequence of complexity 2n + 1 and thus admits five factors of length two, more pecisely,
Lo(U) = {(12),(21),(13),(31), (11)}. Then, we obtain ©~1(1) = (12), ©~1(2) = (21), ©~7!(3) =
(13), ® 1(4) = (31), and ©® 1(5) = (11), where the map O is defined as in the beginning of Section
3.4. Since 0(12) = 1213, 0(21) = 1312, 0(13) = 121, 0(31) = 112, and o(11) = 1212, it follows that
the substitution of order two for ¢ is defined by

o2(1) =12, 02(2) = 34, 02(3) =12, 02(4) = 5 and o3(5) = 12.

We thus obtain that the incidence matrix associated with the Tribonacci substitution of order
two admits the same eigenvalues as the one of the Tribonacci substitution with in addition the
eigenvalue zero (with multiplicity two). Theorem 3.1.7 thus implies that the Tribonacci subshift
admits a bounded discrepancy function.

3.7 Compléments et remarques sur ’article

Nous donnons dans ce paragraphe un exemple d’application du théoreme 3.1.3 a la minoration
de la discrépance d’un systéme dynamique de ’intervalle. Pour cela nous rappelons une construction
et quelques définitions qui figurent dans [88].

Etant donné une transformation 7' définie de Pintervalle [0,1] dans lui méme, on définit Ila
discrépance du systéeme T' par

Dn(T) = zl[lopl[ Dy ((T™(%))n>0),

ot Dy ((T™(z))n>0) désigne la discrépance (au sens classique) de la suite réelle (7" (z))n>0). Par
exemple, si T est une rotation d’angle «, on vérifie facilement que Dy (T) = Dy(a). En prenant
pour « un nombre quadratique, on obtient un transformation de l'intervalle T', satisfaisant Dy (T') =
O(log N). Ainsi, il n’existe pas de minoration a priori pour un systéme (c’est-a-dire valable pour
tout systéme), qui soit meilleure que celle du théoréme de W. Schmidt, & savoir

Dy (T) =Q(log N). (3.20)

Nous avons déja fait allusion dans la section 0.2.3 au fait que tout systeme associé a une substi-
tution primitive peut étre représenté géométriquement a ’aide d’une transformation de I'intervalle.
Plus précisément, la transformation obtenue est une translation par intervalles.

Définition 3.7.1. Une transformation T de l’intervalle [0, 1] est appelée translation par intervalles
s’il existe une famille F au plus dénombrable d’intervalles telle que pour tout € strictement positif :

() I, Ly...,.Iy) e F*, N =0,0<j<I<Ek,
i | U L) >1-¢
1<j<k

(iil) (a1, 02,...,0¢) € [0,1]%, z € I; = T(z) = = + q;.
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Nous allons a présent rappeler brievement la construction obtenue par la méthode du couper-
empiler dans le cas de la substitution primitive de Rudin-Shapiro, o, définie sur I’alphabet {1, 2, 3,4}
par :

1— 12
2+—13
33— 42
4+— 43

Le but de cette construction est de décrire une transformation R de I'intervalle par approximation
successive en en donnant une représentation par couper-empiler (on dit aussi par tours de Rokhlin).
L’étape d’initialisation du procédé de construction consite & découper l'intervalle [0, 1] en quatre

sous-intervalles de méme longueur [0, 1[, [1, 5[, [3. 3 et [2,1].

12

FiG. 3.7 — Découpage initial et définition de R sur les deux tours extrémes de hauteur nulle.

Ce découpage est en fait imposé par le vecteur propre normalisé, A, associé a la valeur propre
dominante de M, qui est égal a (i, i, i, i) et qui correspond au vecteur des fréquences des lettres
dans n’importe quel élément du sous-shift associé & o. Nous obtenons ainsi quatre tours de hauteur
nulle ordonnées de la fagon suivante : 77(0) = [0, 1[, 7(0) = [3, 5[, 75(0) = [3, 2[ et Tu(0) = [2, 1].
Pour obtenir les quatre tours de hauteur 1, on utilise le procédé décrit par les figures 3.7 et 3.8,
ce qui revient & découper chaque tours en deux pour former les quatre mots 12, 13, 42 et 43, qui

correspondent aux images des quatre lettres par o.

F1a. 3.8 — Premiere étape de construction et définition de la transformation R.

Ainsi, aprés la premiere étape, R est définie partout sauf sur les deux intervalles [i, %[ et [%, %[,
chaque intervalle qui n’est pas au sommet d’une tour étant translaté sur l'intervalle qui est au-
dessus de lui dans la tour. Ensuite, on réitére ce procédé de construction, chaque tour est coupée
verticalement en deux et empilée suivant la méme regle. A la n-iéme étape, la transformation R est
définie partout sauf sur les quatre intervalles qui se situent au sommet des tours (voir figure 3.9).
Ce choix de couper-empiler permet en fait de définir R sur [0, 1] tout entier et de montrer que le
systeme dynamique associé a R est métriquement isomorphe au sous-shift associé & o ; en particulier

R est uniquement ergodique, la mesure de Lebesgue étant son unique mesure invariante (voir [88]).
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F1a. 3.9 — Les quatre tours T1(n), T»(n), T5(n) et Ty(n) obtenues apres n étapes de construction.

Cette construction présente I'avantage suivant : si ’on numérote respectivement par 1, 2, 3 et 4
les quatre intervalles de la partition initiale 77(0), 75(0), 75(0) et 74(0), alors le codage naturel de
I'orbite du point 0 sous 'action de R par rapport a cete partition est exactement le point fixe de
la substitution ¢ qui commence par la lettre 1. Notons U ce point fixe. On obtient alors

max, AN((R™(0))n>0;Ti(0)) = An(A,U),

ot Ax((R™(0))n>0; T3(0)) désigne la discrépance locale de la suite (R"(0)),>0 en T;(0).
Il vient a fortiori que pour tout entier IV,
Dn(R) > An(A, D).

Un calcul rapide montre que pour la substitution o, les valeurs de 6 et |03] sont respectivement 2
et v/2. Le théoreme 3.1.3 implique donc

An(A,U) = Q(VN)

et nous obtenons ainsi la minoration suivante de la discrépance du systéme dynamique associé a
R:
Dy(R) = Q(VN),

ce qui produit une minoration bien meilleure que la minoration obtenue a priori (voir 3.20).

117



118



Chapitre 4

Equilibre(s) des points fixes de
substitutions primitives

Ce chapitre est consacré a 1’étude des propriétés d’équilibre des points fixes de substitutions
primitives et a fait I'objet d’un article accepté pour publication dans la revue Theoretical Com-
puter Science. Nous introduisons deux fonctions généralisant la notion d’équilibre. Nous montrons
que, dans le cas des points fixes de substitutions primitives, les propriétés d’équilibre et celles de
répartition étudiées au chapitre 3 sont tres liées. Nous en déduisons pour ces suites le comportement
asymptotique de ces fonctions d’équilibre.

We introduce here some definitions about balance properties for an infinite word.

Definition 4.0.1. Let us consider an alphabet A, w an infinite word in AN, and an integer C. The
word w s said C-balanced if :

Vie A, V(v,w) € L(w), |v]| =|w|=-C < |v|; —|w|; <C.

If w is 1-balanced, we just say that w is balanced.

In [41], V. Berthé and R. Tijdeman introduce a measure of balance for multi-dimensional words.
We use in [5] a one-dimensional analogous which is defined by :

Definition 4.0.2. Let U be an infinite sequence defined over an alphabet A. We define the balance
function of U in the following way :

o ot
By(n) =max max - {[[wle —[v'la[}-

We thus obtain that a sequence is C-balanced if and only if its balance function is bounded by C.

4.1 Links between balance and discrepancy

In this section, we study the connections between the balance and the discrepancy functions
for a symbolic sequence. We notice the existence of some links in the general case and also their
limits. In particular we show that these two notions are strongly connected in the case of linearly
recurrent sequences.
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The general case We first exhibit some links between the balance and the discrepancy functions.
We prove in particular that if one of both of these functions is bounded, then the other should be
bounded too. We thus obtain that problems of bounded remainder sets and C-balanced sequences
are strongly connected.

Proposition 4.1.1. Let U = ugUy ..Uy ... be a symbolic sequence defined over the alphabet A.
Then the two following propositions are equivalent :

(i) There exists a probability measure A such that An(A,U) is bounded.

(#7) Bn(U) is bounded.

Proof. Let us show that 1) = 7). We thus suppose there exists a constant C' > 0 such that :
Va € A, |lupuy ... un—1] — NAy| < C. (4.1)

Let us consider an integer N and w a factor of length N in U. If the integer k denotes an occurrence
of w in U, we have
Uy .. - Ug—1 .. - UN+k—1 = UUL ... Uf—1W.

Let a € A, (4.1) implies
||UOU1 .. .uN+k,1|a - (N + k)Aa| < C.

We obtain
|(Juous . .. ug—1]a — kAa) + (Jwla — NAL)| < C

and thus because of (4.1)
llwle — NA4| < 2C.

Finally, for any pair (w;, ws) of factors of length N, we have
wila = lwala| <4C,

which implies that the balance function of U is bounded by 4C.
We have now to prove ii) = 4). Let us suppose that the balance function of U is bounded by a
positive constant C', that is to say :

VN EN, Vae A Vw, w' € Ly(U), |lwle—|w'a] <C. (4.2)

Let us first fix a letter ¢ in the alphabet A. For every integer k, wy denotes a word in L;(U) such
that :
Vw € Ly,(U), |w|a > |wk|a-

Such a word wy clearly exists. Then, if n € N, [ € N, and w € L,,;(U), the inequality (4.2) implies

0 < |wlg — lwy|e <IC and 0 < |w|q — n|w|q, < nC.

By substraction, we obtain
—nC < nlw|q — lwyle <I1C,

and

Q

¢
l

|wl|a . |wn|a <=

<

l n n

‘wn|a
n

The sequence ( ) N is thus convergent. Therefore there exists a real A,, the limit of this
ne

sequence, satisfying :
w
0< Ay — [l <
n

. (4.3)

s1Q
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Let us remember that (4.2) implies for every integer n
0< |Un|a - |wn|a <C s

that is to say,

0< |Un|a _ |wn|a < g
- n n ~n
By substracting the inequality (4.3), it follows
_g < Unla —A, < g
n n n

Unla
n

The sequence ( ) . converges thus to A,, the frequency A, of the letter a. We obtain finally
ne

Vn €N, ||Uple —nlq| <C,

which ends the proof. O

Remark 4.1.1. In the previous demonstration, we show in fact the following :

If for any letter i, the set {i} is a bounded remainder set (with bound C') for the sequence U with
respect to the probability measure A, then the balance function of U is bounded by 4C.

In the case of the Morse sequence (see Example 4.3.5), the letters 0 and 1 correspond to bounded
remainder sets (with bound 1) with respect to the uniform probability measure on {0,1} (the bound
% being reach). Moreover this sequence is 2-balanced (but not balanced). This shows that the upper
bound we obtain in the proof of Proposition 4.1.1 is optimal.

Proposition 4.1.1 states that both balance and discrepancy functions have the same order of
magnitude if one of them is bounded. We show now that it does not hold in the general case
(Proposition 4.1.3). However, we prove that the order of magnitude of the discrepancy function is
at most the one of the balance function (Proposition 4.1.2).

Proposition 4.1.2. Let U = uguy ... Uy, ... be a sequence defined over the alphabet A= {1,...,d}
and such that each letter of A admits a frequency in U. Let A = (A;)jca denote the frequencies
vector of U. If the balance function of U satisfies :

By(N) = O(f(N)) (respectively By(N) = o(f(N))),

then
An(A,U) =O(f(N)) (respectively An(A,U) = o(f(N))).

Proof. The same reasoning as in the second part of the proof of Proposition 4.1.1 applies if we
replace C' by f(N). O

We produce now a particular sequence with both small discrepancy and extremly bad balance.
We thus deduce that a converse to Proposition 4.1.2 could not hold.

Proposition 4.1.3. Let f be a real increasing unbounded function such that f(N) = o(N). Then,
there exists a sequence U defined over the alphabet {0,1} satisfying :
(1) U has a frequency vector denoted by A,
(it) An(A,U) = O(f(N)),
(i31) for every integer N, By(N) = N.

121



Proof. Let f be a real increasing unbounded function. Let |z | denote the fractional part of the real
x. We introduce then the following binary sequence U defined over {0,1} in the following way :

U= 01 00...0 11...1 0101 00...0 11...1 ......
—— —— —— —
Lf(1)] times [f(1)] times Lf(2)] times |f(2)] times
..0101...01 00...0 11...1  ......
—_— —— ——

N times f(N)] times |[f(N)] times

We obtain that U has arbitrary long blocks of 0’s and 1’s because f is unbounded. This implies
that
VN € N*, BU(N) = N.

If Uy denotes the prefix of length N of U, we obtain then by construction of our sequence

[Unlo = [Unh < LF(N)], (4.4)

since f is increasing, and thus the letters 0 and 1 have a frequency equal to % in U, because
f(N) = o(N). By inequality (4.4), we have

lovlo - 5] < Lr

and

ol - 53| < L),

Then, if A means the uniform probability vector over {0, 1}, we obtain

An(AU) < SLF(N)]

and thus

ANn(A,U) = O(f(N)),
which ends the proof. O
Remark 4.1.2. The sequence U considered in the proof of Proposition 4.1.3 is clearly not linearly

recurrent since the blocks of 0’s and of 1°s first occur at a rank which is not proportional to their
lengths.

The case of LR sequences It is proved in [100] that if U is a LR sequence then each letter
in U admits a frequency. Hence U is uniformly distributed with respect to the natural probability
measure given by its frequencies. The following result states a partial converse to Proposition 4.1.2
in the case of LR sequences.

Proposition 4.1.4. Let U a linearly recurrent sequence (with constant K ) defined over the alphabet
A=1{1,2,...,d}. Let A = (A;)ica denote the frequency vector associated with U. If there exists an
increasing sublinear function f (that is ¥(x,y), f(z +vy) < f(x) + f(y)) such that :

AN(A,U) = O(f(N)) (respectively Ax(A,U) = o(f(N))),

then
Bu(N) = O(f(N)) (respectively By(N) = o(f(N))).
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Proof. Let us suppose that there exists an increasing function f satisfying
An(A,U) = O(F(N)).
Then, there exists a positive constant A > 0 such that :
VN e N, Va € A, |luguy...un—1] — NA,| < Af(N).

Let N be an integer and w a factor of length N in U. Let k, be the first occurrence of w in U, we
have
oy - .- Uky,—1++--UN+k,—1 = UQUL ... Uk, 1W.

The fact that U is LR with constant K implies N + k, — 1 < KN. We thus have that for a € A
||UUU1 . UN+Icw—1|a — (N + k‘w)Aa| < Af(KN),

which implies
|(|’LLO’LL1 ... ukw_1|a — k‘wAa) + (|w|a — NAa)| < Af(KN),

and thus
lwle = NA4| < 2Af(KN),

since
||UUU1 .. .ukN_1|a — k‘NAa| < Af(KN),

because f is increasing. Finally, we obtain that for any pair (wy,ws) of factors of length N :
lwila = lwela| < 4Af(KN),

which implies that By (N) = Of(N) since f is sublinear. The same reasoning applies in the case
where Ay (A, U) = o(f(N)). O

4.2 Main results

In view of the study led in Section 4.1, we can translate Theorem 3.1.3 in terms of balance
function. Having fixed the notation in Section 3.1, then we obtain the following theorem.

Theorem 4.2.1. Let U be a fized point of a primitive substitution o. Then, we have :

(1) if 62| < 1, then By (N) is bounded ,
(i3)  if |62] > 1, then By(N) = (0N Q) ((log N)@2 N Uoge [621)) |

(¢3i) if |02] =1 and 02 is not
a root of unity, then

By(N) = (0N Q) ((log N)t*=t1)

(iv) if |2] =1 and 6, is
a root of unity, then
cither Aq #0 and  By(N) = (0 n) ((log N)e=+D)

or Asy =0 and By(N) = (0N Q) ((log N)*2),

where the complex number Ay (which just depends on the pair (o,U)) is defined in Appendiz B
and could explicitly be computed.
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Proof. We have first to remark that a fixed point of a primitive substitution is linearly recurrent.
This point is proved in [103]. Then, the result follows from Theorem 3.1.3 and Proposition 4.1.2
and 4.1.4. O

Remark 4.2.2. This theorem implies in particular that for any fized point of a primitive sub-
stitution U, By (N) = o(N). We also refer the reader to (3.1) for a better understanding of the
notation.

We thus obtain the following caracterization of the C-balanced fixed points of primitive substi-
tutions.

Corollary 4.2.3. A fized point U of a primitive substitution o has a bounded balance function if
and only if one of the following holds :

(1) 62] < 1,

(it) |62] =1, ag =0, O3 is a root of unity and Ay = 0.

We bring now some direct applications of Theorem 4.2.1 and we focus on the case (iv).

The first interesting (or surprising) point is that the three first cases of Theorem 4.2.1 just
depend on @y and thus on the incidence matrix associated with the substitution. In particular, we
obtain that in these cases, the asymptotic behaviour of the balance function is not modified by
any permutation of the letters in the definition of the substitution. As an example, the balance
functions of the two fixed points of the substitutions

o1 02
1 — 12131234 1 — 11122334
2 — 12131334 and 2 +— 11123334
3 —— 12242434 3 — 12223444
4 +— 13342434 4 — 12333444

have the same asymptotic behaviour. A natural question is then to ask if this property holds for any
fixed points of primitive substitutions. The answer is no. In fact, let us consider, as was suggested
to me by J. Cassaigne, the two following substitutions defined over the alphabet {1,2} by :

&1 &2
1 +— 112 and 1 — 121 |
2 — 212 2 — 212

and let Uy and Us denote respectively the fixed points beginning with the letter 1 of the substitutions
&1 and &. It is clear that By, (N) is bounded since U, is a periodic sequence. On the other hand,
one can show (using that A¢ , # 0) that By, (V) = Q(log(N)). Even so, these two substitutions
share the same incidence matrix. This example is relatively simple, but not totally convincing. One
can think that if we restrict our study to non-ultimately periodic sequences, such a situation does
not hold any more. However, we provide in Section 4.4 (Example 4.4) two non-ultimately periodic
fixed points of substitutions sharing the same incidence matrix, corresponding respectively to both
situations which can occur in case (iv) of Theorem 4.2.1 (see Section 4.4). We thus obtain that the
“strange” class of substitution considered in the case (i7) of Corollary 4.2.3 is really not empty. In
particular, this puts an end to the hope of characterizing the non-ultimately periodic fixed points
of primitive substitutions with bounded balance function just in terms of their incidence matrices.

We are now going to use Corollary 4.2.3 in order to understand what type of spectrum could
have the incidence matrix associated with a primitive substitution which generates an eventually
periodic sequence. This is in part motivated by a first result due to C. Holton and L. Q. Zamboni.
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Proposition 4.2.1 (Holton-Zamboni [130]). If a fized point of a primitive substitution T is
eventually periodic, then the incidence matriz associated with T could not have non-zero eigenvalues
of modulus less than one.

Then, we can deduce the following.

Corollary 4.2.4. Let 7 be a primitive substitution which generates an eventually periodic fixed
point over the alphabet A. Then, the following holds :

(i) M; has a simple positive integer eigenvalue (its Perron eigenvalue),

(i7) the other non-zero eigenvalues of M, are all roots of unity (whose algebraic degree is less than
the cardinality of the set A minus one),

(i91) the non-zero eigenvalues of M, are all simple.

Proof. Tt follows from Proposition 4.2.1 that the non-zero eigenvalues of M, have modulus greater
than or equal to one.

If M, has an eigenvalue of modulus greater than one which is not its Perron eigenvalue, this would
imply that |f3] > 1, and then by Corollary 4.2.3 the balance function of the eventually periodic
sequence would not be bounded, hence a contradiction.

If M, has an eigenvalue of modulus equal to one, Corollary 4.2.3 implies that this eigenvalue is
necessarily simple and a root of unity.

The minimal polynomial of 6, the Perron eigenvalue of M, should divide the characteristic poly-
nomial of M. Then the algebraic conjugates of 8 lie necessarily among the eigenvalues of M. But,
0 could obviously neither be an algebraic conjugate of  nor a root of unity, since 0 is greater than
one. We obtain finally that 8 could not have any algebraic conjugate and should thus be integer.
Now, let 8 denote an eigenvalue of M, which is a root of unity and P its minimal polynomial. The
degree of P is necessarily less than the cardinality of the set .4 minus one because (X — )P should
divide the characteristic polynomial of M, concluding the proof. U

Corollary 4.2.4 claims that the incidence matrices associated with primitive substitutions which
generate eventually periodic sequences should have very specific types of spectrum composed among
roots of unity and zero eigenvalues (if we forget their Perron eigenvalue). It is thus natural to ask
if this result is optimal, that is to say, if roots of unity or/and zero could really be eigenvalues of
such matrices. The substitution defined over {1,2} by

¢
1 — 121
2 — 212

has spectrum Sy, = {3,1}, whereas the substitution defined over {1,2} by

¥
1 — 121
2 — 121

has spectrum Sy, = {3,0}, and the substituion defined over {1,2,3} by

T
1 — 12

2 — 312
3 — 3123
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has spectrum Sy, = {3,1,0}; moreover these three substitutions generate periodic fixed points,
which provides a positive answer to our question. Another consequence of Corollary 4.2.4 is that
for a primitive substitution o which generates an eventually periodic fixed point over a two or a
three-letter alphabet, Sy, C Z.

4.3 Application to generalized balances

In this section, we apply our results to generalized balance properties for fixed points of primitive
substitutions. The balance function measures the difference between the number of occurrences of
each letter in any pair of factors of the same length. We want now to introduce a similar notion but
with words playing the role of letters. This generalization is inspired by I. Fagnot and L. Vuillon
[107] who study generalized balances in Sturmian words.

Let U be a symbolic sequence defined over the alphabet A. Then, we can define, for any positive
integer n, a generalized balance function of order n for U, in the following way :

B = m | e Aol =} 9

where |w|, denotes the number of occurrences of the word u in the word w. We obtain in particular
B[(]1 ) (N) = By(N). In view of the previous study, it is a natural question to ask if we can estimate
the growth order of these generalized balance functions for fixed points of primitive substitutions.
In particular, is it possible to obtain such an information in terms of the incidence matrix associated
with the substitution.

In order to answer this question, we recall now a useful construction which can be found in [195].
Let o be a primitive substitution defined over the alphabet A and U an associated fixed point. For
any positive integer [, A; denotes the alphabet {1,2, ..., Py(l)}, where Py is the complexity function
of U. We can thus consider a map ©; from £;(U) to A; which associates with each factor of length
[ its order of occurrence in U. If 7 denotes a letter of the alphabet A;, we can conversely associate
with 4 a unique word @;l(i) = wowy ... w;_1 € L;(U) since ©; is one-to-one. If

o (O (i) = o(wows ... W—1) = YY1 - - - Yjo(wo)| - 1Yo (wo)] - - - Y]o(@—1(i)| 1

then, we define the substitution of order [ for o by :

oi(i) = © ((yoyl ceye) (WY ) - (y\a(wo)\—l . --y\a(wo)m—z)) . (4.6)
So defined, |oy(3)| = |o(wp)|-
Example 4.3.1. Let U be the Fibonacci sequence, defined as the fized point of the substitution
o
1 — 12
2 — 1
It is well-known that U is a Sturmian sequence and thus admits three factors of length two, more
pecisely,
Ly(U) ={(12),(21), (11)}.
Then, we obtain
O 1(1) = (12), ©1(2) = (21), and ©1(3) = (11),
and since 0(12) = 121, o(21) = 112 and o(11) = 1212, it follows that the substitution of order two

for o is defined by
o9(1) =12, 02(2) =3, and 02(3) = 12.
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We recall now some results about the previous construction.

Proposition 4.3.1 (Queffélec [195]). For every positive integer l, the substitution of order [ for
a subtitution o admits the sequence U; = aloo(l) as fized point. Moreover, if U = uguy ... Uy -
means the fived point of o, then the sequence ©; Y(U) is composed by all the factors of length l of
U without repetition and in the same order as in U, that is to say,

@fl(Ul) = (uouq ... uj—1)(urug ... ug) oo (UpUpt1 -« Upti—1)--- -

We can already notice that if U; = u(()l)ugl) . ug) ..., then
|ugl)ugl) ’U,g)h = |u0u1 ...un|@_1(i), (47)

where |w|g-1(;) means the number of occurrences of the word © (i) in w. This implies in particular
the following corollary.

Corollary 4.3.2. The order of magnitude of the generalized balance function of order | for U is
the same as that of the balance function of Uj.

Proposition 4.3.2 (Queffélec [195]). If o is a primitive substitution then for every positive
integer 1, the substitution o is primitive too and its incidence matriz M; has the same Perron
eigenvalue as the one of o.

The eigenvalues of My, | > 2, are those of My with perhaps in addition the eigenvalue 0.
Moreover, if Py is the minimal polynomial of Mo, then there exists an integer m such that P, =
P, X™, where P, means the minimal polynomial of M;.

Following Equation (3.1), we can note
Sm,, = {01, 2<2 < di} U{0,1 =0}

the spectrum of the incidence matrix associated with o;. Proposition 4.3.2 implies that §; = 0,
012 = 022 and oy = g2, where o;9 means the multiplicity of 6; 9 in the minimal polynomial of
M;. In view of Corollary 4.3.2 and Proposition 4.3.2, we can state the following result.

Theorem 4.3.3. Let U be a fized point of a primitive substitution o. Then, we have for every
integer | > 2 :

(1) if 022 < 1, then B[(]l) (N) is bounded ,
(i) if |6a2] > 1, then BY(N) = (0N Q) ((log )22 Nlicgs [9221))

(i13) if |B22] =1 and 62 is not
a root of unity, then

BY(N) = (0N Q) ((log N)@221D) |

(’M)) Zf |0272| =1 and 0272 18

= (a2,2+1)
a root of unity, then By (N) = O ((log N) )

and By(N) = Q ((log N)o2:2) .

Moreover, in the case where 022 is necessarily a root of unity, then :
~ either V1> 2, B (N) = (0N Q) ((log N)*>2),
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— or there exists an integer m > 2 such that,
for 1 < m, BY(N) = (0N Q) ((log N)*>2),
and for 1 > m, BY(N) = (0N Q) ((log N)e22+1).
Before proving Theorem 4.3.3, we need to establish the following lemma.

Lemma 4.3.4. Let | be a positive integer, U an infinite sequence defined over the alphabet A and
suppose that there exists a function f such that BI(Jl)(N) = Q(f(N)). Then, we have B((]Hl)(N) =
Q(f (V).

Proof. Let P, be the projection map defined from £;1(U) to £;(U) by :

P((wows ... wiy1)) = (wowy ... wy).
Then, we obtain that
;0P o @;_1_11(U5+1) =U].

The sequence Uj is thus the image by a morphism letter-to-letter of the sequence U; 11, which implies
that

BU1+1(N) =Q(f(N)), as soon as By, (N) =Q(f(N)).
Finally, we obtain by Corollary 4.3.2 that

B[(]Hl)(N) =Q(f(N)), as soon as B[(})(N) =Q(f(N)),

concluding the proof. O

Lemma 4.3.4 points out the fact that the order of magnitude of the generalized balance functions
B[(]l) (N) associated with a symbolic sequence U could not decrease with respect to .

Proof of Theorem 4.3.3. Equalities (i), (i1), (iii) and (iv) come directly from Corollary 4.3.2, Pro-
position 4.3.2 and Theorem 4.2.1. Then, the last point of Theorem 4.3.3 is a consequence of Lemma,
4.3.4. O

If we come back to Example 4.3.1, we obtain that the incidence matrix associated with the
Fibonacci substitution of order 2 admits three simple eigenvalues :

\/5—1\/5+10
2 2

Theorem 4.3.3 implies thus that the Fibonacci sequence admits bounded balance functions of all
orders. A more precise result is shown in [107] for Sturmian sequences. If U means a Sturmian
sequence, then

B[(]n)(N) is bounded by n;

moreover, if the slope of U has bounded partial quotients in its continued fraction expansion, then

sup (B,(]”)(N)) is finite,
neN

and an explicit bound is given.
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Example 4.3.5. Let U be the Morse sequence, defined as the fized point beginning by 1 of the
substitution

g
1 — 12
2 — 21

The incidence matriz associated with the Morse substitution admits 2 and 0 as eigenvalues. It is
well-known that U has four factors of length two, more pecisely,

Lo(U) ={(12),(22), (21), (11)}.
We thus obtain
0 1) =(12), ©1(2) = (22), ©1(3) = (21) and O (4) = (11),

and since o(12) = 1221, 0(22) = 2121, 0(21) = 2112 and o(11) = 1212, it follows that the
substitution of order two for o is defined by

o2(1) = 14, 02(2) = 31, 02(3) = 34 and o2(4) = 31.

The incidence matrixz associated with the Morse substitution of order two admits four simple eigen-

values :
{2,1,-1,0}.

Contrary to the Fibonacci case, new non-zero eigenvalues appear. One can thus think that the Morse
sequence is more “well-balanced” with respect to its letters than to its factors of length two. Actually,
we can show that As, 17, = 0 and thus that the Morse balance function of order two is bounded too.
However, and because we are in the critical case (case (iv) of Theorem 4.3.3), we can not say if
the Morse balance functions of any order are bounded or not.

In this section, we have seen that all the incidence matrices associated with the substitutions
of order at least two share the same spectrum (except for the zero eigenvalue). Moreover, we have
exhibited an example (the Morse sequence) for which the spectrum of the substitution of order
two is really distinct from the one of the initial substitution. However, we do not know any such
an example for which this change of spectrum is really significant for the balance properties of the
studied sequence.

4.4 A zoo of examples

In this section, we apply our results to some classical substitutions. We give examples of sub-
stitutions whose balance functions have the different types of growth order discussed in Theorem
4.2.1. This list does not claim of course to be exhaustive.

Pisot type substitutions We call Pisot type substitution a substitution for which |0 < 1
(some authors require that a Pisot type substitution has no zero eigenvalue). This class of substi-
tutions corresponds to case (i) in Theorem 4.2.1 and contains in particular the Morse substitution
(see Example 4.3.5), the Fibonacci substitution (see Example 4.3.1) and more generally Sturmian
substitutions (see [69]), the Tribonacci substitution (see [202]) and more generally Arnoux-Rauzy
substitutions (see [23]). Fixed points generated by all these substitutions have thus, in view of
Theorem 4.2.1, a bounded balance function. However, optimal bounds are already well-known for
the Morse sequence (which is 2-balanced) and Sturmian sequences (which are balanced).
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Badely balanced substitutions We call badely balanced substitution, a substitution satisfying
|02| > 1, which corresponds to case (ii) in Theorem 4.2.1.

The Rudin-Shapiro sequence

The Rudin-Shapiro substitution is defined over the alphabet {1,2,3,4} by :

1—12
2+—13
3— 42
4+— 43

Let us denote by U the fixed point of this substitution generated by 1. The Rudin-Shapiro sequence,
which is the image of the sequence U by a letter-to-letter projection, was introduced independently
in [212] and [220] for estimating problems in harmonic analysis. The incidence matrix associated
with the Rudin- Shapiro substitution has four simple real eigenvalues :

{2,V2,-V2,0}.

We thus obtain § = 2, |f;] = v/2 and a = 0. Then, we have in view of Theorem 4.2.1 :

By(N) = (0n®) (VN).

A substitution related to the sum of the dyadic digits

Let us consider the substitution o defined over the alphabet {1,2,3,4,5,6} by :

1—12
2+—13
3 — 26
4 +— 45
5— 46
6 — 53

Let us denote by U the fixed point of this substitution generated by 1. This sequence is related to
the sum Zn<N(—1)s(3"), where s(n) denotes the sum of the dyadic digits of n (see [66, 81]). The
incidence matrix associated with ¢ admits six simple eigenvalues :

{2,+£V/3,+£1,0}.
We thus obtain § = 2, |fs| = V/3 and ap = 0. Then, Theorem 4.2.1 implies :

By(N) = (0N Q) (Nﬂo& 3>) .

We can notice that in this case the order of magnitude of the balance function is an irrational power
of N contrary to the case of the Rudin-Shapiro substitution.
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Extremly badely balanced substitutions

For any positive integer n, let us consider the substitution o,, defined over the alphabet {1,2}
by :
11— 1m2
2+— 127

and let us denote by U, its fixed point. The incidence matrix associated with o, has two simple
eigenvalues :

{(n+1), (n=1)}.
It follows that for n > 3, 62, > 1 and
nlLIgO logy (02,n) =1,
which thus implies that
Ve > 0,3n € N, such that, By, (N) = Q(N'79).

We thus provide examples of fixed points of primitive substitutions whose balance functions take
highest growth orders as possible in view of Remark 4.2.2.

Not so badely balanced substitutions
For any pair of positive integers (n, k), let us consider the substitution O(n,k) defined over the
alphabet {1,2} by :
1 — 1(*)o(n*—n)
2y 1(nF—n)g(n*)
and let us denote by U,y its fixed point. The incidence matrix associated with o, ) has two
simple eigenvalues :
{(an —n), n} .

1

~ 7
n—oo k

It thus follows
logg,, . (02,(n,k))
which implies that

Ve >0, 3(n, k) € N x N, such that, By, (N) = O(N?).

We thus provide examples of fixed points of badely balanced substitutions whose balance functions
take smallest growth orders as possible in view of Theorem 4.2.1.

A Salem type substitution We call Salem type substitution, a substitution for which 6, the
Perron eigenvalue, is a Salem number. We recall that a Salem number is a real algebraic number
greater than one whose all conjugates have a modulus smaller than or equal to one, one at least
having a modulus equal to one.

Let us consider the substituion o defined over the alphabet {1,2,3,4} by :

1—12
2— 14
3—2
4+—3
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Let us denote by U the fixed point of this substitution generated by 1. The sequence U was
introduced in [130]. The characteristic polynomial of M, is

- -4 1= <x2+%(—1+\/§>$+1> ($2+%<—1—\/§>x+1>.

The roots of the first quadratic factor are

1 -v13+ V24 2V1314
a
4

8= nd

1-v13 - V2 +2V/13i
v = ,
4

which have modulus one but are not roots of unity. In this example, 6 is a Salem number. We
thus obtain |#2] = 1 and 6, is not a root of unity. Moreover, as = 0 because  and «y are simple
eigenvalues. Then, case (ii7) of Theorem 4.2.1 implies :

By(N) = (0N Q) (log N).

Critical cases We give here examples of substitutions corresponding to the case (iv) in Theorem
4.2.1.

The Chacon sequence

The primitive Chacon substitution o is defined over the alphabet {1,2,3} by :

1+— 1123
2+— 23
33— 123

Let us denote by U the fixed point of this substitution generated by 1. The Chacon sequence (which
is not exactly U but the image of U by a morphism) was introduced in [64]. The incidence matrix
associated with the primitive Chacon substitution has three integer simple eigenvalues :

{3,1,0}.

We thus obtain #; = 1 and as = 0. In particular, 05 is a root of unity and we have thus to consider
the constant A, ;7. Using the algorithm described in Appendice B, we can show that A, is not
equal to zero, which implies

By = (0N Q) (log(N)) .

Substitutive Rote sequence

Let us consider the quadratic number a = ‘/52_1. We defined the sequence U = (uy)nen by :

" 12 else.

_ {1 if {na} €0, 3],

This sequence is called coding of rotation of parameters (o, 1) (see for instance [5, 12, 86]) and is
included in the class of sequences of complexity 2n considered in [209]. It is shown in [203] that

U = ¢(Xo),
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where ¢ is the morphism defined by

{1,2,3} — {1,2}
1 — 1
2 — 122
3 — 12

and X, is the fixed point of the substitution o defined by

{1,2,3} — {1,2,3}

1 — 13
2 — 13223
3 — 1323

The incidence matrix associated with o admits three simple eigenvalues :
1
0 =243, 1and5:2—\/§.

We thus obtain #; = 1 and as = 0. In particular, 05 is a root of unity and we have thus to consider
the constant A, 7. Using the algorithm described in Appendix B, we can show again that A, s is
not equal to zero, which gives

Bx,(N) = (0N Q) (log(N)).

This implies that
By(N) = O (log(N)),

but not necessarily
Bu(N) = (log(N)).

However, we show in [2] that
ANn(A,U) = Q(log(N)),

where A means the uniform probability vector on {1,2}. Proposition 4.1.1 implies finally
By(N) = @ (log(N)

More generally, it is shown in [5] that if U means the coding of rotation of parameters («, 3), where
a is a quadratic number and S lies in the quadratic extension of «, then

By(N) = (0N®Q) (log(N)).
The method used here shows that Theorem 4.2.1 could sometimes be extended to the study of
substitutive sequences (which are not necessarily fixed points of substitutions).
An example with multiplicity
Let us consider the substitution o defined over the alphabet {1,2,3,4,5} by :

1+— 1112455
2+— 111255
3 — 1123455
4 — 23445

5 — 123455
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and let us denote by U the fixed point of this substitution. The incidence matrix associated with
o admits the following characteristic polynomial

(x —1)%(2® — 72% 4 5z — 1).

The Perron eigenvalue of ¢ is a Pisot number whose minimal polynomial is the factor of degree
three in the previous expression. We thus obtain ©9 = 1. Moreover, the minimal polynomial of M,
is equal to its characteristic one and then as = 1. The constant A,y being not equal to zero, it
follows from case (iv) of Theorem 4.2.1 that

By(N) = (0N Q) (log?(N)) .

Two degenerated examples

We call degenerated substitution, a substitution which is not a Pisot type substitution but
which as well generates a fixed point whose balance function is bounded.
As we have already noticed in Section 4.2, the periodic fixed point U of the substitution o

1— 121
2+— 212

has a bounded balance function. The incidence matrix associated with o admits yet 3 and 1 as
eigenvalues. It thus follows that 03 = 1, ap = 0 and A,y = 0.
In Section 4.3, we introduce o2, the Morse substitution of order two, defined by

1— 14
2+— 31
3— 34
4+— 31

and U its fixed point beginning with 1. This substitution is degenerated, we have 0> = £1, ap =0
and A,y = 0. It thus follows that U is a C-balanced sequence. Then, it is noticeable to see that if
we consider the substitution o’ defined by

1—12
2+—13
3— 34
4+— 13

and U’ its fixed point beginning with 1, then the sequence U’ satisfies
By (N) = (0N 9) (log V),

although both substitutions oy and o, share the same incidence matrix.

Appendix A

Let us consider a primitive substitution o defined over the finite alphabet A4 = {1,2,...,d},
and let us suppose that U is a fixed point for o, generated by the letter 1. Moreover, we assume
that o is a Pisot type substitution, that is to say, |62| < 1. Then, Theorem 4.2.1 states that By (N)
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is bounded or equivalentely that U is C-balanced for some contant C'. The object of this appendix
is to exhibit such a constant C, that is to say, to give an explicit upper bound for By (N). We will
use freely in the following the different definitions and notation introduced in Section 3.1.

If f=(f(i))ica € C* and N € N*, then we define :

d

S{}(N) = Z |U,OU1 e UN_1|if(i).

i=1
Just as, if w € A*, we define :
d
=Y [wlif(i).
i=1
For 1 <1 < d — 1, we introduce the vectors f;, defined by

fz(]):{AZ L) 2,

AT else,

where A = (A;)ie is the normalized eigenvector associated with 6, the Perron eigenvalue of M, .
We can notice that f; is well-defined because 0 < A; < 1 (it comes from the Perron-Frobenius
theorem). Then, it is relatively easy to see that

An(AU) = 1— A)|SH(N
NAU) = max  (1— A0S (N)],

and thus in view of Remark 4.1.1,
By(N) < {4_ max (1 - Ai>|85i(N>|J , (48)
1=1,2,...,d—

where |z| denotes the integer part of the real x.
Now, for any word m € A*, let us introduce the vector L(m) = (|m/;)ic.a. Then, we have

L(o(m)) = M(L(m)), (4.9)

where M, denotes the incidence matrix of o. In this way, if 4 and j are fixed in A, the sequence
(|lo™(4)]i)nen satisfies a linear recurrence whose coefficients are those of the minimal polynomial of
M, . Therefore, there exist complex numbers )\f]l and J; ; such that for every n € N, we have

o™ ()] = Xi " + Z(ZA“Z ) (4.10)

=0

Let us notice that equations (4.9) and (4.10) imply that, for each letter j, the vector (X; ;)ic4 is an
eigenvector of M, associated with the Perron eigenvalue 6. Thus, there exists a complex number ¢;
such that \; ; = €;A;. Then, for any vector f = (f(7))i=1,2,...a € C? lying in the orthogonal vector
space of A, it follows :

SI(e™(5)) =L, o™ ():f ()

- (i /\i,jf(z')) 0"+ iy (S5 (S0 A £()) o) (4.11)
i=1

0
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In order to make the following more friendly readable, let us introduce, for any word w = wjws . . . wp,
defined over A and any such a vector f, the notation :

m d
Frpi(w) =Y (Z N, f(z')) . (4.12)
j=1 \i=1

Let us consider a positive integer N. Following Theorem 3.2.5, there exists a unique admissible
path in the prefix automaton associated with the pair (o, U), starting from 1 and labelled by the
sequence (Ey, E1,...,Ey,,), Eo # ¢, such that :

Un = o™ (Ey)o™ Y Ey) ... E,,.

We thus obtain that for any vector f € C?,

and in view of equalities (4.11) and (4.12),

-3 (5

k=2

Qp
> Frri(Ew, - )mlo,g">.
=0

We can thus consider the finite quantity

M = ma a a a 1— A)|Fy. E)|.
v = max, max max  max (L= A)|Ff k(B

Then, it follows from (4.8) that

d o “+00
By(N) < {4M07U > (Z ml|0k|m>J :
=0

and thus

which implies that

d—1
By(N) < {4M0U Z 1_|92 HIJ, (4.13)

because for any real 0 < z < 1,

R = I!
;]nzxngg(nﬂ)(nﬂ—n 0+ Da" = F—

The last upper bound, given in (4.13), does not depend on N and provides thus a closed formula to
find an explicit upper bound for the balance function associated with a fixed point of a Pisot type
substitution. This upper bound is certainly not optimal, because we wanted to exhibit a general
formula. However, for any given substitution of Pisot type, the method evoked above could be used
to find a really more precise result.
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4.5 Compléments et remarques sur ’article

Le théoreme 4.3.3, tel que nous 'avons énoncé, a été obtenu a partir du théoreme 3.1.3. En
utilisant le théoreme 3.1.7 du chapitre précédent, il est possible de donner une nouvelle version du
théoreme 4.3.3. Pour cela, introduisons une nouvelle mesure de 1’équilibre d’une suite.

Définition 4.5.1. Soit U un mot infini défini sur Ualphabet A. La fonction d’équilibre généralisée
associée a U est définie par :

_ P
BU(N) N urenﬁa(‘}li) w,wpel%ﬁ(U) {“w|u |w |u‘} '

Au vu des résultats des paragraphes 4.1 et 4.3, le théoréme 3.1.7 se traduit en terme d’équilibre de
la fagon suivante.

Théoréme 4.5.2. Soient U un point fire de la substitution o, 0, 022 et azo définis comme en
(3.2). On a :

(1) si |02,2| < 1, alors Bi(N) est bornée,
(ii)  si|0a2| > 1, alors By (N) = (0N Q) ((log N)222 Nogs 10221))

(i13) si |02 =1 et Goo n'est pas
une racine de 'unité, alors

Buy(N) = (0N Q) ((log N)@z24D)

(iv) si|022| =1 et Oo9 est
une racine de 'unité, alors

By (N)=0 ((log N)(a2,2+1)) ’

et By (N) = Q ((log N)o22) .

Ce théoreme décrit ainsi les propriétés d’équilibre uniforme des substitutions primitives.
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Troisieme partie

Répétitions, physique et
transcendance
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Chapitre 5

Récurrence linéaire des codages de
rotations et opérateurs de
Schrodinger discrets

Dans ce chapitre, nous reprenons 1’étude des codages de rotations introduits au chapitre 1.
Ces suites binaires servent de modele dans ’étude d’opérateurs de Schrodinger discrets unidimen-
sionnels. Nous donnons une caractérisations des codages linéairement récurrents en fonction du
développement en fraction continue défini au chapitre 1; puis nous en déduisons que le support
de la mesure spectrale d’un opérateur de Schrodinger associé a une telle suite est de mesure de
Lebesgue nulle. Ce chapitre a été écrit en collaboration avec David Damanik'. II fait 'objet d’un
article intitulé Linearly recurrent circle map subshifts and an application to Schrodinger operators,
publié dans la revue Annales Henri Poincaré.

5.1 Introduction and results

5.1.1 Introduction

The concept of linear recurrence or linear repetitivity, LR in short, has been recently discussed
and investigated by quite a number of researchers within various frameworks. For example, the
articles [76, 103, 100] study the LR property from the point of view of combinatorics on words,
whereas [75, 153, 231] discuss its implications within the theory of tilings.

In both cases one considers structures (e.g., an infinite word or a tiling of Euclidean space), or
families of structures (e.g., a subshift or a family of tilings), and their local patterns (e.g., subwords
or patches occurring in the given tiling) which are equivalence classes modulo translations. Fixing
such a local pattern, one may look at the set of occurrences of the pattern in the structure and
compare the distance between two “consecutive” occurrences with the size of the pattern. If the
distance is bounded by a fixed linear function of the size, the structure is said to have the LR
property. Although the concepts are the same in spirit, applied to words it is usually referred to as
linear recurrence, whereas among tiling theorists this concept is usually called linear repetitivity.
Since this article will be concerned with a class of words and subshifts, we will henceforth use the
term linear recurrence.

The usefulness of the LR property has been independently realized by numerous people who

! Californya Institute of Technology.
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had quite different applications in mind. LR has been shown to have consequences in mathematical
disciplines as diverse as combinatorics [76, 100], ergodic theory [75, 153, 156], and spectral theory
of Schrodinger operators [157].

Our present study is motivated by the paper [157]. Consider discrete one-dimensional Schrédin-
ger operators

(Hp)(n) = p(n+1) +¢(n —1) + V(n)¢(n) (5.1)

in #2(Z), where the potential V' : Z — R is given by

V(n) = Axp,p)(na+60 mod 1). (5.2)

Here, A # 0 is the coupling constant, o € (0, 1) irrational is the rotation number, and g € (0,1)
and € € [0,1) are arbitrary numbers. These potentials are called circle map potentials in the
mathematical physics community (cf. [128, 129, 131]) and codings of rotations by people working
in combinatorics on words or symbolic dynamics. The operator (5.1) with potential (5.2) has been
studied in many papers; for example, [33, 34, 58, 71, 73, 74, 84, 128, 129, 131, 136, 137, 142,
144, 233, 234]. One expects the following picture to be true (cf. [70]) : The operator H has purely
singular continuous spectrum which is supported on a Cantor set of Lebesgue measure zero. To
establish this, one has to prove the following three properties of H :

(i) The spectrum o(H) of H has Lebesgue measure zero.

(ii) The absolutely continuous spectrum o,.(H) of H is empty.

(iii) The point spectrum op,(H) of H is empty.
Actually, it is easy to see that (i) implies (ii). However, (ii) is known in great generality while (i) is
not. Namely, it follows from Kotani [151] and Last and Simon [155] that for all parameter values
allowed above (recall A # 0 and « irrational), (ii) holds. Moreover, (iii) is known in many cases. For
example, Delyon and Petritis showed that the point spectrum is empty for every A and 3, almost
every «, and almost every 6 [84]. Hof et al., on the other hand, prove (iii) for every A, «, and f,
and generic @ (i.e., for a dense Gy set) [129]. Thus, properties (ii) and (iii) are well understood.
This is not the case for property (i). Until very recently, there was only one approach to (i). This
approach is based on trace maps and it allowed Bellissard et al. to prove the zero measure property
in the case where o = 3, that is, in the Sturmian case [33] (see also Siit6 [234] for the Fibonacci
case). Their results were extended to the quasi-Sturmian case in [72]. In the non-(quasi-)Sturmian
case, very little is known. The only result, due to Hérnquist and Johansson [131], concerns a small
class which can be shown to be generated by substitutions so that the adaptation [49, 50] of [33] to
potentials generated by substitutions applies. Essentially, the absence of a trace map is the reason
that no other results are known for the non-Sturmian case. A new approach to zero-measure Cantor
spectrum, which is not based on trace maps, was recently developed by Lenz [157]. It is therefore
natural, and was in fact suggested in [157], to try to apply this new approach to the potentials in
(5.2). This new approach shows that linear recurrence allows one to deduce (i). Thus, we are led to
the following question : For which choices of parameter values is V' in (5.2) linearly recurrent ? It
is the aim of this paper to answer this question. In fact, we shall characterize this set of parameter
values. We note that the examples considered by Hornquist and Johansson are linearly recurrent
so that our result contains theirs.

For convenience, we will slightly change the setting from individual sequences to subshifts.
However, at the end of Section 5 we shall clearly state for which parameter values we get property

().
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The organization of the chapter is as follows. In the remainder of this section we will recall
some key notions and state our main result which provides a characterization of the circle map
sequences/subshifts which are linearly recurrent. In Section 2 we will develop the general setup and
in particular recall the connection between LR subshifts and primitive S-adic subshifts. The link
between circle map sequences and interval exchange transformations, and particularly the results of
[5] which will be crucial to our study, will be explained in Section 3. Section 4 contains the proof of
our main result. The application of this theorem to Schrodinger operators is discussed in Section 5.
Appendix A explains how to prove a finite index for some circle map sequences which are not LR.
Finally, in Appendix B we discuss possible generalizations of the approach presented in this study.

5.1.2 Circle maps

Definition 5.1.1. Let (o, 3) € (0,1)2. The circle map corresponding to the parameters
(o, B) is the symbolic sequence U = (un)n>0 defined over the binary alphabet {a,b} by :

. {1 if {na} € 0,4,

0 else.

We will restrict our attention to circle maps where « is irrational and 8 € Z + aZ. The case «
rational is not interesting since the associated circle map is periodic (and hence, in this case, the
correpsonding Schrodinger operator has purely absolutely continuous spectrum which is supported
on a finite union of closed intervals). The case 8 = « gives a Sturmian sequence and, more generally,
the case B € Z + aZ corresponds to quasi-Sturmian sequences and will be not considered in
this paper (see [60, 209]). (Zero-measure spectrum for Schrodinger operators with quasi-Sturmian
potentials was shown in [72]).

Definition 5.1.2. A circle map is called nondegenerate if its parameters satisfy :

- « 18 irrational,

- B &7+ al.

Such a circle map is called admissible if in addition we have a < 3.

We recall that we can associate to a circle map its D-expansion, as it is explained in the first
chapter.

5.1.3 Results

Our main result is Theorem 5.1.3 which gives a characterization of linearly recurrent nondege-
nerate circle map subshifts.

Theorem 5.1.3. A nondegenerate circle map subshift is linearly recurrent if and only if its D-
expansion (an,in)neN satisfies the following : there exists an integer M such that for every integer
n?

(1) ap < M,
(i) G = ng1 = .. =iy =t < M,
(iii) ap =apy1 =...=apt =0=>t < M.

In the following, we will call this condition the (x)-condition.

In particular, the class of LR nondegenerate circle map subshifts contains, but is not equal to,
the circle map subshifts corresponding to parameters (o, 3), where o and 3 lie in the same quadratic
field. This follows directly from the fact proved in [103] that a primitive substitutive subshift is
linearly recurrent and the study lead in section 1.7.

143



In terms of interval exchange transformations, Theorem 5.1.3 is a full geometric generalization
of the following theorem.

Theorem 5.1.4 (Durand [102]). A Sturmian subshift associated with an irrational number o is
linearly recurrent if and only if the coefficients of the continued fraction expansion of a are bounded.

5.2 Definitions and background

5.2.1 Return words

We present here the main definitions concerning the notion of return words introduced in [99].
Let U be a uniformly recurrent sequence over the alphabet A and let u = ujus . . . u, be a nonempty
prefix of U. A return word to u of U is a factor uj; j_1] (= wiuit1...uj 1) of U such that i and j are
two consecutive occurrences of u. The sequence U can be written in a unique way as a concatenation
of return words to u. Let Ry, be the set of return words to u in U. Then U = wyw; ... w; ..., where
w; € Ryy. The fact that U is uniformly recurrent implies that R, is a finite set. We can therefore
consider a bijective map Ay, from Ry, to the finite set {1,2,...,Card(Ry,)} = Avu, where,
for definiteness, the return words are ordered according to their first occurrence (i.e., A[}L(l) is
the first return word wy, AEZ(Q) is the first w; which is different from wq, and so on). The derived
sequence of U on u is the Seéluence with values in the alphabet A, given by

Du(U) = AU,u(wO)AU,u(wl) N AU,u(wi) N
To such a sequence we can associate a morphism O, from Ay, to A* defined by :
Ovu(i) = w;.

We obtain O, (D, (U)) = U. The morphism Oy, is called the return morphism to u of U. When
Avu = A, we will call it return substitution to u of U. When it does not create confusion, we will
suppress the “U” in the symbols Ry, Oy, and Ag,.

Proposition 5.2.1 (Durand [99]). Let u be a nonempty prefiz of U. Then the following holds.
(i) The set Ry is a code and the map O, is one to one.
(ii) Let v be a nonempty prefiz of D, (U). Then there exists a nonempty prefix w of U such that
Dy(Dy(U)) = Dy (U). Moreover, we have Oy 0 O, = O,,.
A derived sequence of a derived sequence is hence a derived sequence.

Definition 5.2.1. Let U be a symbolic sequence defined over the alphabet A starting with the
symbol 1 € A. We introduce the following notation : DO(U) = U and, for n € N, D"+)(U) =
Dy (DM(U)) ; Oy is the identity map and, forn € N, O, = O, o Opm) (0,1

Remark 5.2.2. According to Proposition 5.2.1, we obtain that (D(n))neN is a sequence of derived
sequences of U and (Op)nen is a sequence of return morphisms of U.

5.2.2 LR sequences

Definition 5.2.3. Let A be an alphabet, K a positive integer, and U a sequence over A. The
sequence U is called K-linearly recurrent (K-LR) if it is uniformly recurrent and for all w € Ry,
we have |w| < Klu|. A sequence is called linearly recurrent (LR) if it is K-LR for some K.

Proposition 5.2.2 (DHS [103]). Let U be an aperiodic K-LR sequence over an alphabet A.
Then :
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1. For every n, each factor of U of length n has at least one occurrence in each factor of U of
length (K + 1)n.

2. U is (K + 1)-power free.
3. For every nonempty prefix v of U and for all w € R, we have %|u| < |wl.

5.2.3 Subshifts and LR subshifts

Let A be an alphabet. The topology of AN is given by the product of the discrete topologies on
A. We denote by T the standard shift transformation which associates to each symbolic sequence
U = (ug)k>o the sequence T(U) = (uy)g>1. To a sequence U in A" we associate the dynamical
system (O(U), T), where O(U) is the closure of the orbit of U under the shift. This dynamical system
is called the subshift associated with U. A dynamical system is minimal if it has no nontrivial
invariant closed set. For a subshift associated with a sequence U, minimality of the subshift is

equivalent to uniform recurrence of U.

Definition 5.2.4. A subshift is called primitive substitutive if it contains a primitive substitutive
sequence (i.e., a sequence which is the morphic image of a fized point of a primitive substitution).
A minimal subshift associated with a sequence U is called linearly recurrent (LR) if and only if U

1s LR.

5.2.4 S-adic sequences and S-adic subshifts

Let A be an alphabet, a a letter of A, and S a finite set of substitutions from A to A*. We will
say that a sequence U € A" is an S-adic sequence (generated by (o, )nen € S™ and a) if there exists
a sequence (0, )nen € SN such that U = lim,_,o0 09071 ...0n(aa...). Let U be such a sequence. If
there exists an integer so such that for all b € A and all ¢ € A, the letter b has an occurrence in
Or410r42 ... Orys(c), then U is called a primitive S-adic sequence (with constant sg).

The subshift associated with an S-adic sequence (resp., a primitive S-adic sequence) is called an
S-adic subshift (resp., a primitive S-adic subshift). These notions were introduced by S. Ferenczi
in [112] and by F. Durand in [100].

It was claimed in [100] that a subshift is LR if and only if it is primitive S-adic. In [102], Durand
provides a counterexample and exhibits a primitive S-adic subshift which is not LR. However, LR
does imply primitive S-adic and with an additional condition we can obtain a partial converse given
in Proposition 5.2.3 below.

Definition 5.2.5. Let A be an alphabet and o a substitution on A. The substitution o is called
(b, ¢)-proper if for any letter i in A, o(i) begins with b and ends with c.

An S-adic sequence is called proper if there exist two letters b and ¢ in A such that any
substitution in S is a (b, ¢)-proper substitution. A subshift which contains a proper and primitive
S-adic sequence is called a proper primitive S-adic subshift.

Proposition 5.2.3 (Durand [102]). A subshift (X,T) is LR if and only if it is a proper primitive
S-adic subshift.

5.2.5 Interval exchange transformations

Interval exchange transformations are classical examples of dynamical systems.
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Definition 5.2.6. Let s € N, s > 2. Let o be a permutation of the set {1,2,...,s} and let
A= (A, No,...,As) be a vector in R® with strictly positive entries. Let

S
I =10,|\|[, where |>\|:Z)\,~ and for 1 <i<s, I; = Z)‘j’z)‘j
i=1 j<i o j<i

The interval exchange transformation associated with (\,o) is the map E from I into itself, defi-
ned as the piecewise isometry which arises from ordering the intervals I; with respect to o. More
precisely, if x € I;,
E(z) =z + a;, where a; = Z Ao, — Z)\k.
kE<o=1(i) k<i

We can introduce a natural coding of the orbit of a point under the action of an interval exchange
transformation by assigning to each element of this orbit the number of the interval which contains
it.
Remark 5.2.7. Let us consider an interval exchange transformation E, and U the natural coding
of the orbit of the point 0 under E. The natural coding of the orbit of the point O under the action
of the induced map of E on its first interval is the derived sequence on the letter 1 of U. Moreover,
the associated induced substitution corresponds to the return substitution to 1 of U. In the case of
the Rauzy induction, one does not induce on the first interval but on an interval which is larger.
However, the induction on the first interval can be decomposed into several steps of the Rauzy
induction.

We refer the reader to [201] for information on the useful notion of Rauzy induction for interval
exchange transformations.

5.3 A geometric interpretation

In this section, we investigate the geometric link between Theorems 5.1.3 and 5.1.4.

The symmetric Rauzy induction for two-interval exchange transformations is introduced in [18].
From the study of this induction process, the authors of [18] obtain an S-adic expresion for Sturmian
subshifts. Let 7; and 72 be substitutions on {0, 1} defined as follows :

71(0) =01 and 7»(0) =0
T1(1) =1 TQ(I) = 10.

Proposition 5.3.1. Let a € (0,1) be an irrational number. The Sturmian subshift associated with
a 1s generated by the sequence
nangO iRty T R (0),

where [0;i1 + 1,149,143,14,...] is the continued fraction expansion of c.

The decomposition of the two-interval exchange transformation associated to o under the sym-
metric Rauzy induction is symbolized in Figure 5.1. The fact that « is irrational implies that
this two-interval exchange transformation satisfies the well-known 1.D.O.C. condition introduced
in [145]. It also implies that an orbit under the symmetric Rauzy induction does not ultimately
remain in one of the primitivity subgraphs G; or G5 represented in Figure 5.2.

Moreover, an 1.D.O.C. two-interval exchange is LR if and only if its orbit under the symmetric
Rauzy induction can stay in any of the primitivity subgraphs G; and G2 only for a bounded number
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F1G. 5.1 — The symmetric Rauzy induction graph for two-interval exchange transformations.
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F1G. 5.2 — The primitivity subgraphs for two-interval exchange transformations.

of consecutive induction steps. This last remark provides a geometric interpretation of Theorem
5.1.4.

We present now an analogous study in the case of nondegenerate circle map subshifts. Let us
introduce the following four substitutions, defined over the alphabet {1,2,3}, given by :

o1 02 o3 04
1 — 13 1 — 1 1 — 1 1 — 1
2 — 2 2 — 2 2 — 23 2 — 13
3 — 3 3 — 23 3 — 3 3 — 2

For each integer k, we also consider the following morphism :

dp: {1,2,3)* — {1,0}*
1 — 1,
2 — 10kFL
3 — 10k,

If (Up)nen € {0, 1}V, the sequence (U,)nen is defined by

— J1 iU, =0,
"o ifU,=1.

Having fixed the above notation, we can give the following S-adic expression for nondegenerate
circle map subshifts (see section 1.5).

Theorem 5.3.1. Let us consider nondegenerate parameters (o, 3) € (0,1) and let (ay,in)nen be
the D-expansion associated with (o, B). The circle map subshift associated with parameters (o, )
s generated by the sequence

n

nl;r{:@ (I)L%J H ((UIU;jgg)ij o (040?04)172-]‘) (1)

J=0

if a < B and by

if a > .
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The proofis based on a study of an induction process for three-interval exchange transformations
close to that of Rauzy. We also obtain an analog to Proposition 5.3.1 in the case of nondegenerate
circle map subshifts. Figure 5.3 is the analog of Figure 5.1 and Figure 5.4 is the analog of Figure 5.2.
To a nondegenerate circle map we can associate an 1.D.O.C. three-interval exchange transforma-
tion. The orbit of such an interval exchange transformation under the Rauzy induction does not
ultimately remain in one of the primitivity subgraphs G, Ga, or G35 represented in Figure 5.4.

“Cwr rwms pwe)]

03 4

F1G. 5.3 — The Rauzy induction graph for three-interval exchange transformations.

Moreover, an I.D.O.C. three-interval exchange transformation is LR if and only if its orbit under
the Rauzy induction can stay in any of the primitivity subgraphs G, G2, and G5 only for a bounded
number of consecutive induction steps. This last remark provides a geometric interpretation of the
(x)-condition in Theorem 5.1.3 and will be proved in Section 5.4.

A similar study could clearly be carried out in the general case of an I.D.O.C. interval exchange
transformation. However, the results quickly become hard to read since the complexity of the
equivalent to the (x)-condition increases rapidly (cf. Appendix B).

In this section we have exhibited some similarities between the Sturmian and the circle map
cases. On the other hand, some aspects of the two cases do not have mutual counterparts. The
strategy used to prove Theorem 5.1.4 is the following :

— Exhibit a primitive S-adic expression for Sturmian subshifts generated by an irrational «
when the coefficients of the continued fraction expansion of a are bounded and use this to
establish linear recurrence in this case.

— Show that otherwise a Sturmian sequence contains arbitrarily high powers.

We thus obtain that a Sturmian sequence is LR if and only if it is power free. This equivalence
is also true for some generalizations of Sturmian sequences, namely Arnoux-Rauzy sequences (see
[208]). However, such an equivalence does not hold for circle maps. We can therefore not mimic
the strategy used in the Sturmian case. For example, the circle map sequences with D-expansion
(@n, in)nen, where (ip)nen is the periodic sequence (10)¥, a,, = 1 if n is a power of 2 and 0 otherwise,
are both non-LR and power free (see Appendix A).

5.4 Proof of theorem 5.1.3

The proof of Theorem 5.1.3 is based on Theorem 5.3.1 and Proposition 5.2.3 which states that
a proper primitive S-adic subshift is LR. Our strategy to prove this theorem is the following :
— We exhibit a proper primitive S-adic expression for three-interval exchanges associated with
circle maps whose D-expansion satisfies the (*)-condition (Proposition 5.4.1).
— We prove the existence of a uniform upper bound of the gaps between successive occurrences
of letters in the different derived sequences of an LR-sequence (Lemma 5.4.4).
— Finally, we show that such a uniform bound does not exist for a circle map whose D-expansion
does not satisfy the (x)-condition (Proposition 5.4.2).
For i € {1,2,3,4}, let A; denote the incidence matrix of the substitution o; which has been
defined in the previous section. For every integer k, we write
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FiG. 5.4 — The primitivity subgraphs for three-interval exchange transformations.

Fi = (010503) and Gy, = (0407 04), (5.3)

and for the associated incidence matrices, we write

By, = (A1 A5 A3) and C; = (A4A%A,). (5.4)
Definition 5.4.1. Let (C,D) € M3(R)?, C = (cij), D = (d;;). We say that C > D if ¢;; >
dij, ¥(i,7) € {1,2,3}%. Similarly, we say that C > D holds if ¢; j > d; ;, ¥(i,5) € {1,2,3}>.
Proposition 5.4.1. A nondegenerate circle map whose D-expansion satisfies the (x)-condition is
the image by a morphism of a proper primitive S-adic sequence.

Lemma 5.4.2. If C is a nonnegative matriz in M3(Z), then for every integer k, the following four
mequalities hold :
B,C > C, OB > C, CtC > C, and CC, > C.

Démonstration. This follows directly from By = I3 + A) with A} > 0 and C, = I3 + B}, with
B}, > 0. O
Lemma 5.4.3. Let (ap,in)nen be a D-expansion satisfying the (x)-condition with an integer My
and let S = {Hy:%l,yo f,Z o gij”, ke N}. Then S is a finite set of substitutions and each of its
element is (1,3)-proper.

Démonstration. The set S is clearly finite because the sequence (ay)nen is bounded by M. In view
of (5.3), we obtain for every integer k

F Gk
1 — 13 1 — 12k
2 — 2ktl3 2 5 12ktl
3 — 2k3 3 — 13

Let k£ be an integer and 7 € {1,2,3}. Then Fy(i) ends with 3 and Fj(1) begins with 1. Moreover
Gk (7) begins with 1 and G, (1) ends with 3. It follows thus that each composition of substitutions of
types Fj and G in which the two types both appear is (1,3)-proper. Part (ii) of the (x)-condition
allows us to conclude. O

Proof of Proposition 5.4.1. Let us consider a circle map U whose D-expansion satisfies the (k)-
condition with some integer My. Theorem 5.3.1 provides us with an S-adic expression for this circle
map. Our goal is now to prove that we can extract a proper primitive S-adic expression for U from
this representation.

We can suppose that U is admissible in order to simplify the notation. We have

n

U= 1lim @1 | ] ((e1005 003)" 0 (0400} 000)' ™) (1)
=0

Let
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V= nlggl() H ((01 0y o 03)” o (04007 0 04)17%') (1) ] . (5.5)
§=0
Thus,
U= 15,V (5.6)
and
_ 7’] 1 Z]
= {117 )
We have then
(K+1)My
7 1—i;
V= nl;n;o [T #506s7 )| Q. (5.7)
Jj=kMo
Let
(k}-l—l Mo
S={ [I 706", keN
Jj=kMo

Then Lemma 5.4.3 implies that (5.7) gives us a proper S-adic representation of V.
We have now to prove that this representation is primitive or more precisely that there exists
an integer sp such that for every integer r and all b € {1,2,3} and ¢ € {1,2,3}, the letter b has an

occurrence in
r+so [ (r+1)Mp

Il II # o9 ") | ©.

k=r j=rMp

Or similarly, we have to show that the corresponding product of matrices

r+sg [ (r+1)Mo

(1T sec

k=r j=rMy
is positive, where the matrices By, and Cj, are defined in (5.4). Let us consider the matrix

(7‘+1 My

Mr: H B 1 zj

j=rMoy

By the fact that the D-expansion associated with U satisfies the (x)-condition with the integer M,
we get
351 € {1,2,...,1} suchthat i; =0,
Jj2 € {1,2,...,1} such that ij, =1,
Jj3 € {1,2,...,1} such that a;, > 1.
The previous remark and Lemma 5.4.2 show that at least one of the following inequalities holds :
M, > BoCr,
MT > BICOa

M, > C1 B,
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Now we just have to remark that each element of {ByCy, B1Cy,C1 By, 0081}2 is positive. Therefore,
we obtain primitive S-adicity of our representation with constant sg = 2. We therefore obtain that
U is the image under the morphism <I>L 18| of the proper primitive S-adic sequence V', concluding

the proof. O

Proposition 5.4.2. A nondegenerate circle map subshift whose D-expansion does not satisfy the
(x)-condition is not linearly recurrent.

Since we will work with the derived sequences of a given circle map sequence in our proof of
Proposition 5.4.2, we start off by discussing LR properties of derived sequences of an LR sequence.
Lemma 5.4.4. Let U be a K-linearly recurrent sequence defined over an alphabet A and let w be

a nonempty prefiz of U. Then every word of length at least K?(K + 1) in D, (U) contains all the
elements of A, .

Démonstration. Let w be a factor of U and i € A, = {1,2,...,d}. Then there exists a unique word
w; such that © (i) = w;. By definition we have

Vijie A, |wj|<K|w|

This inequality implies that w; appears in each word of length at least (K + 1)(K|w|), in view of
Proposition 5.2.2. Moreover, again by Proposition 5.2.2, we have

1
Vie A, E|w| < |wj| € Kw|.

The set R, is a code. We thus obtain that the letter ¢+ occurs in each word of length at least
K?(K +1) in D, (U). O

Lemma 5.4.5. Let U be a K-linearly recurrent sequence. Then, for every integer n, we have
Vi€ An, |0n(i)] < K*(K + 1),

where the maps Oy, are introduced in Definition 5.2.1.

Démonstration. Let i be an element of A, and 0,(i) = w;. By definition of the return words and
the sequence D™, the letter 1 has just one occurrence in w; and 1 is the first letter of w;. Then,
1 does not appear in the maximal proper suffix of w;. Lemma 5.4.4 implies that the length of this
suffix is at most K?(K +1) — 1. O

Lemma 5.4.6. Let U be a K-linearly recurrent sequence defined over an alphabet A and let w be
a nonempty prefiz of U. Then the sequence D, (U) is K3-linearly recurrent.

Démonstration. This statement and its proof are very similar in spirit to the previous two lemmas.
Let x be a factor of D, (U). Consider any occurrence of z in D,,(U) and the length of the corres-
ponding return word to z in D, (U) (i.e., the length of the gap between this occurrence of z and
the next, plus the length of z). We use again that R, is a code. Namely, to this occurrence of z
in D, (U) corresponds a word of length at most K - |w| - |z| in U whose return words have length
at most K2 - |w| - |z|. Choose the one that corresponds to this particular occurrence and go back
via Ay, to factors of D, (U). We conclude that the length of the return word to z in question is
bounded by K? - |z|. In the previous steps, we have made repeated use of Proposition 5.2.2. This
shows that D, (U) is K3-linearly recurrent since z and its occurrence were arbitrary. O

Lemma 5.4.7. Let r be a positive integer. Then for every (i1,i2,...,i) € {1,2,3,4}", we have

|04, 004, 0...00;,(123)] > |03, 004, 0... 00y, (123)] + 1.

151



Démonstration. We just have to remark that for each k € {1,2,3,4}, there exists a letter b €
{1,2,3} such that |ox(b)| > 2 and that 1, 2, and 3 occur in oy (123). O

Lemma 5.4.8. Let r be a positive integer and (i1, iz, ... ,i3.11) € {1,2,3,4}3 1. Then there exists
at least one letter b € {1,2,3} such that

‘ail 00, 0...0 aigrﬂ(b)‘ > 7.
Démonstration. According to Lemma 5.4.7, it follows by induction that
‘O‘il ©0j,0...0 O'Z'3H_1(123)‘ >3r+ 1.

The assertion follows immediately. O

Lemma 5.4.9. Let n be an integer, (mg,m1,...,my) € N*, and (lo,l1,...,l,) € {0,1}". Then,
for each b € {1,2,3}, we have

() [T (103 0s) () <1,
(i) |[To ((0109)" o (@100 ~0) )], < 1,

2
(i) ‘H?:o (0407 04) (b)‘3 <1.
Here, |w|; denotes the number of occurrences of the symbol i in the word w.

Démonstration. (i) The incidence matrix associated with the substitution [}, (01097 03) is equal
to J[j_o Bm;, where the matrices By,; are defined in (5.4). For each integer k&, the matrix By is of
the form

X X =
X X ©
X X ©

and so the matrix H?:o By, is of course of the same form. Then, the definition of the incidence
matrix allows us to conclude.

(ii) The incidence matrix associated with H?:o ((0’10’3)lj o (0404)1_lj> is equal to H?:o (B(l)j Céflj).
The matrices By and Cy are of the form

X © X
X = X
X © X

and so the matrix []7_, (BéjCé_lj) is of the same form.

(iii) The incidence matrix associated with the substitution [[7_, (0407 04) is equal to [17=0Cm;»
where the matrices Cy,; are defined in (5.4). For each integer k, the matrix Cy is of the form

X X X
X X X |,
0 0 1
and so the matrix H?:o Cpn; is of the same form, concluding the proof. O
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Proof of Proposition 5.4.2. Let U be a circle map whose D-expansion (ay, i, )nen does not satisfy
the (x)-condition. Let V' be as in (5.5) so that we have (5.6). Let us assume for the moment that
1 — B > « so that V is the derived sequence corresponding to the prefix 1 of U. We will comment
later on the case 1 — 8 < a.

Now assume there exists an integer K such that U is K-LR. We consider four cases.

(i)

(if)

Let us suppose that the sequence (a,)nen is unbounded. Then a direct consequence of the
fact that 05" (3) = 2923, o™ (1) = 13", and that powers propagate by substitution is that U
cannot be (K + 1)-power free. Proposition 5.2.2 thus yields a contradiction.

Let us suppose that the sequence (iy,),en contains arbitrarily long blocks of 1’s. In particular,
there exists an integer ng such that

ino = in0+1 = ... = in0+12K2(K+1) == ]. (58)

We recall that there exists an increasing sequence of integers (kn)nen such that

kn

ov=[I ((oro¥io)” o (ucton)' ™).

Jj=kn-1+1

where Oy is introduced in Definition 5.2.1. This follows from Remark 5.2.7 and the fact that,
as was already observed in [5], certain steps of our induction process correspond to induction
on the first interval of three-interval exchange transformations associated with U. According
to Lemmas 5.4.5 and 5.4.8, the fact that U is K-LR implies that for each integer IV,

knii—ky < 3K*(K +1) +1. (5.9)
Now, let us consider two particular elements of the sequence (ky)nen :
kn, = min {ky,no < ky <ng+ 12K*(K + 1)}
and
kn, = max {kn,ng < kny < ng+ 12K*(K +1)}.

By the inequality (5.9), we obtain that ky, and ky, are well-defined and

kn, —kn, > 6K%(K +1) + 1. (5.10)

Let us introduce the substitution ® = On, 110N, +2...On,. Then,

kn,

0= H ((Ulagjag)ij o (040fj04)17ij) .
Jj=kn,+1

More precisely, using condition (5.8), we have

kv,

O = H (o109 03) . (5.11)

Jj=kn,+1

Proposition 5.2.1 implies that © is a return substitution for U since it is a composition
of return substitutions. Thus there exists a nonempty prefix w of U such that ©® = O,,,.
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According to the inequality (5.10) and Lemma 5.4.8, we obtain that there exists a letter b in
the alphabet {1,2,3} such that

ki, — k
O(F)] > =2 > 2K (K + 1),

and it follows from the equality (5.11) and Lemma 5.4.9 that
©(b) < 1.

But ©(b) is necessarily a factor of D, (U). Hence there exists a factor of ©(b) of length greater
or equal than K2(K + 1) in which the letter 1 does not occur. We obtain finally that there
exists a factor of D, (U) of length greater than or equal to K?(K + 1) in which the letter 1
does not occur. This last remark is in contradiction with the K-LR property of U in view of
Lemma 5.4.4.

(iii) Let us suppose that the sequence (iy)nen contains arbitrarily long blocks of 0’s. Then, we
just have to mimic the above arguments in order to find a return substitution ©' for U and
a letter b in {1,2,3} such that

0/(b)]3 < 1 and |©'(b)| > 2K2(K + 1).

We thus obtain a nonempty prefix w' of U such that D, (U) contains a factor of length greater
than or equal to K2(K + 1) in which the letter 3 does not occur.

(iv) Let us suppose that the sequence (a,)nen contains arbitrarily long blocks of 0. Then, analogous
reasoning gives a return substitution ©” for U and a letter b in {1, 2,3} such that :

|©"(b)|s < 1 and |©"(b)] > 2K*(K + 1).

We find a nonempty prefix w” of U such that D, (U) contains a factor of length greater than
or equal to K?(K + 1) in which the letter 2 does not occur.

Thus we arrive at a contradiction in each case. Recall that we assumed 1 — 8 > « at the
beginning of the proof. Let us now discuss the case where 1 — 5 < «. In this case V in (5.5) is not
the derived sequence corresponding to the prefix 1 of U, that is, Dy (U) # V. In fact, V takes three
values, while 1 has only two return words, 1 and 10. However, for sufficiently large n, it is relatively
easy to see that D™ (U) is one of the sequences obtained in the induction process of [5] (leading to
the representation (5.6)) and hence there is a morphism ¥ such that V = ¥(D™(U)). If we now
again assume that U is LR, then so is D" (U), by Lemma 5.4.6, and hence we get that V is LR.
Now we can derive a contradiction following the steps given above. U

Proof of Theorem 5.1.3. In view of Proposition 5.2.3, Theorem 5.1.3 follows directly from Propo-
sitions 5.4.1 and 5.4.2. O

5.5 Application of theorem 5.1.3 to Schrodinger operators

In this section we apply our main result, Theorem 5.1.3, to discrete one-dimensional Schrodinger
operators with potentials given by circle maps. As explained in the introduction, this is in part
motivated by previous results on their Sturmian counterparts and a recent result of Lenz which
relates aspects of their spectral theory to LR properties.
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A discrete one-dimensional Schrodinger operator acts in the Hilbert space ¢2(Z). If ¢ € ¢?(Z),

then H¢ is given by
(Hep)(n) = ¢(n+1) + ¢(n — 1) + V(n)g(n),
where V' : Z — R. The map V is called the potential.

If Ais an alphabet, T : Z — Z is the standard shift, Q@ C A? is T-invariant (i.e., TQ = Q)
and closed (discrete topology on A and product topology on A?), then Q is called a (two-sided)
subshift. Given such a subshift and a function f : A — R, we define, for w € €0, a potential V =V,
by

Vu(n) = f(wn)
and an operator H, (as above, with this particular potential). It is a standard result that if Q is
minimal, then the spectrum of H, does not depend on w, that is, there is a set ¥ C R such that
o(H,) = X for every w € Q.
A special case of a recent result of Lenz is given in the following theorem.

Theorem 5.5.1 (Lenz [157]). If Q is a linearly recurrent subshift and Q and f are such that the
resulting potentials V,, are aperiodic, then ¥ has Lebesgue measure zero.

Note in particular that the result is essentially independent of the function f. Moreover, it
suffices that at least one V,, is aperiodic. This implies that all V,, are aperiodic.

Our goal is to apply this theorem to circle map subshifts. A circle map generates a two-sided
subshift as follows. If u € {0, 1} is a circle map corresponding to parameters («, (), the associated
subshift is given by

Q= Q45 ={w e {0,1}%: every factor of w is a factor of u}.

If we restrict the sequences in €2 to the right half-line, we get exactly the one-sided subshift that

was introduced and discussed above. By recurrence, the languages associated with the one-sided

and two-sided subshifts are the same. In particular, LR-properties are the same for both subshifts.
Combining our Theorem 5.1.3 and the theorem of Lenz, we obtain the following result.

Theorem 5.5.2. Suppose that u is a nondegenerate circle map corresponding to parameters (o, 3)
whose D-expansion (an,in)nen satisfies the (x)-condition. Consider the associated subshift Q = Q4 5
and, for a nonconstant function f : {0,1} — R, the operators (H,)wecq. Then we have that for every
w € Q, the spectrum of H, has Lebesque measure zero.

It is easy to see that for every 6, the sequence w, = X9 )(na+6 mod 1) is an element of Q, 4.
In other words, Theorem 5.5.2 says that if «, 5 are such that their D-expansion (a,, iy )nen satisfies
the (*)-condition, then the potential V in (5.2) is linearly recurrent for every choice of # and A # 0,
and in this case, the operator H satisfies property (i) from the introduction.

Appendix A

In this section we give a proof (and a little bit more) of the power freeness of the sequence we
consider in the end of the Section 5.3. This proof was suggested by J. Cassaigne [59].
Let us introduce the following two substitutions, defined over {1, 2,3}, given by :

[ = 01030404 g = 0102030404
1 — 13 1 — 13
2 — 1323 2 — 13223
3 — 133 3 — 1323
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where the substitutions o; are defined in Section 5.3. We denote by F the largest language defined
over the alphabet {1,2,3} which satisfies the following three conditions :

- Vwe{l,2,3}, vt e F=w=rc¢,

— Vw € {1,2,3}* and Vz € {1,2,3}, (w2)3w & F,

- 11¢F.
The language F is naturally obtained as the union of all the languages defined over the alphabet
{1,2,3} which satisfy these three conditions.

Lemma 5.5.3. If w € F, then f(w) and g(w) are two elements of F.

Démonstration. Let w be an element of F. We consider three cases to prove that f(w) € F.

1. Assume there exists a nonempty word M such that M* is a factor of f(w). Then, M could
be decomposed in a unique way in zf(v)y, where (z,v,y) € {¢,3,23,33,323} x {1,2,3}* x
{e,1,13,132} and the length of v is maximal with the convention that if v ends with the letter
1, then y # €. We consider two subcases.

(2)

Let us suppose that v = €. Then M = zy and thus

M e {3,33,3313,32313} U {31, 313,3132, 2313, 331, 3231}
U{23,33132,323,323132} U {23132} U {231}.

But M ¢ {3,33,3313,32313} because 33 is always followed by a 1 in f(w). If M €
{31,313,3132,2313,331, 3231}, we obtain that there exists a letter z € {1,2,3} such
that 23 is a factor of w. This gives a contradiction because w € F. The word M cannot
belong to the set {23,33132,323,323132} because 23 is always followed by a 1 in f(w).
M cannot belong to {23132} because the letter 2 is always followed by a 3 in f(w).
Finally, M cannot belong to {231} because the letter 1 is never followed by a 2 in f(w).

Let us suppose that v # ¢. Then

M* = zf(v)yzf(v)yzf(v)yzf(v)y

and necessarily yr = f(z) with z € {£,1,2,3}. If 2 = ¢, then M* = f(v*). The fact
that v does not end with a 1 allows us to infer that v* is a factor of w. We obtain a
contradiction because w € F. If z is a letter, then f((vz)3v) is a factor of f(w). The fact
that v does not end with a 1 shows that (vz)3v is a factor of w. We obtain a contradiction
because w € F.

2. Let us suppose that there exist a word M and a letter z such that (Mz)3M is a factor of f(w).
Then, M can be decomposed in a unique way in z f(v)y, where (z,v,y) € {¢, 3,23,33,323} x
{1,2,3}* x {e,1,13,132} and the length of v is maximal with the convention that if v ends
with the letter 1, then y # €. We obtain that

(M2)*M = wf(v)yzzf(v)yzaf(v)yzzf(v)y,

and necessarily zzy = f(m) with m € {1,2,3} and |m| < 2 because |zzy|; < 2 and the letter
1 has exactly one occurrence in the image of each letter. Again we consider two subcases.

(2)

Let us suppose that |m| = 2. Then there exist two letters a and b such that yzz =
f(ab). But |yl < 1 and |z|; = 0 imply that y = f(a) and z = 1. We get (M2)>M =
zf((vab)3va). If a # 1, then (vab)3va is a factor of f(w) and we obtain a contradiction
because w € F. If a = 1, 2 f((v1b)3v) is a factor of f(w). We recall that zz = 1z = f(b).
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It follows that if b = 2 or b = 3, then x = 323 or x = 33 and thus z is always preceded
by the letter 1 in f(w). This implies that 1zf((v1b)3v) is a factor of f(w). But since
Lz f((v1b)3v) = f((bv1)3bv) and v does not end with the letter 1, it follows that (bv1)3bv
is a factor of w. This is in contradiction with w € F. Finally, if b = 1, then f((v11)3v) is
a factor of f(w). The fact that v does not end with the letter 1 gives that (v11)3v is a
factor of w and thus 11 is a factor of w. We get a contradiction since 11 ¢ F.

(b) Let us suppose that |m| = 1, then (M2)3M = zf((vm)3v)y. In particular, f((vm)3v) is
a factor of f(w). But since v does not end with the letter 1, (vm)3v is a factor of w. We
obtain a contradiction because m is a letter and w € F.

3. Let us suppose that 11 is a factor of f(w). This yields a contradiction immediately because
the letter 1 is always followed by a 3 in f(w) by definition of f.

The proof for g is exactly the same. O

Proposition 5.5.1. A circle map whose D-expansion (an,in)nen satisfies
= (in)nen = (10),
— in, = 0 tmplies a, =0, and
~ ip, = 1 implies a,, € {0,1}

is power free.

Démonstration. Let U be such a circle map and V' be the natural coding of the three-interval
exchange transformation associated with U. Theorem 5.3.1 says that there exists a sequence of
integers (b, )nen such that

U= lim ® 15 (fbogblfb29b3...fb2"(1))

n—o0

and thus
V= lim fhg" fP2g% ... fr(1).
n—o00
With the previous notation, 1 € F. Then Lemma 5.5.3 implies that
fregh gt (1) e F

for every integer n. We thus obtain £(V') C F. This implies that V is 4-power free. Then, in view of
the definition of the morphisms ®, U is clearly power free if L%J >0 (i.e., 1 =8 > ). In the case
where 1 — 8 < a, we can use an argument similar to the one used in the proof of Proposition 5.4.2.
It is relatively easy to see that if a sequence is not power free, then all of its derived sequences
are not power free, either. We have already noticed at the end of the proof of Proposition 5.4.2
that for sufficiently large n, there is a morphism ¥ such that V = ¥(D™)(U)). Now, if we assume
that U is not power free, then D(")(U) is not power free and hence V' is not power free because
morphisms propagate powers. We therefore obtain a contradiction to the 4-power freeness of V
obtained above. O

In particular, we obtain the power freeness of the sequences mentioned in Section 5.3. These
sequences are of course not LR in view of Theorem 5.1.3 and hence they are both power free and
not LR. To the best of our knowledge, these are the first examples of sequences with these two
properties.

We end this appendix with the following conjecture concerning the power freeness of circle
maps.

Conjecture. A nondegenerate circle map is power free if and only if its D-expansion (a,,in)nen
satisfies the following : there exists an integer M such that for every integer n, we have
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- ap < M,

— iy =it = ... =ipenr = Jk, 0 < k <n+ M such that ax # 0.

Appendix B

We present here what would be the analog of the geometric considerations of Section 5.3 in the
case of [.D.O.C. four-interval exchange transformations which lie in the Rauzy class of (4321). The
notion of Rauzy class for an interval exchange transformation was introduced in [201].

Let us introduce the following substitutions, defined on the alphabet {1,2,3,4}, given by

01

L1

=W N

14

34
4

= W N =

N R

02

LT

05

L

14

N =

24
3

= W N =

N R

03

L1

W N =

1
24
3
4

The Rauzy induction graph for the Rauzy class of (4321) is given in Figure 5. The orbit of an
I.D.O.C. four-interval exchange transformation in the Rauzy class of (4321) under the Rauzy induc-
tion cannot be ultimately confined to one of its primitivity subgraphs G, G2, G5 or G4 represented
in Figures 5.6, 5.7, 5.8, and 5.9, respectively. Moreover, an I.D.O.C. four-interval exchange in the
Rauzy class of (4321) is LR if and only if its orbit under the Rauzy induction can stay in any of
the primitivity subgraphs G, G2, G3, and G4 only for a bounded number of consecutive induction

steps.

F1a. 5.5 — The Rauzy induction graph for the Rauzy class of (4321).
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4132

Os
0>

O¢
Os

Oy

4213
O3

F1G. 5.6 — The primitivity subgraph G; for the Rauzy class of (4321).

2431 o,

Oy

o

4213 3241
O3

F1G. 5.7 — The primitivity subgraph G5 for the Rauzy class of (4321).

F1G. 5.8 — The primitivity subgraph G for the Rauzy class of (4321).
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2431 o,

[
O3
Oy

O,

3241
()

F1a. 5.9 — The primitivity subgraph G4 for the Rauzy class of (4321).
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Chapitre 6

Transcendance de nombres réels a
développements réguliers

Dans ce chapitre, nous utilisons la description S-adique des codages de rotations établie au
chapitre 1, pour montrer le résultat suivant : si le développement b-adique d’un nombre réel est un
codage binaire de rotation ou le codage naturel d’un échange de trois intervalles non périodique,
alors ce nombre est transcendant. Ce chapitre correspond & l'article On the transcendence of real
numbers with a regular expansion écrit en collaboration avec Julien Cassaigne! et soumis pour
publication & la revue Journal of Number Theory.

6.1 Definition and results

In the following, a morphism will mean a homomorphism of free monoid. The notion of three-
interval exchange transformation is introduced in the first chapter. We first recall the definition of
the codings of rotations.

Codings of rotations

Let (o, 8) € (0,1)%2. The coding of rotation corresponding to the parameters («,3,z) is the
symbolic sequence u = (uy ), >0 defined over the binary alphabet {0,1} by :

1 if {z +na} €0,5],
Up =
0 else.

When « is rational the sequences obtained are clearly periodic, otherwise the coding of rotation
is said errational. The cases f = a or § = 1 — « give Sturmian sequences and, more generally,
the case 8 € Z + aZ gives to quasi-Sturmian sequences (see [209]). A coding of rotation is called
nondegenerate if its parameters satisfy : « is irrational and 8 € Z + oZ.

Main result

We shall prove the following, extending the result obtained for Sturmian and quasi-Sturmian
sequences in [118] and [13].

nstitut de Mathématiques de Luminy
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Theorem 6.1.1. Let = be a real number and u = (uy,)n>0 be its b-ary expansion. Then the number
x s transcendental if one of the following conditions holds :

— the sequence u is an irrational coding of rotation.
— the sequence u is the natural coding of a non-periodic three-interval exchange transformation.

Remark 6.1.2. If u is a rational coding of rotation or the natural coding of a periodic interval
exchange transformation, then x is obviously a rational number.

Theorem 6.1.1 is obtained via the following combinatorial translation of a result due to Ridout
[207]. We recall that the result of Ridout is an improvement of Roth’s theorem [211] (see also
[168]).

Theorem 6.1.3 (Ferenczi-Mauduit [118]). Let © be an irrational number, such that its b-ary
expansion begins, for every integer n € N, in 0.u,v,v,v),, where u, is a possibly empty word and
where vy, is a non-empty word admitting v!, as a prefiz. If |vy| tends to infinity, lim sup(|u,|/|vn|) <
00, and liminf(|v),|/|vn]) > 0, then © is a transcendental number.

6.2 Proof of Theorem 6.1.1

In the following, we will say that a sequence u satisfies the property P, if any v € O(u) begins,
for every integer n € N, in u,v,v,v,, where u, is a possibly empty word, v,, is a non-empty word
admitting v/, as a prefix, |v,| tends to infinity, lim sup(|u,|/|v,|) < 0o, and lim inf(|v},|/|v,|) > 0. It
thus follows from Theorem 6.1.3 that if u satisfies the property P and if z is an irrational number

whose b-ary expansion is in O(u), then z is transcendental.
For each integer k, let us introduce the following two morphisms :

F Ok
1 — 13 1 — 12k
2 — 2ktl3 9 5y okl
3 — 2F3 3 — 13

Having fixed the above notation, we recall that we can give the following combinatorial structure
for natural codings of i.d.o.c. three-interval exchanges (see section 1.5). This result will play a key
role in the proof of Theorem 6.1.1.

Theorem 6.2.1. Let u be the natural coding of the orbit of 0 under the action of an i.d.o.c. three-
interval exchange. Then, there exist a morphism ¢ defined on {1,2,3} and a sequence (Gn,in)n>0 €
(N x {0,1H", (an)n>0 not ultimately vanishing and (i,)n>0 not ultimately constant, such that :

n

u= lim ¢ I1 (FZ;;'. ogéj”) (1],
§=0

where || means the composition of morphisms from the left to the right.

Let u be the natural coding of an i.d.o.c. three-interval exchange. For every integer k, we
introduce (following the notation of Theorem 6.2.1) the sequence vy, defined by :

n
. 1 1—i;
ve= Jim IT (75 000, )
]:
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We will write v instead of vg and we will denote by ¢ the morphism

¢k=]ﬁ(}—2§ Ogéj_ij>'
=0

It thus follows that v = ¢ (vy).

We first state the following result which gives the key idea to show that a sequence obtained by
a composition of morphisms satisfies the property P.

Lemma 6.2.2. If there exist a pair (w,w') of finite words on {1,2,3} and an increasing sequence
of integers (k;);>o, such that :
— for all l EiN, the word www' appears in vy, with bounded gaps, the bound being independent
of the integer [,
— w' is a prefix of w and either the letters 1 and 3 or the letter 2 appear in w',
then, the sequence u satisfies the property P.

Proof. Let (w,w') be a pair of words and let (k;);>o be an increasing sequence of integers, with the
required properties. Let [ be an integer and let us note w; = ¢y, (w) and w; = ¢y, (w').

It follows from the definition of 7}, and Gy and from the condition on the sequence (an,in)n>0
that |w;| tends to infinity with . Moreover, we easily obtain by induction that for every integer [,

|¢k1(13)| > |¢k1(2)| = ma’x{|¢k1(1)|v |¢k1(2)|a |¢k1(3)|}a (6'1)
which implies
/ . /
ol min {2 19 (90} _ 1 1
|w, | [wl|¢r, (2)] |wl oo |wg | T wl

Let w € O(v). Since v is uniformly recurrent, the word wklwklw;ﬂ occurs in w and its first occur-

. o . . R
rence is at most R; = max {|u|, u € R, wzwlwf}' Then, it just remains to prove that lim sup ﬁ <
’ l—oo |WI

+00. Moreover, we have that R; < max {|¢k1 ()], v e Rvkl,www’} and www' appears with bounded
gaps in vi,. The bound being independent of [, there thus exists a positive ¢ (independent on [)
such that max {|v|, vE Rvkl,(www/)} < c. This implies that R; < c|¢y, (2)| and since |w;| > |y, (2)],

R
it follows that lim sup L < ¢, concluding the proof. ]

[—o00 |wl|

We will also need the following modification of Lemma 6.2.2, where the condition on w' is
relaxed while the one on the sequence (an,%,)n>0 is strengthened.

Lemma 6.2.3. We assume that neither (0,0) nor (0,1)* appear in (an,in)n>0 and that (ap)n>o is
bounded by two. If there exists a pair (w,w') of finite words on {1,2,3} and an increasing sequence
of integers (ki);>o0, such that :
~ for alll € N, the word www' appears in uy, with bounded gaps, the bound being independent
of the integer [,
— w' is a non-empty prefiz of w,
then, every sequence in O(u) satisfies the property P.
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Proof. If 1 and 3 or 2 appear in w', then Lemma 6.2.2 is enough to conclude. Otherwise, at least 1
or 3 appears in w' since it is a non-empty word.

Let us assume that 1 appears in w'. By hypothesis, there exists ¢ such that the word www’
appears in each sequence vy, with gaps bounded by c. Moreover, for every integer [, there exists a
morphism oy, given by a composition of three morphisms of type F; and G, such that v, 3y =
01(Vk, ). Since (an)n>0 is bounded, the set {o;,! € N} is finite and there exists a morphism o, given
by a composition of three morphisms of type Fj and Gy, such that v(;,_3) = o(vy,) for an infinite
number of integers [. It thus follows that there exists ¢ such that the word o(w)o(w)o(w') appears
with gaps bounded by ¢’ in an infinite number of sequences v;. But, since (0,0)3 is not allowed,
o is not equal to G§, implying that 13 or 12 appears in o(1) and therefore in o(w'). The pair
(o(w),o(w")) thus satisfies the condition required in Lemma 6.2.2, hence the result.

If we assume that 3 appears in w’, we can do the same reasoning, applying, instead of G3, that
F3 is not allowed. O

The next step consists in studying the combinatorial structure of sequences obtained by a
composition of morphisms as in Theorem 6.2.1. More precisely, we have to show that such sequences
satisfy the property P and this result will be obtained via Lemma 6.2.2 and 6.2.3. Next, we will
easily deduce Theorem 6.1.1 from Lemma 6.2.4.

Lemma 6.2.4. Let (ap,in)n>0 € (N X {0,10)", with (an)n>0 not ultimately vanishing and with
(in)n>0 not ultimately constant, and let v be the infinite sequence defined by :

n

v = lim H (.7:;; o géj”) (1)

n—00 .
Jj=0

Then, the sequence v satisfies the property P.

Proof. We keep in this proof the notations introduced in the beginning of this section.
e Let us first assume that a block of three consecutive (0,0) (that we will denote by (0,0)3)
appears infinitely often in the sequence (an,in)n>0- Then, at least one of the following holds :

a) there exists j € N* such that (j,0)(0,0)® appears infinitely often in (ay,%n)n>0,

b) there exists j € N such that (4,1)(0,0)3 appears infinitely often in (a,,n)n>0,

c) there exists an increasing sequence of integers (jm)m>0, jm > 3, such that for every m, the block
(jm,0)(0,0)® appears in (@n,in)n>0,

d) there exists an increasing sequence of integers (j,)m>0, jm > 3, such that for every m, the block
(Jm; 1)(0a0)3 appears in (anain)nzo-

a) In that case, we obtain that for an infinite number of £, vj, = (Gj © G3) (Vk+4), which implies
that (127)% appears in v;, with gaps bounded by 35 + 5. In fact, since

GjoGs _
1 o 12
2 (127)312711
3 —  (129)313,

(6.2)

the return words to (127)3 are exactly 127, (127)32 and (127)313. Therefore, the sequence v satisfies
P in view of Lemma 6.2.2 since j > 1.
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b) We obtain as above that for an infinite number of k, v = (F; 0 G3) (v+4). This implies that
(13)% appears in vj with gaps bounded by j + 8. In fact, since

.7:]' o QS’
1 — 13
2 (13)327%13
3 —  (13)3273,

(6.3)

the return words to (13)® are 13, (13)3273 and (13)32/+13. Therefore, the sequence v satisfies P in
view of Lemma 6.2.2.

c¢) In that case, we obtain that for every integer m there exists an integer k such that v, =
(Gj © G3) (Vi4a) and thus, in view of (6.2) and since j, > 3, the word 23 appears with gaps
bounded by 6 in v for an infinite number of integers k, hence v satisfies P.

d) In that case, we obtain that for every integer m there exists an integer k such that v, =
(Fj ©G3) (Vi+a) and thus, in view of (6.3) and since j,, > 3, for an infinite number of integers k,
every factor of v of length greater than 8 contains either (13)% or 23. It follows that every factor of
v of length greater than 10|¢x(2)| — 2 contains either (¢x(13))3 or (¢x(2))3, which implies following
(6.1) that v satisfies P.

The case (0,1)% could be dealt with as above using the symmetry between F| and G.

Now, we can assume without restriction that neither (0,0)® nor (0,1)® appear in (an,in)n>0
since the conditions required to satisfy P are clearly preserved by morphism. This directly implies
that the words 13 and 3% cannot appear in any sequence vy.

e Let us assume that there exists an increasing sequence (k;);>o such that j; = ay, > 3. Then,
Vi, = Fj,(Vi,+1) or Vi, = Gj,(Vi,+1)- Since j; > 3 and 1% and 3? are not factors of v, 1, we obtain
that 23 appears in vy, with gaps bounded by 8, hence v satisfies P.

Now, we can assume without restriction that neither (0,0)* nor (0,1)* appear in (an,in)n>0
and that (a,)n>0 is bounded by two. This implies in particular that we can use Lemma 6.2.3.

e Let us assume that (0,0)? appears infinitely often in (ay, %n)n>0. Then, for an infinite number
of integers k, either v, = (Gj 0 G2) (Vi43) with 1 <j <2, or vip = (F; 0 G3) (V43) with 0 < j < 2,
since (an)n>0 is bounded by two.

In the first case, the word (127)21 appears in v; with gaps bounded by 35 + 4 (< 10 because j
is at most 2) and

GioGy
1 — 12
2 s (129)2120H1
3 —  (129)%13,

hence v satisfies P in view of Lemma 6.2.3.

In the second case, the word 31313 appears in v; with gaps bounded by 7 + 6 (< 8 because
J is at most 2). We obtain that v satisfies P in view of Lemma 6.2.3 (here of course w = 31 and
w' = 3).

The case where (0,1)? appears infinitely often is similar.

We can thus assume without restriction that neither (0,0)? nor (0,1)? does appear in (ay, in)n>0
and that (an)n>0 is bounded by two.
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e Let us assume that ((0,1)(0,0))? appears infinitely often in (an,in)n>0. Then, for an infinite
number of integers k, vy = (Fp o Go)?(Vk44)- Since

(Fo 0 Go)?
1 — 13133
2 — 131331323133
3 — 13133133,

the word 31313 appears with bounded gaps in an infinite number of sequences vi. Lemma 6.2.3
thus implies that v satisfies P.
Just as, we can deal with the case where ((0,0)(0,1))? appears infinitely often.

We can thus assume without restriction that (ay)n>0 is bounded by two and that (ay,)n>0 does
not take consecutively more than three times the value 0. This together with the fact that 1* and
3% do not appear in any v, implies the existence of ¢ such that the letter 2 appears with gaps
bounded by ¢ in v}, for every integer k. In fact, if w is a sequence in which 13 and 33 do not appear
and if j denotes a positive integer, then 2 appears with gaps bounded by 6 in F;(w) and G;(w).

e Let us assume that (2,0) appears infinitely often in (an, %, )n>0- Then, for an infinite number
of integers k, v, = Ga(V,1). Since 23 appears in G3(2), it thus follows that v satisfies P.
Just as, we can deal with the case where (2,1) appears infinitely often.

We can thus assume without restriction that (an)nzo is bounded by one and the existence of ¢
such that the letter 2 appears with gaps bounded by ¢ in v for every integer k.

e Let us assume that (1,0) appears infinitely often in (an,%,)n>0. Then, at least one of the
following holds :
a) the block (1,0)(1,0) appears infinitely often in (an,in)n>0 and then, for an infinite number of
integers k, vi = (G1)?(Vjy2), implying that the word 2122122 (which is a factor of GZ(2)) occurs
with uniformly bounded gaps in infinitely many vy,
b) the block (1,1)(1,0) appears infinitely often in (a,,%n)n>0 and then, for an infinite number of
integers k, vi, = (F1 0G1)(Vk42), implying that the word 3223223 (which is a factor of (F10G1)(2))
occurs with uniformly bounded gaps in infinitely many vy,
c) the block (0,1)(1,0) appears in (ay,,in)n>0 and then, for an infinite number of integers &, vj =
(Fo © G1)(Vky2), implying that the word 32323 (which is a factor of (Fp o G1)(2)) occurs with
uniformly bounded gaps in infinitely many vy,
d) the block (0,0)(1,0) appears in (an,%n)n>0 and then, for an infinite number of integers k, vj, =
(Go © G1)(Vky2), implying that the word 12121 occurs with uniformly bounded gaps in infinitely
many vy. In fact, the word 1212 is a factor of (Gy o G1)(2) and it is always followed by the letter 1.
In each case, Lemma 6.2.3 implies that v satisfies the property P.

The case where (1, 1) appears infinitely often in (a,,in)n>0 is similar and this finishes the proof
of Lemma 6.2.4. O

Proof of Theorem 6.1.1. If u denotes the natural coding of the orbit of 0 under the action of an
i.d.o.c. three-interval exchange, then Theorem 6.2.1 together with Lemma 6.2.4 implies the existence
of a morphism ¢ defined on {1, 2,3} such that u = ¢(v), the sequence v satisfying the property P.
It follows immediately that u satisfies P too and then, the natural coding of the orbit of any point
satisfies the condition required in Theorem 6.1.3, concluding the proof in this case. If u denotes the
natural coding of a non-periodic three-interval exchange which does not satisfy the i.d.o.c., then it
is shown in [5] that u must be quasi-Sturmian and thus the result is already proved in [13].
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If u denotes a nondegenerate coding of rotation of parameters («, 3,0), then it is shown in [5]
that there exists a natural coding of the orbit of 0 under the action of an i.d.o.c. three-interval
exchange v and a morphism ¢ from {1,2, 3} into {1, 2} such that either u = ¢(v) or u = 15(¢(v)),
where S denotes the classical shift transformation. In these two cases, we easily obtain that the
sequence u satisfies P, since it is the case for v and then, any coding of rotation of parameters
(a, B, x) satifies the conditions of Theorem 6.1.3, concluding the proof in this case. Finally, if u
denotes an irrational coding of rotation whose parameters satisfy § € Z + aZ, then it is proved in
[209] that u is also quasi-Sturmian, hence the proof. O
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Chapitre 7

Puissances de mots dans les codages
de rotations

Dans ce chapitre, nous poursuivons I’étude des répétitions intervenant dans les codages de rota-
tions. Nous donnons une caractérisation des codages de rotations dont 'index est fini en fonction de
leur développement D. Ce résultat est a rapprocher de ceux obtenus dans [173, 36] et [243] pour les
suites sturmiennes. Nous exhibons ensuite un ensemble non dénombrable de codages de rotations
n’ayant aucune puissance initiale asymptotique. En particulier, nous prouvons que, contrairement
aux suites sturmiennes, les codages de rotations ne commencent pas tous par des carrés arbitraire-
ment longs. Nous discutons enfin de application de ces résultats & la transcendance des fractions
continues associées aux codages de rotations.

7.1 Quelques définitions et notations

Commencons par rappeler certaines définitions et notations qui nous seront utiles dans la suite.

Définition 7.1.1. Soit w un mot fini et p un entier. On appelle puissance p-iéme de w le mot

On définit alors lindex entier d’un mot infini U, noté ind.(U), comme le supremum des entiers p
pour lesquels il existe un mot w, non vide, tel que wP soit un facteur de U.

On définit également l'index entier asymptotique, noté ind,(U), comme le supremum des entiers p
pour lesquels il existe une suite de mots (wp)n>o telle que, pour tout n (wy)? soit un facteur de U,

et telle que lim sup |w,| = 4o00.
n—00

Ces définitions impliquent naturellement que pour toute suite U,
ind}(U) < ind(U).

Définition 7.1.2. Soit w un mot fini et p un réel strictement positif. On appelle puissance piéme
de w le mot wP = wlPlu od u est le préfize de longueur [(p — |p|)|w|]. Dans la suite, nous noterons
v < u lorsque v est un préfize du mot u.
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On définit l’eposant critique initial d’un mot fini U, noté ice(U), comme le plus grand p pour
lequel il existe un mot non vide w tel que wP < U. L’exposant critique initial d’un mot infini U,
noté ice(U), est alors défini par :

ice(U) = sup ice(Up),

n— 00

ou U, désigne le préfive de longueur n de la suite U.

7.2 Un premier résultat métrique

Les échanges de trois intervalles que nous considérons ici sont toujours associés a la permutation
(321). Ainsi, la donnée d’un élément v du simplexe Az = {(m,y,z) eER,, z+y+z= 1}, définit
naturellement un unique échange de trois intervalles T},. Nous munissons A3 de la mesure induite
par la mesure de Lebesgue sur R3. A tout échange de trois intervalles (et donc & tout élément de
A3) on associe un unique produit infini de matrices H A;, correspondant aux étapes successives

n>0
de Pinduction de Rauzy (voir paragraphe 1.4), ol pour tout entier n, i, € {1,2,3,4}; les matrices
A;, étant définies, comme au paragraphe 1.4, par :

100 100 100 110
Ai=l010], A= 01 1), A3=[01 0], A44=|0 0 1
1 0 1 00 1 01 1 01 0

Etant donné v = (I1,12,13) € As, nous noterons V,, le codage naturel de lorbite du point 0 sous
I’action de T),. Si k désigne un entier, nous avons vu au paragraphe 1.9 qu’il existe un unique couple
(o, B) € [0,1]% tel que le codage de rotation caractéristique associé U (c’est-a-dire, le codage de
parametres («, 3,0)), vérifie o (V,) = U, ou @i est le morphisme défini par :

Pk
1 — 1
3 — 12F

De plus, nous avons déja remarqué au paragraphe 1.9 que si Ej désigne 'application

Ej
A3 — [Oa 1[2

lo+1 I+l
(hyl2,l3) V> <z1+(1ci1)z32+k13’ l1+(}c+12)l2j—kl3> ’
alors (a, 8) est 'image par E} de v. De méme, il existe un unique codage de rotation caractéristique,
U’, de parametres («, 3) tel que U' = aS(pr(Vy)), ou S désigne le shift et S(px(V;)) est la suite
obtenue & partir de S(¢x(V,)) en échangeant les lettres a et b (voir I’équation 1.3). En définissant
I'application Ej, par :

2
A3 — [07 1[2

_ la+13 _ li+la+13
(l1:12,13) ’ (1 zl+(k+1)zz+k13’1 ll+(k+1)lz+kls>’
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on obtient alors que (o, ) = Ej(v). Réciproquement, nous avons montré au paragraphe 1.3 que
pour tout (a, 3) € [0,1[2, il existe un unique entier k tel que le codage de rotation caractéristique
associé, U, vérifie soit U = ¢x(V;,) avec v = E, '(a, B) (lorsque a < f), soit U = aS(px(V,)) avec
v = E,;_l(a, B) (lorsque a > ). Ceci permet d’affirmer que

U (Br(As) U BL(As)) = [0,1[. (7.2)
k>0

Proposition 7.2.1. Pour presque tout v € A3, le codage naturel V, associé a l’échange de trois
intervalles T, vérifie

ind,(Vy) = inde(Vy) = +00.

Démonstration. Soit M = A; A;, . A;, une matrice associée & un chemin, fini et admissible, dans
le graphe d’induction de Rauzy des échanges de trois intervalles (voir figure 1.6). Un résultat de
W. Veech ([244], p. 225) implique alors que, pour presque tout v € A3, M admet une infinité
d’occurrences dans le produit infini associé a I’échange T,. En choisissant le produit admissible
Ar = A1 A5 A3, on vérifie facilement (voir théoréme 1.5.6) que le codage naturel d’un échange de
trois intervalles dont la suite de matrices contient une infinité d’occurences de A posseéde des
puissances k-iémes arbitrairement grandes. Ainsi, pour presque tout v € As, ind}(V,) > k. On en
déduit alors facilement que pour presque tout v € Ag, ind}(V,) = +o0. O

Nous allons déduire de la proposition précédente le résultat suivant.

Proposition 7.2.2. Pour presque tout (au sens de la mesure de Lebesque) (o, B,z) € [0,1[3, le
codage de rotation U de paramétre (o, B,x) vérifie

ind,(U) = ind.(U) = +00.
Démonstration. Considérons I’ensemble F; défini par :
{(e, B) € [0, 1[?, tel que ind}(U) < +o0},

ou U désigne le codage de rotation caractéristique de parameétres («, ). Nous voulons dans un
premier temps montrer que F; est de mesure nulle. Considérons également ’ensemble Fb défini
par :
{v € A3, tel que ind}(V,) < +o0}.
Soient v € A3 et k un entier. Alors, si ind(V,) = 400, les codages de rotations U et U’ associés
respectivement aux parameétres Ei(v) et Ej(v) vérifient ind(U) = ind(U’) = 400, puisque U =
pr(Vo) et U’ = aS(pr(Vo)). Ainsi,

F C U (E(F2) U Ey(Fy)),
k>0

puisque d’apres 'égalité (7.2) :

U (Br(As) U EL(As)) =[0,1]%.
k>0

Or comme F; est de mesure nulle (voir proposition 7.2.1) et que les applications Fj et E; sont
suffisamment réguliéres, il suit que pour tout entier & les ensembles E(F») et E} (F») sont également
de mesure nulle. On en déduit alors directement que F; est un ensemble de mesure nulle.
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Soit (a, 8, x) € [0,1[3, notons U le codage de rotation caractéristique de parametres («, 8) et Us
le codage de rotation de parametres (o, 3, x). Le fait que L(Uy) = L(Us), impliqué par la minimalité
de la rotation d’angle «, entraine que ind}(U;) = ind}(Usz), ce qui acheéve la démonstration. O

Corollaire 7.2.3. Pour presque tout (au sens de la mesure de Lebesque) (a,,z) € [0,1]3, le
codage de rotation U de paramétre (o, B,x) vérifie

ice(U) = +o0.

Démonstration. De méme que nous avons défini 'index entier asymptotique d’une suite U, il est
possible de définir I'index asymptotique de U, noté ind*(U), en considérant des puissances fraction-
naires (comme dans la définition 7.1.2). Lorsque U définit un sous-shift X ergodique, minimal et
de complexité sous-affine, alors la fonction ice est presque partout constante sur X, égale a ind*(U)
(voir [40] pour une démonstration). La proposition 7.2.2 nous permet donc de conclure puisque
ind} (U) < ind*(U). O

Remarque 7.2.4. Ce résultat implique notamment que pour presque tout codage de rotation U,
le nombre réel dont le développement en base b est U est en fait un nombre de Liouville. Un tel
nombre n’est évidemment pas normal en base b, mais on ne peut pas pour autant conclure qu’il
n’est normal dans aucune base (voir [54] pour une preuve de l’existence de nombres de Liouville qui
ne sont normauz dans aucune base). Ainsi, la plupart des nombres réels dont nous avons prouvé
la transcendance au chapitre précédent ne sont pas “nouveaux” et l'intérét du théoréme 6.1.1 est
donc essentiellement di au cas des codages dont lindex est fini.

7.3 Index fini et puissances entieres maximales

Nous allons a présent préciser les résultats métriques que nous venons d’obtenir. Pour cela, nous
voulons estimer 'index d’un codage de rotation en fonction de son développement D.

Définition 7.3.1. Soit k un entier supérieur ou égal & deuz. Un mot infini U est dit sans puissance
k-ieme, si w* € L(U) = w = €. Plus généralement, on dit qu'un mot U a un indez fini si ind,(U) <
400, c’est-a-dire s’il existe un entier k tel que U soit sans puissance k-ieme.

Remarque 7.3.2. Pour toute suite U, ind.(U) < +oo si et seulement si indy(U) < +o0.

Par exemple, il est montré dans [177] qu'un point fixe de substitution primitive a toujours un
index fini. Pour les codages de rotations et les codages d’échanges de trois intervalles, qui sont des
généralisations naturelles des suites sturmiennes, nous cherchons a obtenir des résultats semblables
au théoreme suivant.

Théoréme 7.3.3 (Vandeth [243]). Soit U une suite sturmienne d’angle o = [0;ay,...,ap,...].

Alors U a un index fini si et seulement si a a des quotients partiels bornés. De plus, si a a des
quotients partiels bornés, alors U est sans puissance k-iéme, mais pas sans puissance (k —1)-iéme,
our k = 3 + max ay,.

p + A% in

Le fait qu’une suite sturmienne a un index fini si et seulement si son angle a des quotients partiels

bornés est en fait un résultat antérieur [173].
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7.3.1 Rappels

Commencons par rappeler les notations du chapitre précédent. Soit £ un entier. Considérons
alors les deux substitutions suivantes :

Fi; Gk
1 — 13 ot 1 —s 12k
2 —» 2kt13 2 —s 12k

3 — 2F3 3 — 13
Avec les notations précédentes, nous avons obtenu le résultat suivant (au chapitre 1).

Théoréeme 7.3.4. Soient V' le codage naturel d’un échange d’intervalle satisfaisant a la condition
I.D.0.C. et (an,in)n>0 le développement D associé. Alors,

n

vi=tim (] (#2060, ") (1) ],
=0

ou || désigne la composition des substitutions de gauche d droite.

7.3.2 Le cas des échanges de trois intervalles

Nous proposons de donner, dans le cas des échanges de trois intervalles, I’analogue du théoréme
7.3.3.

Théoreme 7.3.5. Soient V' le codage naturel d’un échange d’intervalles satisfaisant d la condition
I.D.0.C. et (an,in)n>0 le développement D associé. Alors, V a un index fini si, et seulement si, il
exite un entier M tel que :

(1) an < M,
(ii) ip =tpt1=-.. =lpypm—1 = Ik, n <k <n+ M —1 tel que a, # 0.
De plus, s’il existe un entier n tel que ap, = M ou ity = tny1 = ... = inypm—1 et ap = 0, n <

E<n+M-—1, alors V est sans puissance k-iéme, mais pas sans puissance (k — 2)-iéme, pour
k=M+3.

Corollaire 7.3.6. Soient V le codage naturel d’un échange d’intervalle satisfaisant a la condition
I.D.0.C. et (an,in)n>0 le développement D associé. S’il existe un entier M tel que :

(1) anp < M,
(ii) iy =tpt1 = ... =lpspm—1 = Ik, n <k <n+ M —1 tel que a;, # 0,
et sl existe une infinité d’entiers n tels que an = M ou ip = iny1 = ... = iptp—1 €t ar = 0,

n<k<n+4+M -1, alors
M+1<ind,(V) <M +2.

Démonstration. Soit V' le codage d’un échange de trois intervalles satisfaisant les conditions de-
mandées. D’apres le théoreme 7.3.4,

n— 00

_ - i o ;_—ij _ ‘
V = lim };I(J(}"aj Ga, )(1) (7.3)
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Ainsi, s’il existe une infinité d’entiers n tels que a, = M ou iy, = ip41 = ... = iprpr1 et ax = 0,
n < k < n+M —1, alors au moins une des substitutions Fus, G, .7-"6\4 ou Q[]]V[ apparait une infinité de
fois dans le produit (7.3). On obtient immédiatement, par définition de ces substitutions, que dans
ce cas V contient des puissances (M + 1)-iéme arbitrairement longues et ainsi, ind’ (V) > M + 1.
Enfin, d’apres le théoreme 7.3.5, ind. (V') < M +2 et donc a fortiori ind (V') < M +2, ce qui achéve
la démonstration. O

Afin de démontrer le théoréme 7.3.5, nous reprenons une idée introduite dans I’annexe A du
chapitre 5. Pour cela, nous devons tout d’abord définir quatre langages sur alphabet {1,2,3}.

Soit £; le plus grand langage (au sens de l'inclusion), défini sur Palphabet {1, 2,3}, satisfaisant aux
conditions suivantes :

(i) VYwe{1,2,3}, oM e L) = w=c¢,

(ii) Vw € {1,2,3}* et Vz € {1,2,3}, (w2)M 2w & L4,
(iii) 33 € L1 = (21 € Ly et 22 ¢ L),

(iV) 11e L, => (22 ¢ L1 et 23 ¢ ﬁl)

Soit L9 le plus grand langage, défini sur l'alphabet {1,2,3}, satisfaisant aux conditions suivantes :

(i) VYwe {1,2,3}, M3 e L= w=c¢,
(ii) Vw € {1,2,3}* et Vz € {1,2,3}, (w2)M 2w & Lo,
(iii) 33 & Lo.

Soit L3 le plus grand langage, défini sur l'alphabet {1,2,3}, satisfaisant aux conditions suivantes :

(i) Vwe {1,2,3}, oM e L3 = w=c¢,
(ii) Vw € {1,2,3}* et Vz € {1,2,3}, (w2)M 2w & L3,
(iii) 11 & L3.

Ces trois langage sont évidemment inclus dans le langage £ défini sur Palphabet {1,2,3} comme
étant le plus grand langage satisfaisant & la condition :

Vwe {1,2,3}, wM B e Lo w=cC.

Lemme 7.3.7. Soit k un entier, 1 <k < M. Alors,
Fi(L1) C (L1NLyNL3).

Lemme 7.3.8. Soient k un entier positif ou nul, w € Fi(Ly) et z € {1,2}. Alors, si 3wFy(z) €
Fi(L1), il existe un mot w' € {1,2,3}* tel que w = Fy(w').

Démonstration. La preuve découle de la définition de la substitution Fy. U

Démonstration du lemme 7.5.7. Soit k un entier, 1 < k < M. Le fait que £ > 1 implique immédiate-
ment que les lettres 1 et 3 sont isolées dans Fy(L1). Ceci guarantit que Fy (L) vérifie les assertions
(#4i) et (iv) de la définition de L; et les assertions (ii7) des définitions de Ly et L.

Montrons & présent que les assertions (i) et (i7) de la définition de £ sont vérifiées par Fi(Lq).
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(i)

Soit w € {1,2,3}* tel que wM*3 € Fy(Ly). Alors on vérifie aisément qu’il existe un triplet
(z,v,y), © € {6,213,1 <Il< k}, ve{l,2,3}* ye {5,1,21,1 <I<k+ 1}, tel que

w = zFi(v)y. (7.4)

Cette décomposition est unique si v est choisi de longueur maximale et si 3 n’est pas un
préfixe de v. Supposons que w ne soit pas le mot vide. Nous avons alors deux cas & considérer.

(a) Siv = ¢, alors (zy)M*3 € Fr(Ly), ce qui impliquerait, comme |yz|3 < 1, 'existence
d’une lettre z telle que z™*2 € L£;. On obtient une contradiction car zM*2 ne peut
appartenir & £; au vu de l'assertion (7).

(b) Siwv # e, wMT3 admet la décomposition w3 = z(Fy(v)yz)M+2F;(v)y. Comme v ne
commence pas par la lettre 3 et que |yz|s < 1, le lemme 7.3.8 entraine ’existence d’une
lettre a € {1, 2,3} telle que yz = Fj(a). On obtient donc

WM = z(Fy(va)) M F(v)y
= 2F ((va)M2v) y.

Le fait que v ne commence pas par 3 implique alors que (va)M*2v € L, ce qui est
interdit par (¢). En effet, considérons un mot v € {1,2,3}*. Si Fj(u) € Fr(L1) et que u
ne commence pas par la lettre 3, alors u € L.

Soient w € {1,2,3}* et z € {1,2,3}, tels que (wz)M*2w € Fi(Ly). Considérons la décomposi-
tion de w en w = 2F,(v)y (voir (7.4)). Ainsi, (wz)M 2w = z (Fp(v)yzz)M T2 Fi(v)y. Puisque
v ne commence pas par la lettre 3 et que |yzz|3 < 2, le lemme 7.3.8 implique soit 1’existence
d’une lettre a telle que soit yzz = Fi(a), soit 'existence de deux lettres a et b telles que
yzr = Fi(ab).

(a) Siyzz = Fi(a), alors (wz)M 2w = 27, ((va)*2v) y. On obtiendrait donc (3 nouveau en
utilisant que 3 n’est pas préfixe de v) que (va)™*+2v € Ly, ce qui contredirait ’assertion

(b) Siyzz = F,(ab), alors nécessairement z = 3, b = 3 et = 2¥3 car z € {5, 23,1 <1< k}
et y € {e,1,2!,1 <1 <k +1}. On obtient donc (wz)M 2w = 2837 ((va3)M2v) y.

(b1) Sia=1,alors y = 1, ce qui implique (wz)" 2w = 2¥3F, ((v13)M+2v) 13 € Fi(L1),
car la lettre 1 est toujours suivie d’un 3. Ainsi, (wz)M 2w = 2837, ((v13)M*2v1) €
Fi(L1). Comme v ne commence pas par un 3, il vient (v13)M*2v1 € F (L), ce qui
contredit 'assertion (7).

(b2) Sia = 2, alors y = 28! ce qui implique (wz)M 2w = 2837, ((v23)M2v2) €
Fi(L1), car 2811 est toujours suivi d’un 3. Comme v ne commence pas par un 3, il
vient (v23)M+202 € F(L1), ce qui contredit I’assertion (ii).

(b3) Si a = 3, alors comme z = 23, soit 3(v33)M*2v € L;, ce qui est impossible
d’aprés (ii) car 3(v33)M+2y = (3v3)M+23v, soit 2(v33)M+2v € L. Ce dernier cas
est également & éliminer. En effet, comme v ne commence pas par 3, 2v admet soit
21 soit 22 comme facteur. Comme 33 serait aussi un élément de L, cela contredirait
(id).

]
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Lemme 7.3.9. Soit k un entier, 1 <k < M. Alors,

gk(ﬁl) C (ﬁl NLyN £3) .

Démonstration. La preuve est analogue a celle donnée pour la substitution Fj. Cela vient de la
symétrie entre les substitutions Fj, et Gi, pour lesquelles le role des lettres 1 et 3 est simplement
échangé. Ainsi, la place prépondérante de la lettre 3 dans la démonstration précédente est cette fois
occupée par la lettre 1. Afin de guider le lecteur nous rappelons tout de méme ’analogue du lemme
7.3.8 (voir lemme 7.3.10) ainsi que la décomposition suivante des mots dans Gi (L), analogue de
celle donnée en (7.4). Soit w € {1,2,3}*, tel que wM*3 € G,(L). Alors, il existe un triplet (z,v,y),
S {6,3,2l,1 <I<k+ 1}, ve{l,2,3}* ye {6,12l,1 <Il< k}, tel que
w = zGk(v)y.

O

Lemme 7.3.10. Soient k un entier positif ou nul, w € Gi(Ly1) et z € {2,3}. Alors, si Frp(z)wl €
Fi(L1), il existe un mot w' € {1,2,3}* tel que w = Gi(w').

Démonstration. La preuve découle de la définition de la substitution Gj. ]

Lemme 7.3.11. Soit k un entier, 1 < k < M. Alors,

Fe(L2) C (L1NLs).

Démonstration. Nous rappelons que la substitution ]—'é“ est définie par :

i

1 — 13k
— 23k

3 — 3

Cette définition implique qu’aucun des mots 11, 21 et 22 n’appartient au langage Fé“(ﬁg). En
particulier, F¥(Ly) vérifie les assertions (iii) et (iv) de la définition de £ et 'assertion (i44) de la
définition de L3.

Montrons & présent que les assertions (z) et (i7) des définitions de £; et L3 sont vérifiées par
FE(Ly).

(i) Soit w € {1,2,3}*, tel que wM+3 € FF(Ly). Alors on vérifie aisément qu’il existe un triplet
(z,v,y), © € {6,31,1 <I<k+ 1}, ve{l,2,3}*, ye€ {8,1,131,231,1 <I<k+ 1}, tel que

w = zFi(v)y. (7.5)

Cette décomposition est unique si v est choisi de longueur maximale et si 3 n’est pas un
préfixe de v. Supposons que w ne soit pas le mot vide. Nous avons alors deux cas a considérer.

(a) Siwv =g, alors (zy)M*3 € FF(Ls). Siy = ¢, alors 3M+2 € FF(Ly), ce qui est impossible
car 33 € L9. Comme clairement z ne peut étre le mot vide, on obtient I’existence de
a € {1,2} telle que soit zy = F¥(a), soit yr = FF(a3). Dans le premier cas, on aurait,
puisque a est différent de 3, que a™*? € Ly, ce qui est impossible d’apres (7). Dans
le second cas, le méme raisonnement donne (a3)™*2a € L, contredisant & nouveau
Passertion (i7).
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(b) Siwv # ¢, wM*3 admet la décomposition wM+3 = z(FF (v)yz) 27 (v)y. Comme v ne
commence pas par 3 et que |yz|; + |yz|2 < 1, le lemme 7.3.8 entraine 1’existence d’une
lettre a € {1,2,3} telle que soit yz = F¥(a) € FF(Ls), soit yz = FF(a3) € FEF(L2).
Dans le premier cas, on aurait (va)™*2v € Lo, ce qui est impossible. Dans le second cas,
on obtiendrait, puisqu’alors a # 3, (va3)M*2va € Ly, ce qui est interdit par (i7).

(ii) Soient w € {1,2,3}* et z € {1,2,3}, tel que (wz)M*+2w € F¥(Ly). Considérons la décomposi-
tion de w en w = zFF(v)y. Alors, (w2)M 2w = 7 (.7-"6“(1))3/,296)M+2 F¥(v)y. Puisque v ne
commence pas par 3 et que |yx|; + |yz|z < 2, deux cas sont & considérer. Il existe une lettre
a € {1,2,3} telle que soit yzz = F¥(a), soit yzo = FF(a3).

(a) Siyzz = Ff(a), alors (w2)M 2w = 2F} ((va)”2v) y. On obtiendrait donc (& nouveau
en utilisant que 3 n’est pas préfixe de v) que (va)M*2v € L1, ce qui contredirait 'assertion
(i1).

(b) Si yzz = FF(a3), alors nécessairement a # 3 car 33 € L.

Soit y # ¢ et alors Ff ((va3)M2v)y € FF(Lsy) implique FF ((vad)™2v) Fi(a) €
FE(Ly). T suit (va3)M+2va € L3, ce qui est impossible.

Soit y = e, alors z = 381 et 3FTLEE ((va3)MT2v) € FF(L>) implique donc Dexis-
tence d'une lettre b € {1,2}, telle que FF(b3)FF ((vad3)M*2v) € FF(L2). On en déduit
(3va)M*23y € Ly, ce qui contredit (i4).

O

Lemme 7.3.12. Soit k un entier, 1 < k < M. Alors,

GE(L3) C (L1 NLy).

Démonstration. Pour les raisons invoquées dans la preuve du lemme 7.3.9, la démonstration est
identique & celle que nous venons de présenter, si ce n’est qu’il faut & nouveau échanger les roles
des lettres 1 et 3. O

Démonstration du théoréme 7.3.5. Soit V le codage naturel d’un échange d’intervalles satisfaisant
la condition I.D.O.C. et (Gn,in)nzo le développement D associé. Supposons qu’il existe un entier
M tel que :

(i) an < M,

(ii) ip =tpt1=-.. = lpypm—1 = Fk,n <k <n+ M — 1 tel que a; # 0.
Considérons alors les ensembles de substitutions suivants :

Si={Fi G 1<k <M}, S ={Ff, 1<k<M} et Sy={gf, 1<k<M}.

D’apres le théoreme 7.3.4 et les conditions vérifiées par le développement (ap, %, )n>0 associé & V,
nous pouvons affirmer qu'il existe une unique suite de substitutions (0,)n>0, 0, € S1 U S2 U S,
telle que :
V = lim ooy ...0,(1), (7.6)
n—0o00

avec la condition
o € Sy = Ok+1 Q Sy et o € S3 = Ok+1 Q Ss.
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Les lemmes 7.3.7, 7.3.9, 7.3.11 et 7.3.12 impliquent que pour tout entier n
o071 - - - Un(l) € (ﬁl ULy U £3) C L,

ce qui montre que V' ne contient pas de puissance (M + 3)-iéme.

De plus, s’il existe un entier n tel que ap, = M ou 4y, = 41 = ... = iptm—1 €t ap = 0,
n <k <n+ M — 1, alors au moins une des substitutions Fys, Grr, F ou G apparait dans la
composition (7.6). On obtient immédiatement, par définition de ces substitutions, que dans ce cas
V' contient des puissances (M + 1)-iémes, ce qui acheve la démonstration. O

7.3.3 Le cas des codages de rotations

Nous cherchons a présent a caractériser les codages de rotations dont 'index est fini en fonction
de leur développement D. En particulier, nous allons démontrer le résultat suivant, conjecturé dans
[7] (et également au chapitre 5).

Théoréme 7.3.13. Soient U un codage de rotation de paramétres (o, 5, ) et (an,in)n>0 le dévelop-
pement D associé. Alors, U a un index fini si et seulement s’il exite un entier M tel que :

(1) an < M,
(ii) ip =tpt1=-.. =lpypm—1 = Ik, n <k <n+ M —1 tel que a, # 0.
De plus, s’il existe une infinité d’entiers n tels que an = M o ip =ipy1 = ... = inypm—1 et ap =0,

n<k<n+4+M -1, alors
M+1<ind;(U) <M +3.

Corollaire 7.3.14. Tout codage de rotation contient des carrés arbitrairement longs. De plus, il
existe des codages de rotations qui ne contiennent aucune puissance 4-iéme arbitrairement longue.

Afin de prouver ce résultat, nous allons bien sir nous servir du théoréme 7.3.5, mais il est également
nécessaire d’utiliser les liens que nous avons déja exhibés entre les codages de rotations et les codages
d’échanges de trois intervalles. Pour cela, nous devons tout d’abord prouver le lemme suivant.

Lemme 7.3.15. Une suite U uniformément récurrente a un index fini si et seulement si toutes
ses suites dérivées ont également un index fini. Plus précisément, pour toute suite dérivée V, les
inégalités suivantes sont vérifices

indy (V) <indi(U) < indi(V) + 1.

Démonstration. Soient U une suite définie sur 'alphabet A et u un facteur de U. Alors, il existe
un morphisme ¢,,, appelé morphisme dérivé, tel que @, (D, (U)) = U, ott Dy (U) est la suite dérivée
de U en u. Ceci implique

ind?(D,(U) < ind?(U).

En particulier, si U a un index fini, alors toutes ces suites dérivées ont également un index fini.

Notons a présent r le nombre de mots de retour sur w ; il existe alors des mots vy, vo,..., v,
éventuellement vides mais tous distincts, définis sur A tels que :

Pu
B={1,2,....,r} — A
) — U
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Supposons que U admette des puissances (k + 1)-iémes arbitrairement grandes et considérons un
mot w suffisamment long tel que w*~1 € L(U). Le fait de choisir w suffisamment long guarantit
qu’il existe au moins deux occurrences de v dans w (car U est uniformément récurrente). Le mot
w admet alors la décomposition suivante :

w = Ty (v)Yy,

ou z est un suffixe strict d’'image de lettre par ¢,, v € B est un mot non vide, et ou y est un
préfixe strict d’image de lettre par ¢,. Ainsi, w = z (o4 (v)yz)* 0, (v)y. Le fait que Pensemble des
mots de retour sur u forme un code (voir [99]) nous permet d’affirmer qu’il existe une unique lettre
i € B telle que yz = ¢, (7). Il vient alors que le mot ¢, ((vi)*) est un facteur de U et donc par
définition des suites (et des morphismes) dérivés (vi)* est nécessairement facteur de D,(U). On
obtient finalement que indy (D, (U)) > ind;(U) — 1 ou encore

ind’(U) < ind? (D, (U)) + 1.

O

Démonstration du théoréme 7.3.13. Soit V le codage d’un échange de trois intervalles. Notons alors
(Va)n>1 la suites des codages des échanges d’intervalles obtenus par I'induction de Rauzy & partir
de V. Alors, il existe, pour tout entier n, des substitutions o, telles que o, (V,,) =V et donc

ind}(V,,) < ind;(V). (7.7)

Soit U un codage de rotation caractéristique de parametres (o, ). Au chapitre 5, nous avons
déja remarqué que si V est le codage de ’échange de trois intervalles associé a U, alors il existe un
entier n tel que V,, soit une suite dérivé de U. En fait, lorsque a < 1 — § la suite V est elle-méme
une suite dérivée de U. D’apres le lemme 7.3.15 et 'égalité (7.7), il vient

ind*(V) < ind*(U) < ind*(V) + 1. (7.8)

Le corollaire 7.3.6 permet alors de conclure. ]

Remarque 7.3.16. L’inégalité ind,(U) < ind (V) + 1 donnée en (7.8) n’est plus vérifiée si l'on
remplace ind, par ind,. En effet, lorsque a < B, U = (V) avec k = L%J, o étant définie en
(7.1). Dans ce cas, on verifie aisément que ind.(U) > k, indépendamment de la valeur de ind(V').

7.4 Exposant critique initial et fractions continues transcendantes

Dans le chapitre précédent, nous nous sommes intéressés a la transcendance de nombres réels
admettant un développement b-adique trop régulier. Une problématique similaire peut étre envi-
sagée avec le développement en fractions continues (voir paragraphe 0.2.7). Nous rappelons ici la
condition combinatoire de transcendance obtenue dans [14], dans le cadre particulier, mais suffisant
pour notre étude, des sous-shift uniquements ergodiques. Cette condition est ’analogue, pour les
fractions continues, de celle de Ferenczi-Mauduit utilisée au chapitre 6.

Théoréme 7.4.1 (Allouche-Davison-Queffélec-Zamboni). Soit © un nombre réel non qua-
dratique dont le développement en fractions continues est noté U. Alors, si le sous-shift engendré
par U est uniquement ergodique et si ice(U) > %, O est un nombre transcendant.
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La présence de puissances dans le développement en fractions continues d’un nombre réel permet
donc d’en déduire sa transcendance. La grande différence avec I’étude menée au chapitre précédent
est que cette fois les puissances doivent étre initiales (c’est-a-dire préfixes du développement U).
Ainsi, les hypotheses requises pour appliquer le théoréme 7.4.1 sont beaucoup plus rigides que celles
permettant d’utiliser le théoreme 6.1.3. Nous allons d’ailleurs exhiber des codages de rotations et
des codages d’échanges de trois intervalles ne satisfaisant pas & ces conditions.

7.4.1 Facteurs carrés initiaux

Pour montrer la transcendance des fractions continues sturmiennes et quasi-sturmiennes, les
auteurs de [14] utilisent la propriété suivante, dont une démonstration peut étre trouvée dans [14],
[40] ou [71].

Proposition 7.4.2. Toute suite sturmienne commence par des carrés arbitrairement longs.

Nous allons voir, comme l'illustre la proposition 7.4.3, que cette propriété n’est pas vérifiée par tous
les codages d’échanges de trois intervalles.

Proposition 7.4.3. Soient V' le codage naturel d’un échange de trois intervalles satisfaisant a
la condition 1.D.O.C. et (an,in)n>0 le développement D associé. Alors V' admet un facteur carré
comme préfixe si et seulement s’il existe un entier n tel que ['une des deux conditions suivantes soit
vérifiée :

(i) ap =1in =0,

(ii) ip = ipt1 = 0.

Afin de démontrer la proposition 7.4.3, nous suivrons une idée similaire & celle utilisée pour
obtenir le théoréeme 7.3.5. Pour cela, nous devons tout d’abord définir trois langages sur 'alphabet

{1,2,3}.

Soit £ le plus grand langage, défini sur l'alphabet {1,2,3}, satisfaisant aux conditions suivantes :
(i) Yu€ Ly, w?<u=w=c¢,

(i) 11¢ L1,
(
(

i) Vu € L1, w <u=1<w,
iv) Yu € Ly, wlw2 £ u.

Soit L9 le plus grand langage, défini sur l'alphabet {1,2,3}, satisfaisant aux conditions suivantes :

(i) Yu€ Ly, w?> <u=w=c¢,
(ii) 11 & Lo,
(iii) Yu € Lo, w <u=1<w.

Ces deux langages sont évidemment inclus dans le langage £ défini sur Palphabet {1,2,3} comme
étant le plus grand langage satisfaisant a la condition :

Vue L], w?<u=w=c¢.

Lemme 7.4.4. Pour tout entier k,

.7:19(£2) C (El N [,2) .
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Démonstration. Soit k un entier, nous rappelons que la substitution Fj est définie par :

F
1 — 13
2 —» 2ktl3
3 — 2F3

Le langage Fj(L2) vérifie donc trivialement les assertions (4z) et (4i7). Supposons qu’il existe deux
mots u et w dans Fj(L2) tels que wlw2 < u. Si w = ¢, on obtiendrait que 12 € Fj(Ls) ce qui
est impossible. Si # ¢, alors (i7¢) implique que 1 < w et donc 11 € Fi(Ls3), ce qui contredit (ii).
L’assertion (7v) est donc vérifiée. Supposons & présent qu’il existe deux mots u et w, non vides, dans
Fi(L2) tels que ww < u. Alors, d’apres (iii), on obtient 1 < w, puis w = Fi(1)w' car ww € Fi(Ls).
Ainsi, ww = Fi(1)w' Fr(1)w', ce qui entraine P'existence d’un mot v tel que w = Fi(1v). Le mot
v ne peut étre vide et v ne peut finir par la lettre 1 car sinon 11 appartiendrait & Fj(L2). Or si
a € {2,3}, alors Fi(wa) € Fi(L2) implique wa € Ly, pour tout mot w. Nous pouvons appliquer ce
raisonnement au mot lvlv, ce qui conduit & une contradiction car Lo vérifie (7). O

Lemme 7.4.5. Pour tout entier k strictement positif,

Gr(L1) C Lo.

Démonstration. Soit k un entier strictement positif, nous rappelons que la substitution G est
définie par :

Gk
1 — 12k
2 — 12kt1
3 — 13

Le langage G(L1) vérifie donc trivialement les assertions (i7) et (ii¢). Supposons qu’il existe deux
mots u et w, non vides, dans Gx(L1) tels que ww < wu. Alors, d’apres (7i7), on obtient 1 < w,
puis w = Gg(1)w' car ww € Gi(L1). Ainsi, ww = Gi(1)w'Gx(1)w', ce qui entraine l'existence d’un
mot v tel que w = Gi(1v). Le mot v ne peut étre vide car sinon soit 11 soit 12 appartiendrait &
Gr(L1). Supposons que v finisse par la lettre 1, alors il existerait un mot v’ tel que Gi(1v'11v'1) €
Gr(L1). Ceci impliquerait que soit le mot 1v'11v'1, soit le mot 1v'11v'2 appartiendrait & £y ce qui
contredirait 'une des assertions (i) et (iv). Le mot v ne peut donc admettre 1 comme suffixe. Or, si
a € {2,3}, alors Gx(wa) € Gx(L1) implique wa € L1, quel que soit le mot w. Nous pouvons appliquer
ce raisonement au mot lvlwv, ce qui conduit & une contradiction car £; vérifie (7). O

Démonstration de la proposition 7.4.3. Soient V le codage d’un échange de trois intervalles et
(@n,in)n>0 le développement D associé. D’apres le théoreme 7.3.4,

n

V=1lim (] (f,i; ogij"'f‘) . (7.9)

n—00 .
Jj=0

Considérons les deux ensembles de substitutions suivants :
Sl :{fk, kZO} et ng{gk, kZ 1}.
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Si de plus V' vérifie les hypothese de la proposition, & savoir s’il n’existe aucun entier n tel que
Gn = tp = 0ou iy = ip1 = 0, alors il existe une unique suite de substitutions (O'n)nz(), on € S1USs,
telle que :

V = lim ogoy ...0,(1), (7.10)

n—o0
avec la condition
o € Sy = Ok+1 € So.

Les lemmes 7.4.4 et 7.4.5 impliquent que pour tout entier n
0001 ...0n(l) € Ly C L,

ce qui montre que V n’admet aucun carré comme préfixe.

De plus, s’il existe un entier n tel que a, = i, = 0 ou 4, = 7,41 = 0, alors soit la substitution
Go, soit la substitution G,, G,, +1 apparait dans la composition 7.9. Les mots Gy(1) et Gq,Ga, +1(1)
admettant des carrés pour préfixes, on en déduit le résultat recherché. O

La proposition 7.4.3 permet d’obtenir rapidement les résultats suivants.

Proposition 7.4.6. Soient V le codage naturel d’un échange d’intervalle satisfaisant a la condition
I.D.0.C. et (an,in)n>0 le développement D associé. Alors V admet des facteurs carrés initiaus
arbitrairement longs si et seulement s’il existe une infinité d’entiers n tels que l'une des deux
conditions suivantes soit vérifiée :

(i) ap =1ip =0,

(ii) iy =ipt1 = 0.

Démonstration. La condition imposée sur le développement (ay,%,)n>0 est nécessaire d’apres la
proposition 7.4.3. En adaptant le raisonnement proposé & la fin de la preuve de la proposition 7.4.3,
on obtient que cette condition est suffisante. ]

Corollaire 7.4.7. Presque tout échange de trois intervalles (au sens de la mesure de Lebesgue
induite sur Asz) commence par des carrés arbitrairement longs.

Démonstration. 11 suffit d’utiliser le résultat de W. Veech rappelé dans la preuve de la proposition
7.2.1. O

Corollaire 7.4.8. Pour presque tout paramétre (o, B,z) € [0,1[>, le codage de rotation associé U,
vérifie ice(U) > 2.

Démonstration. 1l suffit de reprendre les arguments donnés dans la preuve de la proposition 7.2.2.
O

Corollaire 7.4.9. Soient U = (Un)nZO un codage de rotation caractéristique associé au dévelop-
pement (an,in)n>0 €t V = (vn)n>0 le codage de I’échange de trois intervalles associé a ce méme
développement. S’il existe une infinité d’entiers n tels que l'une des deux conditions suivantes soit
vérifice :

(i) ap =1in =0,

(ii) in =lnt1 =0,

alors les deux réels [0;ug, Uy, ... Uy ...] et [0;v9,01,...,0,...] sont transcendants.

Démonstration. Le résultat découle directement du corollaire 7.4.7 et du théoreme 7.4.1. O
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7.4.2 Mots sans puissance initiale

Le but de ce paragraphe est d’exhiber des codages de rotations (et des codages d’échanges de
trois intervalles) pour lesquels on ne peut pas appliquer le théoreme 7.4.1. Plus précisément, nous
allons démontrer le résultat suivant.

Théoréme 7.4.10. Il existe un nombre non dénombrable de codages de rotations U vérifiant

ice(U) = 1.

Afin de prouver ce théoréme, considérons (l,)n>0 et (kn)n>0 deux suites d’entiers strictement
positifs. La substitution o, = G, o ]—'é“" est alors définie sur l'alphabet {1,2,3} par :

On
1 > 12l (13)kn
2 120F1(13)kn

3 — 13.
n—1
Posons alors 9, = H ok, ou [] désigne la composition des substitutions de gauche & droite.
k=0

Notre but est d’étudier ’exposant critique initial de la suite V = lim ),(1). Dans la suite, nous
p q )
n—0o00

n— 00

n—1

noterons Vj;) = lim (H 0k> (1), de sorte que 9;(V(;)) = V. Remarquons également que pour tout
k=1

choix de suites (I,,)n>0 et (k,)n>0, la suite V est le codage naturel d'un échange de trois intervalles.

Remarque 7.4.11. Par définition de oy, si by (w) <V alors w < Viy).

Définition 7.4.12. Soit k un entier strictement positif. Le préfize de longueur k de la suite V', noté
Vi (ne pas confondre avec V(k)), est appelé puissance initiale optimale s’il admet la décomposition
sutvante :

A(u,w) € {1,2,3}*, I(a,b) € {1,2,3}2, a # b tel que

(i) Vi = uawu,

(i) Vis1 = Vib,

(iii) ice(Vy,) = 1+ 4

luaw]

11 existe donc une suite strictement croissante d’entiers (ny) k>0 telle que
{Va,» k € N} = {v, v puissance initiale optimale de V'}

et donc telle que
ice(V') = sup ice(Vy,,). (7.11)

k—o0

Lemme 7.4.13. Soit k un entier tel que Vi, admette la décomposition suivante : I(u, w) € {1,2,3}%,
A(a,b) € {1,2,3}2, a # b telle que

(1) Vi = vawu,

(ii) Vo1 = Vib.
Alors, soita=1etb=2, soita=2 et b=3.
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Démonstration. Les cas (a = 1,b = 3) et (a = 3,b = 1) sont clairement & éliminer puisque
11¢ L(V).

Supposons que a = 2 et b = 1. Il suit alors que v est nécessairement non vide, commence par
la lettre 1 et admet 120 comme suffixe. Ceci entraine donc l'existence de u; tel que u = 01(u1)12l°
et de wy tel que w = 2(13)¥ 0 (wy). Ainsi, V; = o1 (u12wiuy) et donc d’apres la remarque 7.4.11,
u12wyuy serait un préfixe de V{;) vérifiant les hypotheses requises pour V et de longueur strictement
inférieure ; en itérant ce procédé on aboutit finalement & une contradiction.

Le cas o a = 3 et b = 2 est similaire. O

Lemme 7.4.14. Soit k un entier tel que Vi vérifie les hypothéses du lemme 7.4.13. Si a = 1 et
b=2 alors An € N et m € {1,2,3}* tels que :

(i) 3(13)kn—1 < m,

(i) w = (120 )ah, 1 (120-1) . apy(1201)1200,

(iii) w = 3(13)F " p1 (3(13)%1 7). 4hn—1 (3(13)Fn=1 71 )¢hy ().
Démonstration. Sia =1 et b= 2, alors il suit que nécessairement 12/ est suffixe de u et 3(13)*0~!
est préfixe de w. Ceci entraine I'existence d’un mot u; tel que u = (u1)12l0 et d’'un mot w; tel que
w = 3(13)* =g (wy). On obtient de plus que Vj, = 91 (ug Lwyuy )12 et donc que vy (ug lwyug)1202 <
U. Ainsi, d’apres la remarque 7.4.11, uilwv12 < V et |ui| < |u|. On peut donc itérer ce procédé
jusqu’a ce que la longueur de wu,, soit minimale, c’est-A-dire u,, = 12¢. On obtient alors le résultat
recherché avec m = w,,. ]

Lemme 7.4.15. Soit k un entier tel que Vi, vérifie les hypothéses du lemme 7.4.13. Si a = 2 et
b=3 alors In € N et m € {1,2,3}* tels que :

(i) 2i»=1 <m,

(ii) U= ";[)n(l)@bn—l(l) s ¢1(1)1,

(iil) w = 2l (13)kogpy (21 (13)F1) .. 4py_ 1 (201 (13)Kn=1)ep,, (m).

Démonstration. Sia = 2 et b = 3, alors il suit que nécessairement 1 est suffixe de u et 201 est
préfixe de w (puisque 1 est également préfixe de u). Ceci entraine 'existence d'un mot u; tel que
u =11 (u1)1. Si de plus uy est non vide, c’est-a-dire si u # 1, alors il existe un mot w; tel que soit
w = 20071 (13)koghy (wy), soit w = 20 (13)k0ehy (wy).

Dans le premier cas, on aurait Vi, = 1)1 (uq lwyuq)1, ce qui impliquerait que Vi1 = 91 (u1 1lwiug3)
(car par hypothese Vi1 = Vi3) et donc d’apres la remarque 7.4.11, on aurait ujlwju3 < V. Ceci
est impossible puisque 11 ¢ L(V).

Il vient donc w = 2 (13)*04p; (w) et ainsi Vi = v (u12wu;)1. Comme Vi y = V43, il vient
ui2wiu13 <V avec |ui| < |u|. On peut alors itérer ce procédé jusqu'a ce que la longueur de u,, soit
minimale, c’est-a-dire u,, = 1, d’ou le résultat avec m = w,,. O

Lemme 7.4.16. Pour tout entier n, posons :

Ut n = P (120 )th 1 (120-1) L qpy (1271) 1200,
wy = 3(13)k0~Lepy (3(13)F1 1) L ahy, (3(13)Fn 1,
U2,n = ’(,bn(l)?,/)n,l(]_) e 1/)1(1)1 et

W, = 210 (13)Koqpy (2 (13)k1) ... ap, (2027 1).

Alors, w1 plwy purp <V et ugp2ws yuzy, < V.

184



Démonstration. (1) Une récurrence immédiate montre que pour tout entier n,

ul,nlwl,n = 7/)n+l(1) et Uiy < T/Jn+1(2).

Ainsi,
urplwi Uiy < Py (12) < V.

(77) De méme que précédemment, une récurrence immédiate montre que pour tout entier n,

U 2w, = P (127) et ugpn < 1, (13).

Ainsi,
U2,n2w2,n1}2,n < ¢n+1(12l”13) <V

Lemme 7.4.17. Considérons les suites (€1,n)n>0 €t (€2,n)n>0 définies respectivement par :
u
€1n = I+ | 1,n| )
|U1,n1w1,n|
et |
u
en =1+ 20 .
|u2,n2w2,n|
Alors,
ice(V) = max {lim sup ej ,, limsup 62,71} .
n—0o0 n—00
Démonstration. D’apres les lemmes 7.4.13, 7.4.14, 7.4.15 et ’égalité 7.11 :
ice(V) < max {lim sup e, limsup ez,n} .
n— o0 n—0o00
De plus, le lemme 7.4.16 implique
ice(V') > max {lim sup e, limsup ez,n} ,
n—oo n—oo
ce qui acheve la preuve. O

Démonstration du théoréme 7.4.10. Nous rappelons tout d’abord que pour tout entier n,

[n(13)] 2 [0 (2)] = [¢n(1).

Comme I, [, (2)| < |95 (127)] < (In 4+ 1)|2pn (2)] et 40, (3(13)%n=1)| > (ky, — 1)]2h,(2)], il vient :

n

Y Ui+

limsup (e; ) <1+ njzo .
n—0o00
Z(lj + kj — 1)
=0



Et comme |9, (2 (13)%7)] > |9, (25~ 1)| > (I, — 1)[4p,(2)], il vient :

limsup (e2,n) <1+ —; o

n—00 Z(l] _ 1)

j=0

Ainsi, si les suites (I,)n>0 et (kn)n>0 sont choisies telles que I, = o(k;,), le lemme 7.4.17 implique
ice(V)) = 1. On obtient donc 'existence d’un nombre non dénombrable de codages d’échanges de
trois intervalles ayant un exposant critique minimal.

Considérons & présent une telle suite V. Alors, pour tout entier m, la suite U = ¢,,(V) est
un codage de rotation, ¢, désignant le morphisme de I’équation (7.1). Si m est choisi strictement
positif, alors on vérifie que ice(V') = 1 implique ice(U) = 1, ce qui conclut la démonstration. O

Remarque 7.4.18. Si les suites (In)n>0 et (kn)n>0 sont choisies constantes (respectivement égales
al et k), alors on obtient des codages dont les paramétres appartiennent ¢ un méme corps quadra-
tique et que l’on peut donc calculer explicitement. Dans ce cas, on a toujours ice(U) > 1, mais en
choisissant | suffisament grand et k grand devant I, on obtient quand méme des codages de rotations
explicites avec un exposant critique initial inférieur strictement a % et donc pour lesquels on ne peut
appliquer le théoréeme 7.4.1. Par exemple, en utilisant ['algorithme présenté dans 'appendice B, on
montre que le codage de rotation caractéristique U associé au couple de paramétres quadratiques

(a 785 — /25277, 1037 169#25277)

1882 » B= 1882 205474

admet le développement D périodique suivant : (12,0)(0,1)145. En reprenant le raisonnement de la
preuve du théoréme 7.4.10, on montre que U vérifie ice(U) < % Le théoréme 7.4.1 ne peut donc
étre appliqué a U.
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Appendice A

Nous récapitulons dans cet appendice quelques éléments de comparaisons entre codages de rota-
tions sturmiens, quasi-sturmiens et non dégénérés (c’est-a-dire, pour lesquels f ¢ Za mod 1). Nous
avons choisi de présenter ces éléments sous forme d’un tableau afin d’obtenir un bilan synthétique.
Les propriétés qui sont évoquées ici de facon compacte et abrégée, ont toutes été clairement définies
auparavant.

La premieére partie du tableau est consacrée aux propriétés communes de ces trois classes de
codages. Dans la seconde partie du tableau, nous mettons en évidence plusieurs points de divergence
qui conduisent & penser que si codages sturmiens et quasi-sturmiens sont trés proches, les codages
non dégénérés ont eux une nature combinatoire, arithmétique et dynamique qui leur est réellement
propre.
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Codages sturmiens

Quasi-sturmiens

Non dégénérés

Points communs

Dynamique : expression S-adique idem idem
explicite
Codages caractéristiques : « quadratique idem «a quadratique
(substitutifs) B e Qa)
Index : infini presque idem idem
stirement
Exposant critique : infini presque idem idem
initial strement
Transcendance
en base entiere : oui oui oui
Transcendance
des fractions continues : oui oui ?
Divergences
Complexité : p(n)=n+1 p(n) <n+k p(n) =2n, n > ny
caractérise ces suites ne les caractérise pas | ne les caractérise pas
Dynamique : échanges de 2 échanges de 3 échanges de 3
intervalles intervalles non 1.D.O.C. | intervalles I.D.O.C
Equilibre : équilibrés C-équilibrés totalement
déséquilibrés
Discrépance : bornée bornée non bornée
Linéaire
récurrence : LR <= index fini LR <= index fini LR < index fini
Puissances carrés arbitrairement carrés arbitrairement 3 U telle que
initiales : longs longs ice(U) =1
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Appendice B

Nous donnons dans cet appendice plusieurs programmes écrits en langage MUPAD et destinés
a la vérification de critéres algorithmiques introduits au cours de cette thése.

Programme 1 Ce premier programme calcul simplement le D-développement associé & un couple
(e, 8) € [0, 1.

//Donnée des paramétres
print(alpha) ; alpha :=(sqrt(5)-1)/2;
print(beta) ;Beta :=(sqrt(5)+5)/10;
//Initialisation du développement
nbredetours :=[] : branchement :=[] :
//Calcul de la partie entiére
partent :=0 :

while partentj=(float(expr(1-Beta)/expr(alpha))) do

partent :=partent+1 :

end_while :
print(partiecntiere); partent := partent — 1;
//Calcul des coordonnées de ’échange de trois intervalles associé
vectd :=Dom : :Matrix(Dom : :Complex)([[(Beta-alpha)/Betal,[(1-partent*alpha-Beta)/Betal,
[(Beta+(partent+1)*alpha-1)/Betal]) :
//Calcul des 10 premiers termes du développement
vect :=vectd : r :=1:

while rj=10 do

if float(expr(vect[1])) ; float(expr(vect[3])) then

k:=0:
while kj=(float(expr(vect[2])/expr(vect[1]-vect[3]))) do k :=k+1 : endy hile :
k:=k-1:

vectl :=vect[1] :
vect[1] :=-vect[2]+(k+1)*(vect[1]-vect[3]) :
vect[2] :=vect[2]-k*(vect1-vect[3]) :
vect[3] :=vect[3] :
somme :=vect[1]+vect[2]+vect[3] :
for i from 1 to 3 do vect[i] :=vect][i]/(somme) : end_for :
nbredetours :=nbredetours.[k] :
branchement :=branchement.[1] :
else
k :=0:
while kj=(float(expr(vect[2]) /expr(vect[3]-vect[1]))) do k :=k+1 : end_while :
k :=k-1:
vect2 :=vect[2] :
vect[1] :=vect[1] :
vect[2] :=vect[2]-k*(vect[3]-vect[1]) :
vect[3] :=-vect2+(k+1)*(vect[3]-vect[1]) :
somme :=vect[1]+vect[2]+vect[3] :
for i from 1 to 3 do vect[i] :=vect[i]/(somme) : end_for :
nbredetours :=nbredetours.[k| : branchement :=branchement.[0] :
end.if :
r:=r+1:
end_while :
//Affichage du développement

print(tours) ; nbredetours ; print(branche) ; branchement ;
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Programme 2 Etant donné un développement D ultimement périodique (sous forme d’un produit
de matrices) et un entier k, ce programme calcul 'unique couple de parametres admissibles (a, 3)
admettant ce développement et tel que L%J =k.

//CHEMIN PERIODIQUE D’INDUCTION
//Définition des matrices d’induction

A1l := Dom : :Matrix(Dom : :Complex )( [[1,0,0],[0,1,0],[1,0,1]] )
A2 := Dom : :Matrix(Dom : :Complex )( [[1,0,0],(0,1,1],[0,0,1]] ) :
A3 := Dom : :Matrix(Dom : :Complex )( [[1,0,0],(0,1,0],[0,1,1]] ) :
A4 := Dom : :Matrix(Dom : :Complex )( [[1,1,0],[0,0 1],[0,1 0]]) :
A5 := Dom : :Matrix(Dom : :Complex )( [[1,0,0],[0,1,0],[0,0,1]] )

print(”Partie non périodique”); NP :=
print(”Partie périodique”); P :=:
print(”partie entiére”); part :=;
//Calcul des coordonées de I’échange d’intervalles auto-induit
linalg : :charpoly(P,x) :
RES :=linalg : :eigenvectors(P) :
Max :=max(float(expr(RES[1][1])),float(expr(RES[2][1])),foat(expr(RES[3][1]))) :
for i from 1 to 3 do
if float(expr(RES]Ji][1]))=Max then
Valp :=RES[i][1];
Vectp :=RESJi][3][1];
end; f :
endyor :
print(” Coordonnées de ’échange auto-induit”); Vectp ;
print(” Coordonnées de I’échange initial”) ;NP*Vectp ;
Vectinit :=NP*Vectp :
print(” Alpha”) ;
Alpha :=simplify(expr((Vectinit[2]4 Vectinit[3])/(Vectinit[1]+(part+2)*Vectinit[2] +(part+1)*Vectinit[3])),sqrt) ;
print(”Beta”) ;
Beta :=simplify(expr((Vectinit[1]+Vectinit[2]4+Vectinit[3])/(Vectinit[1]+(part+2)*

Vectinit[2]+ (part+1)*Vectinit[3])),sqrt) ;

Programme 3 Etant donné un couple de parametres admissibles («, 3), appartenant & un méme
corps qudratique. Le développement D associé est alors ultimement périodique. Les données d’entrée
sont («, B) et le développement D (sous forme de deux produits de matrices, partie périodique et
partie non périodique). Ce programme calcul alors les quantités

+
lim sup M et liminf% wa (@, 5),
n—soo  logn n—oco  logn

introduites aux chapitre 2. Il indique de plus si 'intezrvalle [0, 5] est & restes majorés ou minorés
pour la suite (na),>o. Ce programme comprend plusieurs procédure, toute appelées par la procédure
finale.

non_periodique :=proc(k,chemin)
local phi,sigma,i,rg,tau,taus, j;
begin
sigma :=array(1..4) :
for i from 1 to 4 do sigmali] :=array(1..3) ; end_for :
sigma(1] :=[[1,3),12},3]
sigmal2] :=([1],(2],[2,3]]
sigmal(3] =([1],[2,3],(3])
sigmald] =[[1],[1,3],(2]];
rg ::nops(chemm) :
if rg=0 then tau :=[[1],[2],[3]];
else
tau :=sigmalchemin[rg]]; rg :=rg-1 :
while rg;0 do
for i from 1 to 3 do
tau-1[i] :=[];
for j from 1 to nops(tau[i]) do

)
)
)
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tau_1[i] :=tau_1[i].sigma[chemin[rg]][tau[i][j]];
end_for :
end_for :
tau :=tau-1 : rg :=rg-1;
end_while :
end._if;
phi[1] :=[1]; phi[2] :=[1,2]; phi[3] :=[1];
for i from 1 to k do
for j from 2 to 3 do philj] :=phi[j].[2]; end_for;
end_for;
for i from 1 to 3 do
tau_1[i] :=[]; for j from 1 to nops(tau[i]) do tau_1[i] :=tau_1[i].phi[tau[i][j]]; end_for :

end_for :
phi :=tau_1 : return(phi) ;
end_proc :

periodique :=proc(chemin)
local sigma,i,rg,tau,j;
begin
sigma :=array(1..4) :
for i from 1 to 4 do sigmali] :=array(1..3) ; end_for :
sigmall] :=[[1,3],[2],[3]];
sigma[2] :=[[1],[2],(2,3]];
sigmal3] :=[[1],[2,3],/3]]
sigmal4] :=[[1],[1,3],[2]];
rg ::nops(chemm) :
tau :=sigma[chemin[rg]];
rg :=rg-1
while rg;0 do
for i from 1 to 3 do
tau_1[i] :=[];
for j from 1 to nops(tauli]) do
tau_1[i] :=tau_1[i].sigmalchemin|[rg]][tau[i][j]];
end_for :
end_for :
tau :=tau-1 :
rg :=rg-1;
end_while :
return(tau) ;
end_proc :

poidsl :=proc(beta,phi)
local i,poids,j;

begin
for i from 1 to 3 do
poids[i] :=0;
for j from 1 to nops(phili]) do
if phi[i][j]=1 then
poidsl[i] :=poidsl[i]+1;
else
poids[i] :=poids[i]-(beta/(1-beta)) ;
end_if;
end_for;
end_for;
return(poids) ;
end_proc :

prefixes :=proc(sigma)
local i,pref,j;
begin

for i from 1 to 3 do
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prefli][1] :=[];
for j from 1 to nops(sigmali]) do
pref[i][j-+1] :=pref[i][l.[sigmalijl};
end_for;
end_for;
return(pref) ;
end_proc :

automate :=proc(pref)
local i,j,k,l,m;
begin
for i from 1 to 3 do
for j from 1 to 3 do
automli][j] :=[];
for k from 2 to nops(pref[i]) do
if preff] k] [nops(pref[i][K])]=j then
m :=[];
for 1 from 1 to nops(pref[i][k])-1 do
m :=m.[pref[i][k][1]];
end_for;
autom(i][j] :=[op(autom[i][j[);m];
end_if;
end_for;
end_for;
end_for;
return(autom) ;
end_proc :

matrice :=proc(chemin)
local A,i,rg,mat;
begin
A :=array(1..4) :
for i from 1 to 4 do A[i] :=Dom : :Matrix(Dom : :Complex ) ;

end_for :
AT1] := Dom : :Matrix(Dom : :Complex )( [[1,0,0],[0,1,0],[1,0,1]] ) :
A[2] := Dom : :Matrix(Dom : :Complex )( [[1,0,0],[0,1,1],[0,0,1]] ) :
A[3] := Dom : :Matrix(Dom : :Complex )( [[1,0,0],[0,1,0],[0,1,1]] ) :
A[4] := Dom : :Matrix(Dom : :Complex )( [[1,1,0],[0,0,1],[0,1,0]] ) :

rg :=nops(chemin) :
mat :=Dom : :Matrix(Dom : :Complex )( [[1,0,0],[0,1,0],[0,0,1]] ) :
for i from 1 to rg do
mat :=mat*A [chemin][i]];
end_for;
return(mat) ;
end_proc :

poids2 :=proc(mat,pl)
local valp,vald,valmin,Max,Min,i,M,j,cond;nit, lambda, poids;
begin
valp :=linalg : :eigenvalues(mat) :
Max :=max(float(expr(valp[1])),float(expr(valp[2])),float(expr(valp[3]))) :
for i from 1 to 3 do
if float(expr(valp[i]))=Max then
vald :=valpli] ;
end.if :
end_for :
Min :=min(float(expr(valp[1])),float(expr(valp[2])),float(expr(valp[3]))) :
for i from 1 to 3 do
if float(expr(valp[i]))=Min then
valmin :=valpli] ;
end.if :
end_for :
M :=Dom : :Matrix(Dom : :Complex )( [[1,1,1],[vald,l,valmin],[vald?, 1, valmin?]]);
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cond.init := Dom : :Matrix(Dom : :Complex ) :
for i from 1 to 3 do for j from 1 to 3 do
cond-init[i,j] :=[(mat°)[i, 7], mat[i, 5], (mat*)[3, j]] :
end_for : end_for :
for i from 1 to 3 do for j from 1 to 3 do
lambdali,j] :=simplify(expr((M( — 1) % cond;nit[i, j])[2]), sqrt);
end_for : end_for :
for j from 1 to 3 do
poidsl[j] :=0;
for i from 1 to 3 do
poids[j] :=poids[j]+pl[i]*lambdali,j];
end_for;
end_for;
return(poids,vald) ;
end_proc :

boucle :=proc(autom,p2)
local M,m,i,j,k,M1,minl,min2,min3,max1,max2,max3,l;
begin
M:=0:m:=0:
for i from 1 to 3 do
for j from 1 to nops(automli][i]) do
M1 :=0;
for k from 1 to nops(autom][i][i][j]) do
M1 :=M1+p2[autom][i][i] [j][k]];
end_for :
if float(expr(M))=max(float(expr(M)),float(expr(M1)))
then M :=M; else M :=M1;
end.if :
if float(expr(M))=min(float(expr(M)),float(expr(M1)))
then M :=Mj; else m :=M1;

endif :
end_for :
end_for :
for i from 1 to 3 do for j from 1 to 3 do
minl :=infinity jmax1 :=-1*infinity ;
for k from 1 to nops(automl[i][j]) do
M1 :=0;

for 1 from 1 to nops(automl[i][j][k]) do
M1 :=M1+p2[autom][i]j] [k][1]];

end_for;

if float(expr(max1))=max(float(expr(max1)), float(expr(M1)))
then maxl :=max1; else maxl :=M1;

end.if :

if float(expr(minl))=min(float(expr(minl)), float(expr(M1)))
then minl :=minl; else minl :=M1;

endif :
end_for;
min2 :=infinity ;max2 :=-1*infinity ;
for k from 1 to nops(autom][j][i]) do
M1 :=0;

for 1 from 1 to nops(automlj][i][k]) do
M1 :=M1+p2[autom][j][i] [k][1]];
end_for;
if float(expr(max2))=max(float(expr(max2)), float(expr(M1)))
then max2 :=max2; else max2 :=M1l;
end.if :
if float(expr(min2))=min(float(expr(min2)), float(expr(M1)))
then min2 :=min else min2 :=M1 ;
end.if :
end_for;
M :=max((maxl+max2)/2,M); m :=min((minl+min2)/2);
end_for; end_for;
max1 :=-1*infinity ;minl :=infinity ;
for i from 1 to nops(autom|[1][2]) do
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M1 :=0;

for j from 1 to nops(autom|[1][2][i]) do
M1 :=M1+p2[autom[1][2][i][j]];

end_for;

if float(expr(max1))=max(float(expr(max1)),float(expr(M1)))
then max1 :=maxl ; else maxl :=M1;

end.if :

if float(expr(minl))=min(float(expr(minl)),float(expr(M1)))
then minl :=minl; else minl :=M1;

end_if :
end yor;
max2 :=-1*infinity ;min2 :=infinity ;
for i from 1 to nops(autom|[2][3]) do
M1 :=0;

for j from 1 to nops(autom|2][3][i]) do
M1 :=M1+p2[autom[2][3][i][j]];

end_for;

if float(expr(max2))=max(float(expr(max2)),float(expr(M1)))
then max2 :=max2; else max2 :=M1;

end.if :

if float(expr(min2))=min(float(expr(min2)),float(expr(M1)))
then min2 :=min2; else min2 :=M1;

end_if :
end_for;
max3 :=-1*infinity ;min3 :=infinity ;
for i from 1 to nops(autom|[3][1]) do
M1 :=0;

for j from 1 to nops(autom|3][1][i]) do
M1 :=M1+p2[autom[3][1][i][j]];
end_for;
if float(expr(max3))=max(float(expr(max3)),float(expr(M1)))
then max3 :=max3; else max3 :=M1;
end.if :
if float(expr(min3))=min(float(expr(min3)),float(expr(M1)))
then min3 :=min3; else min3 :=M1;
end._if :
end_for;
M :=max(M,(max1+max2+max3)/3) ; m :=min(m,(minl4+min24+min3)/3); max1 :=-1*infinity ;min1 :=infinity ;
for i from 1 to nops(autom|[2][1]) do
M1 :=0;
for j from 1 to nops(autom[2][1][i]) do
M1 :=M1+p2[autom[2][1][i][j]];
end_for ;
if float(expr(max1))=max(float(expr(max1)),float(expr(M1)))
then max1 :=maxl ; else max1l :=M1;
end.if :
if float(expr(minl))=min(float(expr(minl)),float(expr(M1)))
then minl :=minl ; else minl :=M1;

end_if :
end_for;
max2 :=-1*infinity ;min2 :=infinity ;
for i from 1 to nops(autom|3][2]) do
M1 :=0;

for j from 1 to nops(autom|[3][2][i]) do
M1 :=M1+p2[autom[3][2][i][j]];

end_for;

if float(expr(max2))=max(float(expr(max2)),float(expr(M1)))
then max2 :=max2; else max2 :=M1;

end.if :

if float(expr(min2))=min(float(expr(min2)),float(expr(M1)))
then min2 :=min2; else min2 :=M1 ;

end.if :
end_for;
max3 :=-1*infinity ;min3 :=infinity ;
for i from 1 to nops(autom|[1][3]) do
M1 :=0;

for j from 1 to nops(autom[1][3][i]) do
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M1 :=M1+p2[autom[1][3][i][j]];
end_for;
if float(expr(max3))=max(float(expr(max3)),float(expr(M1)))
then max3 :=max3; else max3 :=M1;
end.if :
if float(expr(min3))=min(float(expr(min3)),float(expr(M1)))
then min3 :=min3; else min3 :=M1;
end.if :
end_for;
M :=simplify(max(M,(max1l+max2+max3)/3)); m :=simplify(min(m,(minl+min2+min3)/3));
return(M,m) ;
end_proc :

final :=proc(alpha,beta,cheminl,chemin2)

local k,phi;
begin
print(”alpha”= alpha) ; print(”beta”= beta) ;
k :=0:
while kj=(float(expr(1-beta)/expr(alpha))) do k :=k+1 : end-while :
k :=k-1;

phi :=nonperiodique(k, cheminl);
sigma :=periodique(chemin2) ;
pl :=poidsl(beta,phi) ;
pref :=prefixes(sigma) ;
auto :=automate(pref) ;
mat :=matrice(chemin2);
p2 :=poids2(mat,p1)[1];
fin :=boucle(auto,p2) ;
limsup :=simplify(expr((1-beta)*fin[1]/In(poids2(mat,p1)[2])),sqrt) ;
liminf :=simplify (expr((1-beta)*fin[2]/In(poids2(mat,p1)[2])),sqrt) ;
print(”limsup” =simplify(expr(limsup),sqrt)) ;
if limsup=0 then
print(”l’intervalle est & restes majorés”);
end_if;
print(”liminf” =simplify(expr(liminf),sqrt));
if liminf=0 then
print(”l’intervalle est & restes minorés”);
end_if;

end_proc :

Programme 4 Etant donné une substitution o, ce programme vérifie dans un premier temps si o
est primitive et si 8 = 1. Il calcul ensuite la constante A, intervenant dans les théoremes 3.1.3 et
4.2.1. Il permet ainsi de savoir si une substitution est “dégénérée” ou non. La encore, ce programme
est composé de plusieurs procédures qui sont appelées dans la procédure finale.

matrice :=proc(sigma,d)
local M,i,j,k,l,m;
begin
M :=matrix(d,d,0);
for k from 1 to d do
for i from 1 to d do
M][i,k] :=0;
for j from 1 to nops(sigmalk]) do
if sigmalk][j]=i then M[i,k] :=M][i,k]+1;
end_if;
end_for;
end_for;
end_for;
return(M) ;
end_proc :
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positive :=proc(M,d)
local i,j;
begin
for i from 1 to d do for j from 1 to d do
if MJi,j];=0 then return(FALSE) ; end_if;
end_for; end_for;
return(TRUE) ;
end_proc :

primitive :=proc(M,d)
local k;
begin
for k from 1 to 10 do
if positive(M* , d)thenreturn(T RU E); end_if;
end_for;
return(false) ;
end_proc :

admissible :=proc(M,d)
local racd,racu,valp,valpn,i;
begin
racd :=0; racu :=0;
valp :=linalg : :eigenvalues(M) : valpn :=numeric : :eigenvalues(M) :
for i from 1 to nops(valp) do
if abs(valpn[i]); 1.0 then racd :=racd+1; end.if;
if simplify(expr(valp[i]))=1 then racu :=racu+1; end.if;
end_for;
if racu=1 then else return(FALSE) ; end.if;
if racd=1 then return (TRUE) else return(FALSE) ; end.if;
end_proc :

ortho :=proc(M,d)
local theta,i,vectp,lambda,lambda2,f;
begin
vectp :=numeric : :eigenvectors(M) ; theta :=0;
for i from 1 to nops(vectp[1]) do
if abs(vectp[1][i]);abs(theta)
then theta :=vectp[1][i] ;m :=i;
end_if;
if abs(vectp[1][i]-1);0.0000001 then
for k from 1 to d do lambda2[k] :=vectp[2][k,i] ; end_for;
end_if;
end_for;
for i from 1 to d-1 do for j from 1 to d do
if i=j then f[i][j] :=1; else f[i][j] :=vectp[2][i,m]/(vectp[2][i,m]-1);
end_if;
end_for; end_for;
return(f) ;
end_proc :

isnotin :=proc(j,mot)
local i;
begin
for i from 1 to nops(mot) do
if j=mot[i] then return(FALSE) ; end_if;
end_for;
return(TRUE) ;
end_proc :
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ordonne :=proc(M)
local valpl,valp,i,j;
begin
valpl :=numeric : :eigenvectors(M) ; valp[1] :=0;
for i from 1 to nops (valpl[1]) do
valp[1] :=simplify(max(abs(valp[1]),abs(valp1[1][i])));
tab :=[i];
end_for;
for i from 2 to nops(valp1[1]) do
valpli] :=0;
for j from 1 to nops(valpl[1]) do
if isnotin(j,tab) then
if abs(valp1[1][j])-abs(valp[i-1]);0.0000001 then
if abs(valp1[1][j]);abs(valp[i]) then valp[i] :=valp1[1][j]; end-if;
end_if;
end_if;
end_for;
for j from 1 to nops(valp1[1]) do
if valp[i]=valp1[1][j] then tab :=tab.[j]; end_if;
end_for;
end_for;
return(valp) ;
end_proc :

mat_inv :=proc(M,valp,d)
local m,i,mat,tab,k,j,mult,nvalp;
begin
m :=0;
for i from 1 to nops(valp) do
if abs(valp[i]);0.00000001 then m :=m+1; end_if
end_for;
mat :=matrix(nops(valp)-m,nops(valp)-m,0); tab :=[]; k :=0;
for i from 1 to nops(valp)-m do
if isnotin(i,tab) then
k :=k+1; mult[k] :=0;
for j from 1 to nops(valp)-m do
if isnotin(j,tab) then
if abs(valp[i]-valp[j]);0.0000001 then
mult[k] :=mult[k]+1; nvalp[k] :=valp][i] ; tab :=tab.[i,j];
end_if;
end_if;
end_for;
end_if;
end_for;
k :=0;
for i from 1 to nops(nvalp) do for j from 1 to mult[i] do
mat[1,j+k] :=((14m){j — 1)) x valp[i] 1 +m — 1);k ==k + 1;
end_for ; end_for;
for 1 from 2 to nops(valp)-m do
k :=0;
for i from 1 to nops(nvalp) do for j from 1 to mult[i] do
mat[l,j+k] :=((14m-1)G — 1)) * valp[i]L +m — 1);k ==k + 1;
end_for; end_for;
end_for;
for i from 1 to d do for j from 1 to d do
cond;nit[z, j] :== matriz(nops(valp) —m,1,0);
end_for; end_for;
for i from 1 to d do for j from 1 to d do for n from 1 to nops(valp)-m do
cond;nit[i, j][n, 1] := (M(n +m — 1))[i, j];
end_for; end_for; end_for;
for i from 1 to d do for j from 1 to d do
lambdali][j] :=(mat( — 1)) % (cond;nit[i, j]);
end_for; end_for;
for i from 1 to d do for j from 1 to d do
Lambdal[j][i] :=lambdal[i][j][2];
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end_for; end_for;
return(Lambda) ;
end_proc :

poids :=proc(f,Lambda,d)
local i,j,k,poids;
begin
for j from 1 to d do for k from 1 to d-1 do
poids[K][j] :=0
for i from 1 to d do
poids[k][j] :=poids[k][j]+Lambdalj][i]*{[k][i] ;
end_for;
end_for; end_for;
return(poids)
end_proc :

concat :=proc(tab,d)
local i,k,T,j;
begin
k :=0;
for i from 1 to nops(tab) do for j from 1 to d do
if isnotin(j,tab[i]) then
k :=k+1; T[k] :=tabli].[j];
end_if;
end_for; end_for;
return(T) ;
end_proc :

boucle :=proc(d,l)
local i,j,tab;
begin
for i from 1 to d do tab[i] :=[i]; end_for;

for j from 1 to I-1 do tab :=concat(tab,d) ; end_for;

return(tab) ;
end_proc :

prefixes :=proc(sigma,d)
local i,pref,j;
begin
for i from 1 to d do
prefi][1] =[]
for j from 1 to nops(sigmali]) do
pref[i][j+1] :=pref[i]j].[sigmali] i
end_for;
end_for;
return(pref) ;
end_proc :

automate :=proc(pref,d)
local i,j,k,I,m;
begin
for i from 1 to d do for j from 1 to d do
autom|i[j] =[]
for k from 2 to nops(prefli]) do
if pref[i][k][nops(pref[i][k])]=j then m :=[];
for I from 1 to nops(pref[i][k])-1 do
m s=m.[pref{i[K1];
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end_for;
autom[i][j] :=[op(autom|i][j]),m]
end_if;
end_for;
end_for; end_for;
return(autom) ;
end_proc :

automax :=proc(automate,poids,k,d)
local i,j,max1,l,M,m,automax;

begin
for i from 1 to d do for j from 1 to d do
max1 :=-1*infinity ;
for 1 from 1 to nops(automateli][j]) do
M :=0;
for m from 1 to nops(automatel[i][j][1]) d
M :=M+poids[k][automate[i][j][1] [m]]
end_for;
if M;max1 then max1l :=M; end.if;
end_for;

automaxl[i][j] :=max1;
end_for; end_for;
return(automax) ;
end_proc :

automin :=proc(automate,poids,k,d)
local i,j,max1,l,M,m,automin;
begin
for i from 1 to d do for j from 1 to d do
minl :=infinity ;
for 1 from 1 to nops(automateli][j]) do
M :=0;
for m from 1 to nops(automatel[i][j][l]) d
M :=M-+poids[k ][a.utoma.te[][]][l][m]],

end_for;
if Mjminl then minl :=M; end_if;
end_for;
automin[i][j] :=minl;
end_for ; end_for; return(automin) ;
end_proc :

poids_max :=proc(automax,boucle)
local M,M1,i,j;

begin
M :=0;
for i from 1 to nops(boucle) do
M1 :=0;

for j from 1 to nops(boucleli])-1 do
M1 :=M1+automax[boucle[i][j]][boucle[i][j+1]];
end_for;
M1 :=M1l+automax[boucle[i][nops(boucle[i])]][boucle[i] [1]] ;
M :=simplify(max(float(M1/nops(boucleli])),float(M))) ;
end_for;
return(M) ;
end_proc :

maxi :=proc(auto,poids,d)
local max1,k,l,i,autom,bouc,M;
begin
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max]1 :=0;
for k from 1 to d-1 do
for 1 from 2 to d do
autom[k] :=automax(auto,poids,k,d) ; bouc[l] :=boucle(d,l);
M :=poidsmaz(autom[k], bouc[l]); mazl := max(mazl, M);
end_for;
for i from 1 to d do max1 :=max(max1,autom/[k][i][i]); end_for;
end_for;
if abs(max1);0.00000001 then return(” A, ax = 0”); elsereturn(mazl);
end_if;
end_proc :

poids_min :=proc(automin,boucle)
local M,M1,i,j;
begin
M :=0;
for i from 1 to nops(boucle) do
M1 :=0;
for j from 1 to nops(boucle[i])-1 do
M1 :=M1+automin[boucle[i][j]][boucle[i][j+1]];
end_for;
M1 :=M1l+automin[boucle[i][nops(boucle[i])]][boucle[i][1]];
M :=simplify(min(float(M1/nops(boucle[i])),float(M))) ;
end_for;
return(M) ;
end_proc :

mini :=proc(auto,poids,d)
local max1,k,l,i,autom,bouc,M;
begin
minl :=0;
for k from 1 to d-1 do
for 1 from 2 to d do
autom k] :=automin(auto,poids,k,d) ; bouc[l] :=boucle(d,l);
M :=poidsmin(autom[k], bouc[l]); minl := min(minl, M);
end_for;
for i from 1 to d do minl :=min(minl,automk][i][i]); end_for;
end_for;
if abs(min1);0.00000001 then return(”A,,in = 0”); elsereturn(minl);
end_if;
end_proc :

final :=proc(sigma)

local M,f,valp,Lambda,poids,pref,auto;

begin
M :=matrice(sigma,nops(sigma)) ;
positive(M,nops(sigma)) ;
primitive(M,nops(sigma)) ;
admissible(M,nops(sigma)) ;
f :=ortho(M,nops(sigma)) ;
valp :=ordonne(M) ;
Lambda :=mat;nv(M,valp, nops(sigma));
poids :=poids(f,Lambda,nops(sigma)) ;
pref :=prefixes(sigma,nops(sigma)) ;
auto :=automate(pref,nops(sigma)) ;
return(maxi(auto,poids,nops(sigma)),mini(auto,poids,nops(sigma))) ;

end_proc :
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