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ALGEBRAIC INDEPENDENCE OF G-FUNCTIONS
AND CONGRUENCES “À LA LUCAS”

 B ADAMCZEWSKI, J P. BELL
 É DELAYGUE

A. – We develop a new method for proving algebraic independence of G-functions. Our
approach rests on the following observation: G-functions do not always come with a single linear dif-
ferential equation, but also sometimes with an infinite family of linear difference equations associated
with the Frobenius that are obtained by reduction modulo prime ideals. When these linear difference
equations have order one, the coefficients of the corresponding G-functions satisfy congruences remi-
niscent of a classical theorem of Lucas on binomial coefficients. We use this to derive a Kolchin-like
criterion for algebraic independence. We show the relevance of this criterion by proving that many clas-
sical families of G-functions turn out to satisfy congruences “à la Lucas”.

R. – Nous développons une nouvelle méthode pour démontrer l’indépendance algébrique
de G-fonctions. Notre approche repose sur l’observation suivante : une G-fonction est toujours solu-
tion d’une équation différentielle linéaire mais elle est aussi parfois solution d’une infinité d’équations
aux différences linéaires associées au Frobenius que l’on obtient par réduction modulo des idéaux pre-
miers. Lorsque ces équations aux différences linéaires sont d’ordre un, les coefficients de la G-fonction
correspondante satisfont des congruences rappelant un théorème classique de Lucas sur les coefficients
binomiaux. Nous utilisons cette propriété pour en déduire un critère d’indépendance algébrique “à la
Kolchin”. Nous montrons que ce critère est pertinent en démontrant que de nombreuses familles clas-
siques de G-fonctions satisfont des congruences “à la Lucas”.

1. Introduction

This paper is the fourth of a series started by the first two authors [1, 2, 3] concerning
several number theoretical problems involving linear difference equations, called Mahler’s
equations, as well as underlying structures associated with automata theory. We investigate
here a class of analytic functions introduced by Siegel [45] in his landmark 1929 paper under
the name ofG-functions. Let us recall that f .z/ WD

P1
nD0 a.n/z

n is aG-function if it satisfies

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under the Grant Agreement No 648132.
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516 B. ADAMCZEWSKI, J. P. BELL AND E. DELAYGUE

the following conditions. Its coefficients a.n/ are algebraic numbers and there exists a positive
real number C such that for every non-negative integer n:

(i) The absolute values of all Galois conjugates of a.n/ are at most C n.

(ii) There exists a sequence of positive integers dn < C n such that dnam is an algebraic
integer for all m, 0 � m � n.

(iii) The function f satisfies a linear differential equation with coefficients in Q.z/.

Their study leads to a remarkable interplay between number theory, algebraic geometry,
combinatorics, and the study of linear differential equations (see [7, 24, 25, 33, 48]).

In this paper, we focus on the algebraic relations over Q.z/ that may or may not exist
between G-functions. In this respect, our main aim is to develop a new method for proving
algebraic independence of such functions. Our first motivation is related to transcendence
theory of values ofG-functions. A large part of the theory is actually devoted to the study of
algebraic relations over Q between periods (1). Unfortunately, this essentially remains terra
incognita. At least conjecturally,G-functions may be thought of as their functional counter-
part (smooth algebraic deformations of periods). Understanding algebraic relations among
G-functions thus appears to be a first step in this direction and, first of all, a much more
tractable problem. For instance, a conjecture of Kontsevich [32] (see also [33]) claims that
any algebraic relation between periods can be derived from the three fundamental opera-
tions associated with integration: additivity, change of variables, and Stokes’ formula. It is
considered completely out of reach by specialists, but recently Ayoub [10] proved a functional
version of the conjecture (see also [9]). Despite the depth of this result, it does not help that
much in deciding whether given G-functions are or are not algebraically independent.

A second motivation finds its source in enumerative combinatorics. Indeed, most gener-
ating series that have been studied so far by combinatorists turn out to be G-functions. To
some extent, the nature of a generating series reflects the underlying structure of the objects
it counts (see [13]). By nature, we mean for instance whether the generating series is rational,
algebraic, or D-finite. In the same line, algebraic independence of generating series can be
considered as a reasonable way to measure how distinct families of combinatorial objects
may be (un)related. Though combinatorists have a long tradition of proving transcendence
of generating functions, it seems that algebraic independence has never been studied so far
in this setting.

Our approach rests on the following observation: a G-function often comes with not
just a single linear differential equation, but also sometimes with an infinite family of linear
difference equations obtained by reduction modulo prime ideals. Let us formalize this claim
somewhat. LetK be a number field, f .z/ WD

P1
nD0 a.n/z

n be aG-function inKŒŒz��, and let
us denote by OK the ring of integers ofK. For prime ideals p of OK such that all coefficients

(1) A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of
rational fractions over domains of Rn defined by polynomial inequalities with rational coefficients. Most complex
numbers of interest to arithmeticians turn out to be periods.
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ALGEBRAIC INDEPENDENCE OF G-FUNCTIONS 517

of f belong to the localization of OK at p, it makes sense to consider the reduction of f
modulo p:

f jp
.z/ WD

1X
nD0

�
a.n/ mod p

�
zn 2 . OK=p/ŒŒz��:

When p is above the prime p, the residue field OK=p is a finite field of characteristic p, and
the linear difference equations mentioned above are of the form:

(1.1) a0.z/f jp
.z/C a1.z/f jp

.zp/C � � � C ad .z/f jp
.zp

d

/ D 0 ;

where ai .z/ belong to . OK=p/.z/. That is, a linear difference equation associated with the
Frobenius endomorphism �p W z 7! zp. Note that f jp satisfies an equation of the form (1.1)

if, and only if, it is algebraic over . OK=p/.z/. A theorem of Furstenberg [29] and Deligne [23]
shows that this holds true for all diagonals of multivariate algebraic power series and almost
every prime ideal (2). Furthermore, classical conjectures of Bombieri and Dwork would imply
that this should also be the case for all globally bounded G-functions (see [16]). Note that
even when a G-function is not globally bounded, but can still be reduced modulo p for
infinitely many prime ideals p, a similar situation may be expected. For instance, let us
consider the hypergeometric function

2F1

"
1=2; 1=2

2=3
I z

#
D

1X
nD0

.1=2/2n
.2=3/nnŠ

zn;

where .x/n WD x.xC1/ � � � .xCn�1/ if n � 1 and .x/0 WD 1 denote the Pochhammer symbol.
It is not globally bounded but satisfies a relation of the form (1.1) for all prime numbers
congruent to 1 modulo 6 (see Section 8.2).

In this paper, we focus on a case of specific interest, that is when f jp satisfies a linear
difference equation of order one with respect to a power of the Frobenius. Then one obtains
a simpler equation of the form:

(1.2) f jp
.z/ D a.z/f jp

.zp
k

/ ;

for some positive integer k and some rational fraction a.z/ in . OK=p/.z/. As explained in
Section 4, these equations lead to congruences for the coefficients of f that are reminiscent
to a classical theorem of Lucas [36] on binomial coefficients and the so-called p-Lucas
congruences. Let us introduce the following set of power series that will play a key role in
the sequel of this paper.

D 1.1. – LetR be a Dedekind domain andK be its field of fractions. Let S be
a set of non-zero prime ideals ofR and let us denote byRp the localization ofR at a non-zero
prime ideal p. Let d be a positive integer and x D .x1; : : : ; xd / be a vector of indeterminates.
We let Ld .R; S / denote the set of all power series f .x/ in KŒŒx�� with constant term equal
to 1 and such that for every p in S :

(i) f .x/ 2 RpŒŒx��;

(ii) the residue field R=p is finite (and its characteristic is denoted by p);

(2) Diagonals of algebraic power series form a distinguished class ofG-functions (see for instance [2, 14, 15]).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



518 B. ADAMCZEWSKI, J. P. BELL AND E. DELAYGUE

(iii) there exist a positive integer k and a rational fraction Ap in K.x/ \RpŒŒx�� satisfying

f .x/ � Ap.x/f
�
xp

k �
mod pRpŒŒx��I

(iv) the height (3) of the rational fraction Ap satisfies H.Ap/ � Cpk for some constant C
that does not depend on p.

R 1.2. – In the rest of the paper, we will omit the dependence on p when consi-
dering the rational fraction Ap of Definition 1.1, which we will thus denote by A.

We will prove the following criterion for algebraic independence. It shows that any set of
algebraically dependent power series that belong to Ld .R; S /, for some infinite set of non-
zero prime ideals S , should in fact satisfy a very special type of relation: a Laurent monomial
is equal to a rational fraction. This kind of result is usually attached to the name of Kolchin.

T 1.3. – Let R be a Dedekind domain and f1.x/; : : : ; fn.x/ be power series
in Ld .R; S / where S is an infinite set of non-zero prime ideals of R. Let K be the fraction
field of R. Then the power series f1.x/; : : : ; fn.x/ are algebraically dependent overK.x/ if and
only if there exist a1; : : : ; an 2 Z not all zero, such that

(1.3) f1.x/a1 � � � fn.x/an 2 K.x/:

Given a number field K, OK its ring of integers, and f1.z/; : : : ; fn.z/ some G-func-
tions which belong to L1. OK ; S / for some infinite set of non-zero prime ideals, we stress
that it is often possible to apply asymptotic techniques and analysis of singularities, as
described in Section 7, to easily deduce a contradiction from (1.3) and finally prove that
f1.z/; : : : ; fn.z/ are algebraically independent over C.z/.

R 1.4. – Since G-functions do satisfy linear differential equations, differential
Galois theory provides a natural framework to look at these questions. For instance, it leads
to strong results concerning hypergeometric functions [11]. However, the major drawback of
this approach is that things become increasingly tricky when working with differential equa-
tions of higher orders. Given some G-functions f1.z/; : : : ; fn.z/, it may be non-trivial to
determine the differential Galois group associated with a differential operator annihilating
these functions. The method developed in this paper follows a totally different road. An
important feature is that, contrary to what would happen using differential Galois theory,
we do not have to care about the derivatives of the functions f1.z/; : : : ; fn.z/. It is also
worth mentioning that in order to apply Theorem 1.3, we do not even need that the func-
tions f1.z/; : : : ; fn.z/ satisfy linear differential equations. We only need properties about
their reduction modulo prime ideals. However, we only focus in this paper on applications
of our method to G-functions.

(3) WrittenAp.x/ D P.x/=Q.x/ withP andQ two coprime polynomials, thenH.Ap/ is just the maximum of the
total degree of P andQ.
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At first glance, it may seem somewhat miraculous that aG-function could satisfy congru-
ences of type (1.2) for infinitely many prime ideals. Surprisingly enough, we will show that
this situation occurs remarkably often. For instance, motivated by the search of differential
operators associated with particular families of Calabi-Yau varieties, Almkvist et al. [6] gave
a list of more than 400 differential operators selected as potential candidates. They all have
a unique solution analytic at the origin and it turns out that more than fifty percent of these
analytic solutions do satisfy Lucas-type congruences (see the discussion in Section 8.5). More
concretely, let us recall that a sequence .a.n//n�0 of integers satisfies the so-called p-Lucas
property for some prime number p if

a.n/ � a.n0/a.n1/ � � � a.nr / mod p ;

where n D n0 C n1p C � � � C nrp
r denotes the base-p expansion of n. Another interesting

example is due to Samol and van Straten [43]. Consider a Laurent polynomial

ƒ.x/ D
kX
iD1

˛ixai 2 ZŒx˙1 ; : : : ; x
˙
d �;

where ai 2 Zd and ˛i ¤ 0 for i in f1; : : : ; kg. Then the Newton polyhedron of ƒ is the
convex hull of fa1; : : : ; akg in Rd . In [43], it is proved that if ƒ.x/ is a Laurent polynomial
in ZŒx˙1 ; : : : ; x˙d � such that the origin is the only interior integral point of the Newton
polyhedron of ƒ, then the sequence of the constant terms of its powers .Œƒ.x/n�0/n�0 has
the p-Lucas property for all primes p. More generally, there is a long tradition (and a
corresponding extensive literature) in proving that some sequences of natural numbers satisfy
the p-Lucas property or some related congruences. Most classical sequences which are
known to enjoy the p-Lucas property turn out to be multisums of products of binomial
coefficients such as, for example, the Apéry numbers

nX
kD0

 
n

k

!2 
nC k

k

!
and

nX
kD0

 
n

k

!2 
nC k

k

!2
:

Other classical examples are ratios of factorials such as

.3n/Š

nŠ3
and

.10n/Š

.5n/Š.3n/ŠnŠ2
�

However, the known proofs are quite different and strongly depend on the particular forms
of the binomial coefficients and of the number of sums involved in those sequences. We note
that some attempts to obtain more systematic results can be found in [38] and more recently
in [37]. We also refer the reader to [40] for a recent survey, including many references, about
p-Lucas congruences. In Section 8, we provide a way to unify many proofs, as well as to
obtain a lot of new examples. We describe p-adic properties of multivariate factorial ratio.
Using specializations of their generating series, we are able to prove that a large variety of
classical families of G-functions actually satisfy such congruences. This includes families of
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520 B. ADAMCZEWSKI, J. P. BELL AND E. DELAYGUE

generating series associated with multisums of products of binomial coefficients, as well as
more exotic examples such as

1X
nD0

bn=3cX
kD0

k�n mod 2

2k3
n�3k

2

 
n

k

! 
n � k
n�k
2

! 
n�k
2

k

!
zn:

We also give in Section 8 a simple criterion for generalized hypergeometric series to satisfy
p-Lucas congruences.

To give a flavor of the kind of results we can obtain, we just add the following two
examples. They correspond respectively to Theorems 9.8 and 9.9 proved in the sequel. The
first one concerns several families of generating series associated with Apéry numbers, Franel
numbers, and some of their generalizations. The second one involves a mix of hypergeometric
series and generating series associated with factorial ratios and Apéry numbers.

T 1.5. – Let F be the set formed by the union of the three following sets:(
1X
nD0

nX
kD0

 
n

k

!r
zn W r � 3

)
;

(
1X
nD0

nX
kD0

 
n

k

!r 
nC k

k

!r
zn W r � 2

)
and 8<: 1X

nD0

nX
kD0

 
n

k

!2r 
nC k

k

!r
zn W r � 1

9=; :
Then all elements of F are algebraically independent over C.z/.

Observe that the restriction made on the parameter r in each case is optimal since the
functions

1X
nD0

nX
kD0

 
n

k

!
zn D

1

1 � 2z
;

1X
nD0

nX
kD0

 
n

k

!2
zn D

1
p
1 � 4z

and
1X
nD0

nX
kD0

 
n

k

! 
nC k

k

!
zn D

1
p
1 � 6z C z2

are all algebraic over Q.z/.

T 1.6. – The functions

f .z/ WD

1X
nD0

.4n/Š

.2n/ŠnŠ2
zn; g.z/ WD

1X
nD0

nX
kD0

 
n

k

!2 
nC k

k

!2
zn; h.z/ WD

1X
nD0

.1=6/n.1=2/n

.2=3/nnŠ
zn

and

i.z/ WD

1X
nD0

.1=5/3n
.2=7/nnŠ2

zn

are algebraically independent over C.z/.
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ALGEBRAIC INDEPENDENCE OF G-FUNCTIONS 521

2. A first example

The present work was initiated with the following concrete example. Given a positive
integer r , the function

fr .z/ WD

1X
nD0

 
2n

n

!r
zn

is a G-function annihilated by the differential operator

L r WD �
r
� 4rz.� C 1=2/r ;

where � D z d
dz

. In 1980, Stanley [46] conjectured that the fr ’s are transcendental over C.z/
unless for r D 1, in which case we have f1.z/ D .

p
1 � 4z/�1. He also proved the tran-

scendence in the case where r is even. The conjecture was solved independently by Flajolet
[27] and by Sharif and Woodcock [49] with totally different methods. Incidentally, this result
is also a consequence of work of Beukers and Heckman [11] concerning generalized hyper-
geometric series. Let us briefly describe these different proofs. We assume in the sequel that
r > 1.

(i) The proof of Flajolet is based on asymptotics. Indeed, it is known that for an algebraic
function f .z/ D

P1
nD0 a.n/z

n 2 QŒŒz��, one has:

a.n/ D
˛nns

�.s C 1/

mX
iD0

Ci!
n
i C O

n!1
.˛nnt /;

where s 2 Q n Z<0, t < s, ˛ is an algebraic number and the Ci ’s and !i ’s are algebraic
with j!i j D 1. On the other hand, Stirling formula leads to the following asymptotics 

2n

n

!r
�

n!1

2.2nC1=2/r

.2�n/r=2
�

A simple comparison between these two asymptotics shows that fr cannot be algebraic
when r is even, as already observed by Stanley in [46]. Flajolet [27] shows that it also
leads to the same conclusion for odd r , but then it requires the transcendence of � .

(ii) The proof of Sharif and Woodcock is based on the Lucas theorem previously
mentioned. Indeed, Lucas’ theorem on binomial coefficients implies that 

2.np Cm/

np Cm

!r
�

 
2n

n

!r 
2m

m

!r
mod p

for all prime numbers p, all non-negative integers n and all m, 0 � m � p � 1. This
leads to the algebraic equation:

fr jp.z/ D Ap.z/fr jp.z/
p

where Ap.z/ WD
Pp�1
nD0

��
2n
n

�
mod p

�
zn. In [49], Sharif and Woodcock prove that the

degree of algebraicity of fr jp cannot remain bounded when p runs along the primes,
which ensures the transcendence of fr .
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522 B. ADAMCZEWSKI, J. P. BELL AND E. DELAYGUE

(iii) The proof based on the work of Beukers and Heckman used the fact that

fr .z/ D rC1Fr

"
1=2; : : : ; 1=2

1; : : : ; 1
I 22rz

#
is a hypergeometric function. Then it is easy to see that fr fails the beautiful interlacing
criterion proved in [11]. In consequence, the differential Galois groups associated with
the fr ’s are all infinite and these functions are thus transcendental.

Though there are three different ways to obtain the transcendence of fr , not much was
apparently known about their algebraic independence. In this line, we will complete in
Section 7 the result of [2], proving that the functions fr are all algebraically independent.

T 2.1. – All elements of the set F WD ffr .z/ W r � 2g are algebraically indepen-
dent over C.z/.

Roughly, our approach can be summed up by saying that (ii) + (i) leads to algebraic
independence in a rather straightforward manner, while differential Galois theory (that is,
(iii)) would be the more usual method. Let us illustrate this claim by proving Theorem 2.1.

Proof. – Let us assume by contradiction that for some integer n � 2 the func-
tions f2; f3; : : : ; fn are algebraically dependent over C.z/ or equivalently over Q.z/ (4).
By (ii), we first get that each function fi belongs to the set L1.Z; P/, where P denotes the
set of prime numbers (identified here with the set of prime ideals of Z). By Theorem 1.3,
there thus exist a2; : : : ; an 2 Z not all zero, such that

f2.z/
a2 � � � fn.z/

an D r.z/ ;

for some rational function in Q.z/. Let s be the largest index such that as 6D 0. We obtain
that

(2.4) fs.z/
as D r.z/f2.z/

�a2 � � � fs�1.z/
�as�1 :

We can assume that as is positive since otherwise we could write

fs.z/
�as D r.z/�1f2.z/

a2 � � � fs�1.z/
as�1 :

We infer now from the asymptotics given in (i) that the radius of convergence of fi is equal
to 2�2i , so that the right-hand side is clearly meromorphic in a neighborhood of z0 WD 2�2s .
On the other hand, Pringsheim’s theorem implies that fas

s has a singularity at z0, but the same
asymptotics show that it cannot be a pole. Hence we have a contradiction.

(4) See Lemma 7.2
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ALGEBRAIC INDEPENDENCE OF G-FUNCTIONS 523

3. Notation

Let us introduce some notation that will be used throughout this paper. We denote by N
the set of non-negative integers f0; 1; 2; : : :g. Let d be a positive integer. Given d -tuples of real
numbers m D .m1; : : : ; md / and n D .n1; : : : ; nd /, we set mC n WD .m1C n1; : : : ; md C nd /
and m � n WD m1n1 C � � � C mdnd . If moreover � is a real number, then we set
�m WD .�m1; : : : ; �md /. We write m � n if we have mk � nk for all k in f1; : : : ; dg.
We also set 0 WD .0; : : : ; 0/ and 1 WD .1; : : : ; 1/. We let P denote the set of all prime
numbers.

3.0.1. Polynomials. Given a d -tuple of natural numbers n D .n1; : : : ; nd / and a vector of
indeterminates x D .x1; : : : ; xd /, we will denote by xn the monomial xn1

1 � � � x
nd

d
. The (total)

degree of such a monomial is the non-negative integer n1 C � � � C nd . Given a ring R and a
polynomialP inRŒx�, we denote by degP the (total) degree ofP , that is the maximum of the
total degrees of the monomials appearing in P with non-zero coefficient. The partial degree
of P with respect to the indeterminate xi is denoted by degxi

.P /. Given a polynomial P.Y /
in RŒx�ŒY �, we define the height of P as the maximum of the total degrees (in x) of its
coefficients.

3.0.2. Algebraic functions. Let K be a field. We denote by KŒŒx�� the ring of formal power
series with coefficients in K and associated with the vector of indeterminates x. We denote
byKŒŒx��� the group of units ofKŒŒx��, that is the subset ofKŒŒx�� formed by all power series
with non-zero constant coefficients. We say that a power series

f .x/ D
X

n2Nd

a.n/xn
2 KŒŒx��

is algebraic if it is algebraic over the field of rational functions K.x/, that is, if there exist
polynomials A0; : : : ; Am in KŒx�, not all zero, such that

mX
iD0

Ai .x/f .x/i D 0:

Otherwise, f is said to be transcendental. The degree of an algebraic power series f , denoted
by degf , is defined as the degree of the minimal polynomial of f , or equivalently, as the
minimum of the natural numbers m for which such a relation holds. The (naive) height
of f , denoted by H.f /, is then defined as the height of the minimal polynomial of f , or
equivalently, as the minimum of the heights of the non-zero polynomials P.Y / in KŒx�ŒY �
that vanish at f . For a rational function f , written as A.x/=B.x/ with A and B two coprime
polynomials, then one has H.f / D max.degA; degB/. Note that we just introduced
two different notions: the degree of a polynomial and the degree of an algebraic function.
Since polynomials are also algebraic functions we have to be careful. For instance, the
polynomial x2y3 in KŒx; y� has degree 5 but viewed as an element of KŒŒx; y�� it is an
algebraic power series of degree 1. In the sequel, this should not be a source of confusion.

3.0.3. Algebraic independence. Let f1; : : : ; fn be in KŒŒx��. We say that f1; : : : ; fn are alge-
braically dependent if they are algebraically dependent over the field K.x/, that is, if there
exists a non-zero polynomial P.Y1; : : : ; Yn/ inKŒx�ŒY1; : : : ; Yn� such that P.f1; : : : ; fn/ D 0.
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This is also equivalent to declaring that the field extensionK.x/.f1; : : : ; fn/ ofK.x/ has tran-
scendence degree less than n. When the degree of such a polynomial P (here, the total degree
with respect toY1; : : : ; Yn) is at most d , then we say that f1; : : : ; fn satisfy a polynomial (or an
algebraic) relation of degree at most d . When there is no algebraic relation between them, the
power series f1; : : : ; fn are said to be algebraically independent (over K.x/). A set of power
series is said to be algebraically independent if all finite subsets of S consist of algebraically
independent elements.

3.0.4. Dedekind domains. We recall here some basic facts about Dedekind domains (see for
instance [44]). Let R be a Dedekind domain; that is, R is Noetherian, integrally closed, and
every non-zero prime ideal of R is a maximal ideal. LetK denote the field of fractions of R.
The localization of R at a non-zero prime ideal p is denoted by Rp. Recall here that Rp can
be seen as the following subset of K:

Rp D fa=b W a 2 R; b 2 R n pg :

ThenRp is a discrete valuation ring and the residue fieldRp=p is equal toR=p. Furthermore,
any non-zero element ofR belongs to at most a finite number of non-zero prime ideals ofR.
In other words, given an infinite set S of non-zero prime ideals of R, then one always hasT
p2S p D f0g. This property implies that any non-zero element of K belongs to Rp for all

but finitely many non-zero prime ideal p of R. Furthermore, we also have
T
p2S pRp D f0g.

For every power series f .x/ D
P

n2Nd a.n/xn with coefficients in Rp, we set

f jp
.x/ WD

X
n2Nd

�
a.n/ mod p

�
xn
2 .R=p/ŒŒx��:

The power series f jp is called the reduction of f modulo p.

4. Lucas-type congruences and two special sets of power series

In this section, we introduce a special subset Ld .R; S / of Ld .R; S / where condi-
tion (iii) is strengthened. We show that a power series belongs to this new set if, and only if,
its coefficients satisfy the so-called pk-Lucas congruences for some k. We also gather some
basic properties about both sets Ld .R; S / and Ld .R; S /.

4.1. The set Ld .R; S /

Let us first give below some remarks about the set Ld .R; S / that will be useful in the
sequel of the paper.

R 4.1. – If f .x/ is a formal power series that belongs to Ld .R; S /, then the
constant coefficientA.0/ of the rational fractionA involved in .iii/must be equal to 1mod p.
In particular, A.x/ belongs to the group of units RpŒŒx���.

R 4.2. – Let f .x/ be a power series in Ld .R; S /. Let p be a prime in S such
that f .x/ � A.x/f

�
xp

k �
mod pRpŒŒx�� with H.A.x// � Cpk . Iterating Congruence (iii), we

observe that for all natural numbers m, we also have

f .x/ � A.x/A
�
xp

k �
� � �A

�
xp

mk �
f
�
xp

.mC1/k �
mod pRpŒŒx��;
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with

H
�
A.x/A

�
xp

k �
� � �A

�
xp

mk ��
� Cpk.1C pk C � � � C pkm/

� Cpk
p.mC1/k � 1

pk � 1

� 2Cp.mC1/k :

R 4.3. – In our applications, we will focus on the fundamental case where K is a
number field. In that case, K is the fraction field of its ring of integers R D OK which is a
Dedekind domain. Furthermore, for every prime ideal p in OK above a rational prime p, the
residue field OK=p is finite of characteristic p. In particular, we will consider the caseK D Q.
In that case, we have R D OK D Z and, for every prime number p, the localization Z.p/ is
the set of rational numbers whose denominator is not divisible by p. If there is no risk of
confusion, we will simply write Ld .S / instead of Ld .Z; S / and L .S / instead of L1.Z; S /.

As we will see in the sequel, a good way to prove that some power series f belongs
to L1.R; S / is to show that f arises as some specialization of a multivariate power series
known to belong to Ld .R; S /. In this direction, we give the following useful result.

P 4.4. – LetR be a Dedekind domain with field of fractionsK. Let d and e be
two positive integers. Let f be in Ld .R; S / and g in L e.R; S 0/, where S and S 0 are two sets
of non-zero prime ideals of R. Then the following hold.

(i) Let a1; : : : ; ad be non-zero elements of K and n1; : : : ; nd be positive integers. Then
f .a1x

n1

1 ; : : : ; adx
nd

d
/ belongs to Ld .R; T /, where T is the set of primes p in S such

that a1; : : : ; ad belong to Rp.
(ii) If d � 2 and x is an indeterminate, then f .x; x; x3; : : : ; xd / belongs to Ld�1.R; S /.

(iii) If x and y are two vectors of indeterminates, then f .x/ � h.y/ is in LdCe.R; S \ S 0/.

The proof of Proposition 4.4 is a straightforward consequence of Definition 1.1 and of
Remark 4.2.

4.2. The set Ld .R; S / and pk-Lucas congruences

As we will see in the sequel, it often happens that elements of Ld .R; S / satisfy a stronger
form of Condition .iii/. Typically, the rational fraction A.x/ can just be a polynomial
with even further restriction on its degree. This gives rise to stronger congruences that
are of interest in combinatorics, and leads us to define the following distinguished subset
of Ld .R; S /.

D 4.5. – Let us define Ld .R; S / as the subset of Ld .R; S / formed by the
series f .x/ for which Condition .iii/ is satisfied for a fixed k (i.e., independent of p) and a
polynomial A.x/ 2 RpŒx� with degxi

.A.x// � pk � 1 for all i in f1; : : : ; dg.

Again, if there is no risk of confusion, we will simply write Ld .S / instead of Ld .Z; S /

and L.S / instead of L1.Z; S /.
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R 4.6. – Let f .x/ 2 Ld .R; S /. Let p be a prime ideal in S such that
f .x/ � A.x/f

�
xp

k �
mod pRpŒŒx�� where A.x/ belongs to RpŒx� with degxi

.A.x// � pk � 1

for all i in f1; : : : ; dg. Iterating Condition (iii), we observe that for all natural numbers m,
we also have

f .x/ � A.x/A
�
xp

k �
� � �A

�
xp

mk �
f
�
xp

.mC1/k �
mod pRpŒŒx��;

with

degxi

�
A.x/A

�
xp

k �
� � �A

�
xp

mk ��
� .pk � 1/.1C pk C � � � C pkm/

D p.mC1/k � 1:

We have the following practical characterization of power series in Ld .R; S / in terms of
congruences satisfied by their coefficients.

D 4.7. – We say that the family .a.n//n2Nd with values in Kd satisfies the
pk-Lucas property with respect to S if for all non-zero prime ideals p in S , .a.n//n2Nd takes
values in Rp and

a.vCmpk/ � a.v/a.m/mod pRp;

for all v in f0; : : : ; pk�1gd and m in Nd . When S is the set of all non-zero prime ideals ofR,
then we say that .a.n//n2Nd , which takes thus values in R, satisfies the pk-Lucas property.
When k D 1, we simply say that .a.n//n2Nd satisfies the p-Lucas property (or the p-Lucas
property with respect to S ).

P 4.8. – A power series f .x/ WD
P

n2Nd a.n/xn belongs to Ld .R; S / if and
only if there exists a positive integer k such that the family .a.n//n2Nd satisfies a.0/ D 1 and
has the pk-Lucas property with respect to S .

We will also say that a power series f .x/ WD
P

n2Nd a.n/xn satisfies the pk-Lucas property
with respect to S when the family .a.n//n2Nd satisfies the pk-Lucas property with respect
to S .

Proof of Proposition 4.8. – Let f .x/ WD
P

n2Nd a.n/xn belong to Ld .R; S /. By defini-
tion, there exists a positive integer k such that, for every p in S , one has

(4.5) f .x/ � A.x/f
�
xp

k �
mod pRpŒŒx��;

where A.x/ belongs to RpŒx� and degxi
.A.x// � pk � 1 for all 1 � i � d . Then we can write

A.x/ D
X

0�v�.pk�1/1

b.v/xv

and thus
A.x/f

�
xp

k �
D

X
m2Nd

X
0�v�.pk�1/1

b.v/a.m/xvCmpk
:

The congruence satisfied by f now implies that

(4.6) a.vCmpk/ � b.v/a.m/mod pRp;

for all m in Nd and all 0 � v � .pk � 1/1. Choosing m D 0, we obtain that a.v/ �
b.v/mod pRp for all 0 � v � .pk � 1/1 because a.0/ D 1. This shows that the family
.a.n//n2Nd satisfies the pk-Lucas property with respect to S .
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Reciprocally, assume that .a.n//n2Nd is a family with a.0/ D 1 that satisfies the pk-Lucas
property with respect to S . Then setting

A.x/ WD
X

0�v�.pk�1/1

a.v/xv
2 RpŒx�

and f .x/ WD
P

n2Nd a.n/xn, we immediately obtain that

f .x/ � A.x/f
�
xp

k �
mod pRpŒŒx��;

which shows that f belongs to Ld .R; S /.

Contrary to elements of Ld .R; S /, those of Ld .R; S / satisfy the following two addi-
tional useful properties. Recall that given two power series f .x/ WD

P
n2Nd a.n/xn and

g.x/ D
P

n2Nd b.n/xn with coefficients in an arbitrary ring, one can define the Hadamard
product of f and g by

f ˇ g WD
X

n2Nd

a.n/b.n/xn

and the diagonal of f by

�.f / WD

1X
nD0

a.n; : : : ; n/xn:

P 4.9. – Let f .x/ and g.x/ belong to Ld .R; S /. Then the following hold.

(i) f ˇ g 2 Ld .R; S /.
(ii) �.f / 2 L1.R; S /.

The proof of Proposition 4.9 is straightforward using that the coefficients of f and g
satisfy the pk-Lucas property with respect to S .

5. A criterion for algebraic independence

In this section, we prove Theorem 1.3 which is restated below as Theorem 5.1 for the
convenience of the reader.

T 5.1. – Let R be a Dedekind domain and f1.x/; : : : ; fn.x/ be power series
in Ld .R; S / where S is an infinite set of non-zero prime ideals of R. Let K be the fraction
field of R. Then the power series f1.x/; : : : ; fn.x/ are algebraically dependent overK.x/ if and
only if there exist a1; : : : ; an 2 Z not all zero, such that

f1.x/a1 � � � fn.x/an 2 K.x/:

R 5.2. – We actually prove a slightly more precise version of Theorem 5.1: if
f1.x/; : : : ; fn.x/ satisfy a polynomial relation of degree at most d over K.x/, then

f1.x/a1 � � � fn.x/an D A.x/ ;

where ja1 C � � � C anj � d , jai j � d for 1 � i � n, and A.x/ is a rational fraction of height
at most 2Cdn. Here C denotes the constant involved in Condition (iv) of Definition 1.1.
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5.1. A Kolchin-like proposition

Statements of the type of Proposition 5.3 below often appear in the study of systems of
homogeneous linear differential/difference equations of order one. They are usually associ-
ated with the name of Kolchin who first proved one version in the differential case. We give
here a rather general quantitative version in the case of difference equations associated with
a field endomorphism. We provide the simple proof below for the sake of completeness.

P 5.3. – LetL be a field, let� be an endomorphism ofL, and letM be a subfield
of L such that �.M/ � M . Let f1; : : : ; fn be non-zero elements of L satisfying a non-trivial
polynomial relation of degree d with coefficients inM . If there exist a1; : : : ; an inM such that
fi D ai�.fi / for all i in f1; : : : ; ng, then there exist m1; : : : ; mn 2 Z, not all zero, and r 2M �

such that

a
m1

1 � � � a
mn
n D

�.r/

r
:

Furthermore, jm1 C � � � Cmnj � d , jm1j C � � � C jmnj � 2d , and jmi j � d for 1 � i � n.

Proof. – Let P be a polynomial with a minimal number of monomials among the non-
zero polynomials in MŒX1; : : : ; Xn� of degree at most d satisfying P.f1; : : : ; fn/ D 0. We
write

P.X1; : : : ; Xn/ D
X

.i1;:::;in/2I

ri1;:::;inX
i1
1 � � �X

in
n ;

with ri1;:::;in in M n f0g. By assumption, we have

0 D �
�
P.f1; : : : ; fn/

�
D

X
.i1;:::;in/2I

�.ri1;:::;in/�.f1/
i1 � � � �.fn/

in

D

X
.i1;:::;in/2I

�.ri1;:::;in/
f
i1
1 � � � f

in
n

a
i1
1 � � � a

in
n

:(5.7)

Let us fix i0 D .s1; : : : ; sn/ in I . We also have

(5.8) �.ri0/P.f1; : : : ; fn/ D 0:

By multiplying (5.7) by ri0a
s1
1 � � � a

sn
n and subtracting (5.8), we obtain a new polynomial

in MŒX1; : : : ; Xn� of degree less than or equal to d , vanishing at .f1; : : : ; fn/, but with a
smaller number of monomials, so this polynomial has to be zero. Since all the fi ’s are non-
zero, the cardinality of I is at least equal to 2. It follows that there exists i1 D .t1; : : : ; tn/ in I ,
i1 ¤ i0, such that

ri0�.ri1/a
s1�t1
1 � � � asn�tnn D �.ri0/ri1 ;

which leads to

a
s1�t1
1 � � � asn�tnn D

�.ri0/ri1

ri0�.ri1/
:

Hence it suffices to takemi D si�ti and r D ri0=ri1 . Furthermore, sinceP has total degree at
most d , we have jm1C� � �Cmnj � d , jm1jC� � �Cjmnj � 2d , and jmi j � d , for 1 � i � n.
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5.2. Reduction modulo prime ideals

We can now proceed with the proof of Theorem 5.1. We first recall the following simple
lemma.

L 5.4. – Let R be a Dedekind domain, K its field of fractions and f1; : : : ; fn power
series in KŒŒx��. Let S denote an infinite set of prime ideals of R such that f1; : : : ; fn belong
to RpŒŒx�� for every p in S . If f1jp; : : : ; fnjp are linearly dependent over R=p for all ideals p
in S , then f1; : : : ; fn are linearly dependent over K.

Proof. – Let ai .n/ denote the n-th coefficient of the power series fi . Let us consider0BBBBB@
a1.0/ a1.1/ a1.2/ � � �

a2.0/ a2.1/ a2.2/ � � �

:::
:::

::: : : :

an.0/ an.1/ an.2/ � � �

1CCCCCA ;
the n�1matrix whose coefficient in position .i; j / is ai .j�1/. By assumption, f1jp; : : : ; fnjp
are linearly dependent overR=p for all p in S . This implies that, for such a prime ideal, every
n� nminor has determinant that vanishes modulo p. In other words, every n� nminor has
determinant that belongs to pRp. Since R is a Dedekind domain, a non-zero element in K
belongs to only finitely many ideals pRp. Since S is infinite, we obtain that all n� n minors
are actually equal to zero in K. This means that the set of all column vectors of our matrix
generate a vector space E of dimension less than n. Hence there is a non-zero linear form
on Kn which vanishes on E and we obtain a non-zero vector .b1; : : : ; bn/ in Kn such thatPn
iD1 bifi D 0. Thus f1; : : : ; fn are linearly dependent over K.

We can now complete the proof of Theorem 5.1.

Proof of Theorem 5.1. – Let f1.x/; : : : ; fn.x/ in Ld .R; S / be algebraically dependent
overK.x/. LetQ.x; y1; : : : ; yn/ be a non-zero polynomial in RŒx�Œy1; : : : ; yn� of total degree
at most d in y1; : : : ; yn such that

Q
�
x; f1.x/; : : : ; fn.x/

�
D 0:

With all p in S , we associate a prime number p such that the residue fieldR=p is a finite field
of characteristic p. Let dp be the degree of the field extensionR=p over Fp. By Definition 1.1,
for all i in f1; : : : ; ng, there exists a positive real number Ci such that, for all p in S , there are
positive integers ki and Ai .x/ in K.x/ \RpŒŒx�� satisfying

fi .x/ � Ai .x/fi
�
xp

ki
�

mod pRpŒŒx��;

with H.Ai / � Cipki . We set C WD 2max.C1; : : : ; Cn/ and k WD lcm.dp; k1; : : : ; kn/. Hence
by Remark 4.2, for all i in f1; : : : ; ng and all p in S , there exists Bi .x/ in K.x/ \ RpŒŒx��
satisfying

fi .x/ � Bi .x/fi
�
xp

k �
mod pRpŒŒx��;

with H.Bi / � Cpk .
SinceQ is non-zero and R is a Dedekind domain, the coefficients ofQ belong to at most

finitely many prime ideals p of S . There thus exists an infinite subset S 0 of S such that, for
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every p in S 0,Qjp is a non-zero polynomial in .R=p/Œx�Œy1; : : : ; yn� of total degree at most d
in y1; : : : ; yn that vanishes at .f1jp.x/; : : : ; fnjp.x//. We can thus apply Proposition 5.3
to f1jp; : : : ; fnjp with L the fraction field of .R=p/ŒŒx��, M D .R=p/.x/, and � the canonical
extension to L of the injective endomorphism of .R=p/ŒŒx�� defined by

�
�
g.x/

�
D g

�
xp

k �
D g.x/p

k

; .g.x/ 2 .R=p/ŒŒx��/;

where the last equality holds because dp divides k. Then Proposition 5.3 implies that there
exist integersm1; : : : ; ms , not all zero, and a non-zero rational fraction r.x/ in .R=p/.x/ such
that

(5.9) B1jp.x/
m1 � � �Bnjp.x/

mn D
r
�
xp

k �
r.x/

D r.x/p
k�1:

By Remark 4.1, the constant coefficient in the left-hand side of (5.9) is equal to 1. It thus
follows that the constant coefficient of the power series r is non-zero. We can thus assume
without any loss of generality that the constant coefficient of r is equal to 1. Furthermore,
we have jm1 C � � � C mnj � d and jmi j � d for 1 � i � n. Note that the rational
fractions Bi , r and the integers mi all depend on p. However, since all the mi ’s belong to a
finite set, the pigeonhole principle implies the existence of an infinite subset S 00 of S 0 and of
integers t1; : : : ; tn independent of p such that, for all p in S 00, we havemi D ti for 1 � i � n.
Assume now that p is a prime ideal in S 00 and write r.x/ D s.x/=t.x/ with s.x/ and t .x/
in .R=p/Œx� and coprime. Since H.Bi / � Cpk , the degrees of s.x/ and t .x/ are bounded by

pk

pk � 1
C
�
jt1j C � � � C jtnj

�
� 2Cdn:

Set

h.x/ WD f1.x/�t1 � � � fn.x/�tn 2 KŒŒx��:

Then, for every p in S 00, we obtain that

hjp

�
xp

k �
� f1jp

�
xp

k ��t1
� � � fnjp

�
xp

k ��tn mod pRpŒŒx��

� f1jp
.x/�t1 � � � fnjp.x/

�tnB1.x/t1 � � �Bn.x/tn mod pRpŒŒx��

� hjp
.x/r.x/p

k�1 mod pRpŒŒx��:

Since hjp is not zero, we obtain that hjp.x/
pk�1 � r.x/p

k�1 and there is a in a suitable
algebraic extension of R=p such that hjp.x/ D ar.x/. But, the constant coefficients of both
hjp

and r are equal to 1, and hence hjp.x/ D r.x/. Thus, for infinitely many prime ideals p,
the reductions modulo p of the power series in the set(

xmh.x/ W
dX
iD1

mi � 2Cdn

)[(
xm
W

dX
iD1

mi � 2Cdn

)
are linearly dependent over R=p. Since R is a Dedekind domain, Lemma 5.4 implies that
these power series are linearly dependent overK, which means that h.x/ belong toK.x/. This
ends the proof.
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6. Algebraic functions in Ld .R; S / and Ld .R; S /

The aim of this section is to describe which power series among Ld .R; S / and Ld .R; S /

are algebraic overK.x/. Here, we keep the notation of Section 4, we fix a Dedekind domainR
andK still denotes the fraction field ofR. For every prime ideal p ofRwith finite index (5), we
write dp for the degree of the field extensionR=p over Fp. As a consequence of Theorem 5.1,
we deduce the following generalization of the main result of [5]. In their Theorem 1, Allouche,
Gouyou-Beauchamps and Skordev [5] characterize the algebraic power series of one variable
with rational coefficients that have the p-Lucas property with respect to primes in an arith-
metic progression of the form 1C sN.

P 6.1. – Let f .x/ be in Ld .R; S / for an infinite set S . Assume that f .x/ is
algebraic over K.x/ of degree less than or equal to �. Then there exists a rational fraction r.x/
in K.x/, with r.0/ D 1, and a positive integer a � � such that f .x/ D r.x/1=a.

Reciprocally, if f .x/ D r.x/1=a where r.x/ is in K.x/, with r.0/ D 1, and a is a positive
integer, then f .x/ belongs to Ld .R; S / where S is the set of all prime ideals p of R such that
r.x/ 2 Rp.x/ and R=p is a finite field of characteristic in 1C aN.

Proof of Proposition 6.1. – Let us first assume that there is an infinite set S such that f
belongs to Ld .R; S / and is algebraic. We can apply Theorem 5.1 in the case of a single
function. We obtain that there exists a positive integer a � � and a rational fraction r.x/
in K.x/ such that f .x/a D r.x/, and r.0/ D 1 as expected.

Conversely, assume that there is a positive integer a � � such that f .x/ D r.x/1=a with
r.x/ in K.x/ and r.0/ D 1. Of course, f is algebraic over K.x/ with degree at most �. Let
p be a prime ideal of R such that r.x/ 2 Rp.x/ and R=p is a finite field of characteristic p
in 1CaN. Note that there exists a natural number b such that p D 1Cab, and thus we have
f .x/p�1 D f .x/ab D r.x/b . This gives f .x/ D r.x/�bf .x/p and thus

f .x/ D r.x/�b.1CpC���Cp
dp�1/f .x/p

dp
:

It follows that
f .x/ � A.x/f

�
xp

dp �
mod pRpŒŒx��;

with A.x/ inK.x/\RpŒŒx�� andH.A/ � 2bpdp�1H.r/ � 2H.r/pdp . This shows that f and
p satisfy Conditions .i/-.iv/ in Definition 1.1, as expected.

We also have the following similar characterization of algebraic formal power series
in Ld .R; S /.

P 6.2. – Let f .x/ be in Ld .R; S / for an infinite set S . Assume that f .x/ is
algebraic overK.x/ of degree less than or equal to �. Then there exists a polynomialP.x/ inKŒx�,
with P.0/ D 1, and a positive integer a � � such that f .x/ D P.x/�1=a with degxi

.P.x// � a
for all i in f1; : : : ; dg.

Reciprocally, if f .x/ D P.x/�1=a where P.x/ is in KŒx�, with P.0/ D 1, and a is a positive
integer such that degxi

.P.x// � a for all i in f1; : : : ; dg, then for every prime ideal p in R such

(5) We recall that the term finite index simply means thatR=p is finite.
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that P.x/ is in RpŒx� and R=p is a finite field of characteristic p in 1 C aN, f .x/ satisfies the
pdp -Lucas property.

Proof. – Let us first assume that there is an infinite set S such that f belongs toLd .R; S /

and is algebraic. By Proposition 6.1, there are a positive integer a � � and a rational frac-
tion r.x/ in K.x/, with r.0/ D 1, such that f .x/ D r.x/1=a. We write r.x/ D s.x/=t.x/
with s.x/ coprime to t .x/ and s.0/ D t .0/ D 1. Since the resultant of s.x/ and t .x/ is a
non-zero element of K, there exists an infinite subset S 0 of S such that sjp.x/ and t jp.x/

are coprime and non-zero for all prime ideals p in S 0. We fix p in S 0 and we let p be the
characteristic ofR=p. By assumption, there exist a positive integer k and A.x/ inRpŒx�, with
degxi

.A/ � pk � 1 for all i in f1; : : : ; dg, such that

f .x/ � A.x/f .xp
k

/mod pRpŒŒx��:

By Remark 4.6, we can assume that dp divides k. This yields

f .x/p
k�1
� A.x/�1 mod pRpŒŒx��

and

(6.10) t .x/p
k�1
� s.x/p

k�1A.x/a mod pRpŒŒx��:

Since t jp.x/ is coprime to sjp.x/ and s.0/ D 1, we deduce that sjp.x/ D 1. Since S 0 is infinite,

we obtain s.x/ D 1, as expected. Finally, we have degxi
.t/ � a for all i in f1; : : : ; dg. Indeed,

Congruence (6.10) implies that degxi
.t jp

/ � a for all i in f1; : : : ; dg and all p in S 0.

Conversely, assume that f .x/ D P.x/�1=a where P.x/ is in KŒx�, with P.0/ D 1, and a is
a positive integer such that degxi

.P.x// � a for all i in f1; : : : ; dg. Let p be a prime ideal inR
such that P.x/ is in RpŒx� and R=p is a finite field of characteristic p in 1 C aN. Following
the proof of Proposition 6.1, we obtain that

f .x/ D P.x/b.1CpC���Cp
dp�1/f .x/p

dp
;

where b satisfies p D 1C ab. It follows that

f .x/ � A.x/f
�
xp

dp �
mod pRpŒŒx��;

with A.x/ in RpŒx� and degxi
A.x/ � pdp � 1 as expected.

R 6.3. – With these first principles in hand, one can already deduce non-trivial
results. As a direct consequence of Proposition 6.2 with R D Z, we get that the bivariate
power series 1

1�x.1Cy/
satisfies the p-Lucas property for all prime numbers p, which is

equivalent to Lucas’ theorem since we have

1

1 � x.1C y/
D

X
n;k�0

 
n

k

!
xnyk :

Using Proposition 4.9 and Proposition 6.2, we also recover the following result of Rowland
and Yassawi [42]. Given any polynomial P.x/ in QŒx� with P.0/ D 1, then we have

�

�
1

P.x/1=a

�
2 L.S /;
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for every positive integer a � maxfdegxi
.P.x// W 1 � i � dg and

S D
˚
p 2 P W p � 1mod a and P.x/ 2 Z.p/Œx�

	
:

This has interesting consequences. Choosing for instanceP.x1; : : : ; xd / D 1�.x1C� � �Cxd /
and a D 1, we deduce from Proposition 4.9 that for every positive integer t the power
series

P1
nD0

�
dn

n;n;:::;n

�t
xn satisfies the p-Lucas property for all prime numbers p. Choosing

P.x1; x2; x3; x4/ D .1� x1 � x2/.1� x3 � x4/� x1x2x3x4 and a D 1, we recover a classical
result of Gessel [30]: the sequence of Apréry numbers0@ nX

kD0

 
n

k

!2 
nC k

k

!21A
n�0

satisfies the p-Lucas property for all prime numbers p (6).

7. From asymptotics and singularity analysis to algebraic independence

In this section, we emphasize the relevance of Theorem 5.1 for proving algebraic inde-
pendence by using complex analysis. We fix a Dedekind domain R � C and an infinite
set S of non-zero prime ideals of R with finite index. We still write K for the fraction field
of R. Let f1.x/; : : : ; fn.x/ be power series in Ld .R; S / algebraically dependent over C.x/.
By Lemma 7.2 below, those power series are algebraically dependent over K.x/. Then
Theorem 5.1 yields integers a1; : : : ; an, not all zero, and a rational fraction r.x/ inK.x/ such
that

(7.11) f1.x/a1 � � � fn.x/an D r.x/:

We will describe in this section some basic principles that allow to reach a contradiction
with (7.11) and that thus lead to the algebraic independence of the fi ’s. The key feature
when dealing with one-variable complex functions is that one can derive a lot of information
from the study of their singularities and asymptotics for their coefficients. It is well-known
that asymptotics of coefficients of analytic functions and analysis of their singularities are
intimately related and there are strong transference theorems that allow to go from one to
the other viewpoint. This connection is for instance described in great detail in the book of
Flajolet and Sedgewick [28].

R 7.1. – If the multivariate functions f1.x/; : : : ; fn.x/ in Ld .R; S / are alge-
braically dependent over K.x/, then the univariate power series fi .�1xn1 ; : : : ; �dx

nd /,
1 � i � n, where �i 2 C� and ni � 1, are algebraically dependent over K.x/. We thus
stress that the principles described in this section could also be used to prove the algebraic
independence of multivariate functions.

As announced above, we recall the following classical and elementary result.

L 7.2. – LetK be a subfield of C and f1.x/; : : : ; fn.x/ be power series inKŒŒx�� alge-
braically dependent over C.x/. Then those power series are algebraically dependent over K.x/.

(6) The fact that the diagonal of 1=P is the generating series of the Apéry numbers can be found in [47].
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7.1. General principle

We write L .R; S / for L1.R; S / and we let Cfzg denote the set of complex functions that
are analytic at the origin. For such a function f .z/, we denote by �f its radius of convergence.
We recall that when �f is finite, f must have a singularity on the circle jzj D �f .

D 7.3. – Let W denote the set of all analytic functions f .z/ in Cfzg whose
radius of convergence is finite and for which there exists z 2 C, jzj D �f , such that no positive
integer power of f admits a meromorphic continuation to a neighborhood of z.

P 7.4. – Let f1.z/; : : : ; fn.z/ be functions that belong to L .R; S / \W for
an infinite set S , and such that �f1

; : : : ; �fn
are pairwise distinct. Then f1.z/; : : : ; fn.z/ are

algebraically independent over C.z/.

Proof. – Let us assume by contradiction that f1; : : : ; fn are algebraically dependent
over C.z/. By Lemma 7.2, they are algebraically dependent over K.z/. Since the fi ’s belong
to L .R; S /, we can first apply Theorem 5.1. We obtain that there exist integers a1; : : : ; an,
not all zero, and a rational fraction r.z/ in K.x/ such that

(7.12) f1.z/
a1 � � � fn.z/

an D r.z/:

Thereby, it suffices to prove that (7.12) leads to a contradiction. We can assume without loss
of generality that �f1

< � � � < �fn
. Let j be the smallest index for which aj 6D 0. We obtain

that

(7.13) fj .z/
aj D r.z/fjC1.z/

�ajC1 � � � fn.z/
�an :

We can assume that aj is positive since otherwise we could write

fj .z/
�aj D r.z/�1fjC1.z/

ajC1 � � � fn.z/
an :

By assumption, the function fj .z/ belongs toW and has thus a singularity at a point z0 2 C
with jz0j D �fj

and such that f
aj

j has no meromorphic continuation to a neighborhood
of z0. But the right-hand side is clearly meromorphic in a neighborhood of z0. Hence we
have a contradiction. This ends the proof.

R 7.5. – The set W contains all functions f .z/ in Cfzg with a finite radius of
convergence and whose coefficients a.n/ satisfy:

a.n/ 2 R�0 and a.n/ D O

 
��n
f

n

!
�

Indeed, for such a function there exist positive constants C1 and C2 such that, for all z in C
satisfying �f

2
< jzj < �f , we have

jf .z/j � ja.0/j C C1

1X
nD1

.jzj=�f /
n

n

� �C2 log
�
1 �
jzj

�f

�
:

By Pringsheim’s theorem, f has a singularity at �f . If f is not in W, then there exists a
positive integer r such that f r is meromorphic at �f . On the other hand, the inequality above
shows that f r cannot have a pole at �f . Thus f r is analytic at �f and f r .z/ has a limit as z
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tends to �f . But if this limit is non-zero, then f would be also analytic at �f , a contradiction.
It follows that

lim
z!�f

f .z/ D 0 ;

but this is impossible because the coefficients of f are non-negative (and not all zero
since �f is finite). Hence f .z/ belongs toW.

In Proposition 7.4 and the application above, we use the fact that the radius of conver-
gence of the involved functions are all distinct. We observe below that this condition is not
necessary to apply our method.

P 7.6. – Let f1.z/ and f2.z/ be two transcendental functions in L .R; S /with
same finite positive radius of convergence �. Assume that f1 and f2 have a singularity at a
point z0 2 C, with jz0j D �, such that the following hold.

(i) There is no .C; ˛/ in C� �Q such that f1.tz0/ �
t!1
t2.0;1/

C.t � 1/˛.

(ii) lim
t!1
t2.0;1/

f2.tz0/ D l 2 C�.

Then f1.z/ and f2.z/ are algebraically independent over C.z/.

Proof. – Let us assume that f1 and f2 are algebraically dependent over C.z/ and
hence over K.z/ by Lemma 7.2. Since f1.z/ and f2.z/ belong to L1.R; S /, we can apply
Theorem 5.1. We obtain that there exist a1; a2 2 Z, not both equal to 0, and a rational
function r.z/ such that

(7.14) f1.z/
a1f2.z/

a2 D r.z/:

Thereby, it suffices to prove that (7.14) leads to a contradiction. Note that since f1 and f2
are transcendental, we have a1a2 6D 0. Without loss of generality we can assume that a1 � 1.
Hence, we have

f1.tz0/ �
t!1
t2.0;1/

r.tz0/
1=a1`�a2=a1 ;

which contradicts Assertion .i/. This ends the proof.

Let us give a first example of application of Proposition 7.6.

T 7.7. – The functions
1X
nD0

.4n/Š

.2n/ŠnŠ2
zn and

1X
nD0

nX
kD0

 
n

k

!6
zn

are algebraically independent over Q.z/.

Proof. – Using Stirling formula, we obtain that

(7.15)
.4n/Š

.2n/ŠnŠ2
�

n!1

26n

�n
;

while a result of McIntosh [39] (stated in the proof of Theorem 9.8) gives that

(7.16)
nX
kD0

 
n

k

!6
�

n!1

26np
6.�n=2/5

:
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By Flajolet’s asymptotic for algebraic functions (see [26]), we know that if a power
series

P1
nD0 a.n/z

n in QŒŒz�� is algebraic over Q.z/, then we have

a.n/ �
n!1

˛nns

�.s C 1/

mX
iD0

Ci!
n
i ;

where s 2 Q n Z<0 and ˛, the Ci ’s and the !i ’s are algebraic numbers. Since �.�3=2/ is a
rational multiple of

p
� and � is a transcendental number, we obtain that

f1.z/ WD

1X
nD0

.4n/Š

.2n/ŠnŠ2
zn and f2.z/ WD

1X
nD0

nX
kD0

 
n

k

!6
zn

are both transcendental over Q.z/. It follows that f1 and f2 have the same radius of conver-
gence � D .1=2/6. Furthermore, (7.15) shows that f1 does satisfy Assumption (i) of Proposi-
tion 7.6. Indeed, (7.15) shows that f1 has a logarithmic singularity at � which is not compat-
ible with an asymptotic of the form C.z��/˛. On the other hand, (7.16) shows that f2 satis-
fies Assumption (ii) of Proposition 7.6. As we will prove in Section 8, f1 and f2 both belong
to L.P/, and we can thus apply Proposition 7.6 to conclude the proof.

7.2. Singularities of G-functions and asymptotics of their coefficients

We are mainly interested in G-functions so we will focus on elements in sets of the
form L1. OK ; S / (also denoted by L . OK ; S /), where OK is the ring of integers of a number
fieldK assumed to be embedded in C. In this case, it is well-known thatK is the fraction field
of OK which is a Dedekind domain. In this section, we briefly recall some background about
the kind of singularities a G-function may have. As we will see, those are subject to severe
restrictions. In particular, this explains why the same kind of asymptotics always comes up
when studying the coefficients of G-functions.

Let f be aG-function and L be a non-zero differential operator in QŒz; d=dz� of minimal
order such that L � f .z/ D 0. Then it is known that L is a Fuchsian operator, that is
all its singularities are regular. Furthermore, its exponents at each singularity are rational
numbers. This follows from results of Chudnovsky [17], Katz [31], and André [8] (see [7]
for a discussion). In particular, these results have the following consequence. Let z0 be a
singularity of L at finite distance and consider a closed half-line� starting at z0 and ending
at infinity. Then there is a simply connected open set U � f0; z0g such that f admits an
analytic continuation to V WD U n � (again denoted f ) which is annihilated by L . In
an intersection W of V and a neighborhood of z0, there exist rational numbers �1; : : : ; �s ,
natural numbers k1; : : : ; ks and functions fi;k.z/ in Cfz � z0g such that

(7.17) f .z/ D

sX
iD1

kiX
kD0

.z � z0/
�i log.z � z0/kfi;k.z/;

and where �i��j 2 Z implies that �i D �j . By grouping terms with �i D �j , we may assume
that if �i � �j is an integer, then i D j .

As a direct consequence of the linear independence over Cfz � z0g of the functions
.z � z0/

�i log.z � z0/k we get the following result. It shows that a G-function that does not
belong to the setW should have a decomposition of a very restricted form on its circle of
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convergence. Roughly speaking, this means that transcendental G-functions usually tend to
belong toW.

P 7.8. – Let f be a G-function and let z0 be a singularity of f . Then there is
a positive integerm such that f m has an analytic continuation to a neighborhood of z0 which is
meromorphic at z0 if, and only if, in any decomposition of the form (7.17), we have s D 1 and
k1 D 0, that is f .z/ D .z � z0/�g.z/ for z 2 W , where � 2 Q and g.z/ 2 Cfz � z0g.

7.3. G-functions with integer coefficients

In this section we focus on G-functions with integer coefficients. We first introduce the
following set of analytic functions.

D 7.9. – Let G denote the set of all analytic functions f .z/ in Cfzg satisfying
the following conditions.

(i) f .z/ satisfies a non-trivial linear differential equation with coefficients in QŒz�.

(ii) f .z/ belongs to ZŒŒz��.

We observe that elements of G are G-functions. The transcendental elements of G have
specific singularities.

P 7.10. – Every transcendental f in G has a singularity ˇ 2 C with jˇj < 1

such that no non-zero power of f admits a meromorphic continuation at ˇ.

Proof. – Let us argue by contradiction. Let f be an element of G such that, for every
complex numbers ˇ with jˇj < 1, there is a positive integer n D n.ˇ/ such that f n admits a
meromorphic continuation at ˇ. Since f is a G-function, it has only finitely many singulari-
ties and they all are at algebraic points. It implies that there exists a polynomial P.z/ in ZŒz�
and a positive integerN such that g.z/ WD P.z/f .z/N is holomorphic in the open unit disk.
Hence g is a power series with integer coefficients such that �g � 1. By the Pólya-Carlson
theorem, g is either a rational fraction or admits the unit circle as a natural boundary.
Since g has only finitely many singularities, we obtain that g is a rational fraction and f is
algebraic, which is a contradiction.

We have the following generalization of Theorem 2.1 concerning algebraic independence
of Hadamard powers of elements of G.

T 7.11. – Let f .z/ WD
P1
nD0 a.n/z

n be a transcendental function in L .S / \ G

and such that

a.n/ � 0 and a.n/ D O

 
��n
f

n

!
�

Then the functions f1 WD f; f2 WD f ˇ f; f3 WD f ˇ f ˇ f; : : : are algebraically independent
over C.z/.

Proof. – By Proposition 7.10, the radius of convergence of f .z/ satisfies 0 < �f < 1.
It follows that all the fr ’s have distinct radii of convergence since �fr

D �r
f

. On the other
hand, Remark 7.5 implies that each fr belongs toW. We can thus apply Proposition 7.4 to
conclude the proof.
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In all previous applications of Theorem 5.1, we used some knowledge about asymptotics
of coefficients and/or about the singularities of the functions involved. We give here a general
result that does not require any a priori knowledge of this kind. It applies to any transcen-
dental element of G which satisfies some Lucas-type congruences.

T 7.12. – Let f .z/ be a transcendental function in L .S /\G. Then the following
hold.

(i) Let�1; : : : ; �n be non-zero algebraic numbers with distinct absolute values. Then the series
f .�1z/; : : : ; f .�nz/ are algebraically independent over Q.z/.

(ii) The family
˚
f .z/; f .z2/; f .z3/; : : :

	
is algebraically independent over Q.z/.

Proof. – Let us first prove Assertion (i). Let us denote by K the number field generated
by �1; : : : ; �n and set R WD OK . Let S 0 be the set of non-zero prime ideals p of R such that
p \ Z 2 S , so that f .z/ belongs to L .R; S 0/.

We first note that, for all but finitely many non-zero prime ideals p in S 0, the algebraic
numbers �1; : : : ; �n belong toRp. We can thus replace S 0 by an infinite subset S 00 such that
this holds for all non-zero prime ideals in S 00. Set gi .z/ WD f .�iz/ for every i in f1; : : : ; ng.
Taking p in S 00 such that p \ Z D .p/, we write dp for the degree of the field extension R=p
over Fp. Using that f .z/ belongs to L .S /, we obtain that there exist a rational fractionA.z/
and a positive multiple k of dp such that f .z/ � A.z/f .zp

k
/ mod pRpŒŒz��. This gives:

gi .z/ � f .�iz/ � A.�iz/f
�
.�iz/

pk �
mod pRpŒŒz��

� A.�iz/f
�
�iz

pk �
mod pRpŒŒz��

� A.�iz/gi
�
zp

k �
mod pRpŒŒz��:

We thus have that g1.z/; : : : ; gn.z/ all belong to L .R; S 00/. Let us assume by contradiction
that they are algebraically dependent over K.z/. Then Theorem 5.1 ensures the existence of
integers a1; : : : ; an, not all zero, and of a rational fraction r.z/ in K.z/ such that

(7.18) g1.z/
a1 � � �gn.z/

an D r.z/:

Without any loss of generality, we can assume that j�1j < � � � < j�nj. Let j be the largest
index for which aj ¤ 0.

Let ˛ denote the infimum of all jˇj, where ˇ ranges over all complex numbers such that,
for all n � 1, f .z/n has no meromorphic continuation at ˇ. By Proposition 7.10, we have that
0 < ˛ < 1. We pick now a complex number ˇ such that, for every positive integer n, f .z/n is
not meromorphic at ˇ and such that j.�i=�j /ˇj < ˛ for all i < j . Then Equation (7.18) can
be rewritten as

gj .z/
aj D r.z/

j�1Y
iD1

gi .z/
�ai :

We assume that aj > 0, otherwise we would write gj .z/�aj D r.z/�1
Qj�1
iD1 gi .z/

ai . Our
choice of ˇ ensures, for every i D 1; : : : ; j � 1, the existence of a positive integer ni such
that gi .z/ni is meromorphic at z D ˇ=�j . Taking n WD gcd.n1; : : : ; nj�1/, we obtain that
gj .z/

naj is meromorphic at ˇ=�j . This provides a contradiction since no power of f .z/ is
meromorphic at ˇ. This proves Assertion .i/.
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A similar argument handles Assertion (ii). In that case, we have to choose j to be the
smallest index for which aj ¤ 0 and ˇ to be such that for every positive integer n, f .z/n is
not meromorphic at ˇ and such that jˇi=j j < ˛ for all i > j . The rest of the proof remains
unchanged.

8. Lucas-type congruences among classical families of G-functions

In this section, we show that many classical families ofG-functions do satisfy Lucas-type
congruences. We first consider in Sections 8.1 and 8.2 two classical families: the generating
series of factorial ratio and the generalized hypergeometric series. Then we discuss a family of
generating series associated with multivariate factorial ratio denoted by Fe;f .x/ and already
mentioned in Section 1. We give a simple criterion, proved in [20], which provides an efficient
condition on the parameters e and f that forces Fe;f .x/ to belong to Ld .P/. A key idea
is then that various specializations of the parameters or of the variables of functions of
type Fe;f lead us to prove that interesting families of G-functions belong to L1.P/. This
includes generating series associated with various sums and products of binomials, such as
those associated with Apéry, Franel, Domb, and Delannoy numbers (see Section 8.4). In this
direction, we stress that Propositions 8.8, 8.10, and 8.5 allow one to recover most examples
in the literature of sequences known to satisfy p-Lucas congruences. They also provide a lot
of new examples.

We mention that it is possible to prove a similar result for a general family of multivariate
hypergeometric series in the spirit of the so-called A-hypergeometric series. This was done
in a first version of that paper [4] and allows one to generalize in a same way both the
multivariate factorial ratio and the generalized hypergeometric series. However, the proof
involves rather technical p-adic considerations and we chose to drop it following the referee
suggestion.

8.1. Generating series of factorial ratios

Given two tuples of vectors of natural numbers, e D .e1; : : : ; eu/ and f D .f1; : : : ; fv/,
the associated sequence of factorial ratio is defined by

Qe;f .n/ WD

Qu
iD1.ein/ŠQv
iD1.fin/Š

�

The generating series of such a sequence is then denoted by

Fe;f .x/ WD
X
n2N

Qe;f .n/x
n:

In order to study when Qe;f .n/ is integer valued, Landau introduced the following simple
step function �e;f defined from R to Z by:

�e;f .x/ WD

uX
iD1

beixc �

vX
jD1

bfjxc:

According to Landau’s criterion [35], and Bober’s refinement [12], we have the following
dichotomy.
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� If, for all x in Œ0; 1�, one has �e;f .x/ � 0, then Qe;f .n/ 2 N, for all n � 0.

� If there exists x in Œ0; 1� such that�e;f .x/ < 0, then there are only finitely many prime
numbers p such that Qe;f .n/ belongs to Z.p/ for all n � 0.

In the sequel, we always assume that the sets fe1; : : : ; eug and ff1; : : : ; fvg are disjoint. We
set jej WD

Pu
iD1 ei , jf j WD

Pv
iD1 fi , and

me;f WD .maxfe1; : : : ; eu; f1; : : : ; fvg/
�1 :

The following result is proved in [20].

P 8.1. – Let us assume that jej D jf j and that �e;f .x/ � 1, for all real
numbers x such that me;f � x < 1. Then Fe;f .x/ 2 L1.P/. In other words, Fe;f .x/ satisfies
the p-Lucas property for all prime numbers p.

R 8.2. – When all the fi ’s are equal to 1, it becomes obvious that �e;f .x/ � 1,
for all real numbers x such that me;f � x < 1. This shows that all generating series of the
form

1X
nD0

Qr
iD1.ein/Š

.nŠ/r
xn ;

where e1; : : : ; er are positive integers, satisfy the p-Lucas property for all prime numbers p.

We also prove the following refinement of Proposition 8.1.

P 8.3. – The following assertions are equivalent.

(i) There exists an infinite set of primes S such that Fe;f .x/ 2 L1.S /.

(ii) The sequence Qe;f is integer-valued and has the p-Lucas property for all primes p.

(iii) We have jej D jf j and �e;f .x/ � 1 for all real numbers x such that me;f � x < 1.

R 8.4. – The equivalence of Assertions (ii) and (iii) is contained in [20, Theorem 3].
A consequence of Proposition 8.3 is that Fe;f .x/ belongs to L1.S / for an infinite set of
primes S if and only if all Taylor coefficients at the origin of the associated mirror map ze;f
are integers (see Theorems 1 and 3 in [19]). It would be interesting to investigate in more
details this intriguing connection.

Proof of Proposition 8.3. – Obviously, Assertion (ii) implies Assertion (i), and Asser-
tions (ii) and (iii) are shown to be equivalent in [20, Theorem 3]. Hence it suffices to prove
that (i) implies (iii). From now on, we assume that Assertion (i) holds.

First, we prove that jej D jf j. Since S is infinite and Fe;f .x/ belongs to ZpŒŒx�� for
every prime p in S , Landau’s criterion implies that �e;f .x/ � 0 for all x in Œ0; 1�. In
particular, we obtain that jej � jf j D �e;f .1/ � 0. If jej > jf j then �e;f .1/ � 1. Set
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Me;f WD maxfe1; : : : ; eu; f1; : : : ; fvg. Then, for all prime numbers p > Me;f and all positive
integers k, we have

vp
�

Qe;f .1C p
k/
�
D

1X
`D1

�e;f

 
1C pk

p`

!
� �e;f

�
1C

1

pk

�
� 1:

Our choice of p ensures that vp.Qe;f .1// D 0. We thus deduce that, for almost all primes p
and all positive integers k, we have

Qe;f .1C p
k/ 6� Qe;f .1/Qe;f .1/modpZ.p/ ;

which provides a contradiction with Assertion (i). Hence we get that jej D jf j.

Now, we prove the following identity. For all prime numbers p, all positive integers k, all a
in f0; : : : ; pk � 1g, and all natural integers n, we have

(8.19)
Qe;f .aC np

k/

Qe;f .a/Qe;f .n/
2

uY
iD1

beia=p
kcY

jD1

�
1C

ei

j
n

�
vY
iD1

bfia=p
kcY

jD1

�
1C

fi

j
n

��1C pZ.p/�:
Indeed, we have

Qe;f .aC np
k/

Qe;f .a/Qe;f .n/
D

Qe;f .aC np
k/

Qe;f .a/Qe;f .np
k/

k�1Y
jD0

Qe;f .np
jC1/

Qe;f .np
j /
�

Since jej D jf j, we can apply [22, Lemma 7] (7) with d D 1, c D 0, m D npj and s D 0which
leads to

Qe;f .np
jC1/

Qe;f .np
j /
2 1C pZ.p/:

Furthermore, we have

Qe;f .aC np
k/

Qe;f .a/Qe;f .np
k/
D

1

Qe;f .a/

Qu
iD1

Qeia
jD1.j C einp

k/Qv
iD1

Qfia
jD1.j C finp

k/

D

Qu
iD1

Qeia
jD1

�
1C einp

k

j

�
Qv
iD1

Qfia
jD1

�
1C finp

k

j

�
2

Qu
iD1

Qbeia=p
kc

jD1

�
1C ein

j

�
Qv
iD1

Qbfia=p
kc

jD1

�
1C fin

j

��1C pZ.p/� ;
(7) The proof of this lemma uses a lemma of Lang which contains an error. Fortunately, Lemma 7 remains true.
Details of this correction are presented in [21, Section 2.4].
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since, if pk does not divide j , then 1C .einpk/=j belongs to 1C pZ.p/. This ends the proof
of Equation (8.19).

Now we assume that there exists x in Œme;f ; 1/ such that �e;f .x/ D 0 and we argue by
contradiction.

By assumption, for all p in S , there exists a positive integer kp, such that, for all v
in f0; : : : ; pkp � 1g and all natural integers m, we have

Qe;f .v Cmp
kp / � Qe;f .v/Qe;f .m/modpZ.p/:

Let 1 < � � � < t denote the abscissa of the points of discontinuity of �e;f on Œ0; 1/. In
particular, we have 1 D me;f . There exists i in f1; : : : ; t �1g such that�e;f .x/ D 0 for all x
in Œi ; iC1/. For all large enough prime numbers p 2 S , we choose rp in f0; : : : ; p�1g such
that rp=p belongs to Œi ; iC1/ and we set ap D rppkp�1. Hence ap=pkp belongs to Œi ; iC1/.
Then, by applying (8.19) in combination with [22, Lemma 16] (with E D e and F D f ), there
are integers m1; : : : ; mi such that we have

Qe;f .ap C p
kp /

Qe;f .ap/Qe;f .1/
2

iY
kD1

�
1C

1

k

�mk �
1C pZ.p/

�
and

iY
kD1

�
1C

1

k

�mk

> 1 ;

because �e;f is non-negative on Œ0; 1�. For all large enough primes p in S , we thus deduce
that

iY
kD1

�
1C

1

k

�mk

… 1C pZ.p/:

Furthermore, for all large enough p in S , we have 1=p < me;f , and .apCpkp /=p` < me;f ,
for ` � kp C 1. It follows that vp.Qe;f .1// D 0, while

vp
�

Qe;f .ap/
�
D

kpX
`D1

�e;f

��
ap

p`

��
D �e;f

�
rp

p

�
D 0 ;

and

vp
�

Qe;f .ap C p
kp /
�
D

kpX
`D1

�e;f

 (
ap C p

kp

p`

)!
D �e;f

�
rp

p
C 1

�
D 0:

Hence Qe;f .ap C p
kp / 6� Qe;f .ap/Qe;f .1/modpZ.p/ which leads to a contradiction, and

ends the proof of Proposition 8.3.

Let us remind to the reader that one easily obtains the graph of �e;f on Œ0; 1� by trans-
lating a factorial ratio into hypergeometric form. We illustrate this process with the following
example. We consider

F.x/ WD

1X
nD0

.10n/Š

.5n/Š.3n/ŠnŠ2
xn:
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We have

.10n/Š

.5n/Š.3n/ŠnŠ2
D

Qn�1
kD0

Q10
jD1.10k C j /Qn�1

kD0

�Q5
jD1.5k C j /

�
.3k C 1/.3k C 2/.3k C 3/.k C 1/2

D

�
1010

5533

�n Qn�1
kD0

Q10
jD1

�
k C j

10

�Qn�1
kD0

�Q5
jD1

�
k C j

5

�� �
k C 1

3

� �
k C 2

3

�
.k C 1/3

D

�
1010

5533

�n Q10
jD1.j=10/n

.1=3/n.2=3/n.1/3n
Q5
jD1.j=5/n

D

�
1010

5533

�n
.1=10/n.3=10/n.1=2/n.7=10/n.9=10/n

.1=3/n.2=3/n.1/3n
�

Then we deduce that�e;f has jumps of amplitude 1 at 1=10; 3=10; 1=2; 7=10 and 9=10, while
the abscissa of its jumps of amplitude �1 are 1=3; 2=3. Furthermore, �e;f has a jump of
amplitude �3 at 1. Since

1

10
<
3

10
<
1

3
<
1

2
<
2

3
<
7

10
<
9

10
< 1 ;

we get that�e;f � 1 on Œ1=10; 1/ and it follows form Proposition 8.1 that the function F.x/
satisfies the p-Lucas property for all prime numbers. Along the same lines, one can prove for
instance that the G-functions

1X
nD0

.5n/Š.3n/Š

.2n/Š2nŠ4
xn and

1X
nD0

.4n/Š

.2n/ŠnŠ2
xn

also satisfy the p-Lucas property for all prime numbers.

8.2. Generalized hypergeometric series

With two tuples α WD .˛1; : : : ; ˛r / and β WD .ˇ1; : : : ; ˇs/ of elements in Q n Z�0, we can
associate the generalized hypergeometric series

rFs

"
˛1; : : : ; ˛r

ˇ1; : : : ; ˇs
I x

#
WD

1X
nD0

.˛1/n � � � .˛r /n

.ˇ1/n � � � .ˇs/n

xn

nŠ
�

Here, we set

Q
α;β.n/ WD

.˛1/n � � � .˛r /n

.ˇ1/n � � � .ˇs/n
and Fα;β.x/ WD

1X
nD0

Q
α;β.n/x

n ;

so that

Fα;β.x/ D rC1Fs

"
˛1; : : : ; ˛r ; 1

ˇ1; : : : ; ˇs
I x

#
:

We let dα;β denote the least common multiple of the denominators of the rational numbers
˛1; : : : ; ˛r ; ˇ1; : : : ; ˇs , written in lowest form. We also set mα;β D minf˛i ; ǰ W 1 � i � r;

1 � j � sg. We define the step function �α;β (or for short �) by:

�α;β.x/ D

rX
iD1

bx � ˛ic �

sX
jD1

bx � ǰ c C r � s:

The following result corresponds to a special case of Proposition 7.1 in [4].
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P 8.5. – Let us assume that r D s, that the ˛i ’s and ˇi ’s are in Q\ .0; 1� and
that�.x/ � 1 for all x in Œmα;β; 1/. ThenFα;β.x/ satisfies the p-Lucas property for all primes p
in

S WD fp 2 P W p � 1mod dα;βg:

In particular, Fα;β.x/ belongs to L.S /.

E 8.6. – Let us illustrate Proposition 8.5 with two examples.

�We first choose α D .1=5; 1=5/ and β D .2=7; 1/

Fα;β.x/ WD

1X
nD0

.1=5/2n
.2=7/n.1/n

xn:

For all x in Œ0; 1/, we have

�.x/ D 2bx � 1=5c � bx � 2=7c C 1

and mα;β D 1=5. We clearly have that �.x/ � 1 on Œ1=5; 1/ (it takes the values 2 and 1 on
this interval). Since dα;β D 35, we get that for all primes p � 1mod 35, Fα;β.x/ satisfies
the p-Lucas property. This could actually be refined as in [4] in order to prove in addition
that for all primes p � 6mod 35, Fα;β.x/ satisfies the p2-Lucas property. Furthermore, we
stress that, according to Theorem A in [21] (which is a reformulation of Christol’s result [14,
Proposition 1]), the function Fα;β is not globally bounded, that is there is no C in Q such
that Fα;β.Cx/ belongs to ZŒŒx��. In particular, it cannot be expressed as the diagonal of a
multivariate algebraic function.

� Let study another example by taking α D .1=9; 4=9; 5=9/ and β D .1=3; 1; 1/. This
choice of parameters was considered by Christol in [14]. We have dα;β D 9 and

1

9
<
1

3
<
4

9
<
5

9
:

Hence mα;β D 1=9 but �.1=3/ D 0 < 1, so we cannot just apply Proposition 8.5.

We end this section by observing that the condition of Proposition 8.5 is always fulfilled
in the classical case where the hypergeometric differential equation associated with Fα;β.x/

has maximal unipotent monodromy at the origin.

C 8.7. – Let α 2 .Q \ .0; 1//r and β D .1; : : : ; 1/ 2 Qr . Then the generalized
hypergeometric seriesFα;β.x/ belongs toL1.S /, where S is the set of all primes larger thandα;β.

As suggested by the referee, this statement could also be proved in the following way.

Proof. – The generalized hypergeometric series Fα;β.x/ is the Hadamard product of
power series of the form

f .x/ D

1X
nD0

.˛/n

nŠ
xn D .1 � x/�˛;
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where ˛ belongs to Q\ .0; 1/. Let p be a prime number coprime to the exact denominator s
of ˛. Then, there exists a positive integer k such that pk is congruent to 1 modulo s, and we
have

f .x/ D .1 � x/.p
k�1/˛f .x/p

k

� .1 � x/.p
k�1/˛f .xp

k

/modpZ.p/ŒŒx��;

where .1 � x/.p
k�1/˛ is a polynomial of degree less than or equal to pk � 1 because ˛ < 1.

Hence f .x/ belongs to L.Z; S / where S is the set of all ideals .p/ with p coprime to the
exact denominator of ˛. It follows that the generalized hypergeometric seriesFα;β.x/ belongs
to L1.S /, where S is the set of all primes larger than dα;β.

8.3. Multivariate factorial ratios and specializations

We consider now a class of multivariate power series which provides a higher-dimensional
generalization of generating series associated with factorial ratios that we discussed in
Section 8.1. Given two tuples of vectors in Nd , e D .e1; : : : ; eu/ and f D .f1; : : : ; fv/, we
write jej D

Pu
iD1 ei and, for all n in Nd , we set

Qe;f .n/ WD

Qu
iD1.ei � n/ŠQv
iD1.fi � n/Š

and Fe;f .x/ WD
X

n2Nd

Qe;f .n/x
n:

We consider the Landau function �e;f defined from Rd to Z by:

�e;f .x/ WD
uX
iD1

bei � xc �
vX

jD1

bfj � xc:

We also recall that, as in the one-variable case, Landau’s criterion [35], and Delaygue’s
refinement [22], give the following dichotomy.

� If, for all x in Œ0; 1�d , one has �e;f .x/ � 0, then Qe;f .n/ is an integer for all n in Nd .

� If there exists x in Œ0; 1�d such that�e;f .x/ < 0, then there are only finitely many prime
numbers p such that Qe;f .n/ belongs to Z.p/ for all n in Nd .

Set

De;f WD
˚
x 2 Œ0; 1/d W there is d in fe1; : : : ; eu; f1; : : : ; fvg such that d � x � 1

	
:

The following result is proved in [20, Theorem 3].

P 8.8. – Let us assume that jej D jf j and that�e;f .x/ � 1 for all x in De;f .
Then Fe;f .x/ belongs to Ld .P/. More precisely, Fe;f .x/ satisfies the p-Lucas property for all
primes p.

Let us illustrate Proposition 8.8 with the following example. Set e WD ..2; 1/; .1; 1// and
f WD ..1; 0/; .1; 0/; .1; 0/; .0; 1/; .0; 1//. Then

Fe;f .x; y/ D
X

.n;m/2N2

.2nCm/Š.nCm/Š

nŠ3mŠ2
xnym:
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For all x1 and x2 in Œ0; 1/, we have

�e;f .x1; x2/ D b2x1 C x2c C bx1 C x2c � 3bx1c � 2bx2c

D b2x1 C x2c C bx1 C x2c:

Clearly, we have that
Pr
iD1 ei D

Ps
jD1 fj . Furthermore, we have

De;f D

n
.x1; x2/ 2 Œ0; 1/

2
W 2x1 C x2 � 1 or x1 C x2 � 1

o
;

so that �e;f .x1; x2/ � 1, for all .x1; x2/ in De;f . Hence we infer from Proposition 8.8 that
Fe;f satisfies the p-Lucas property for all prime numbers p.

We give below a simple case of Proposition 8.8 that turns out to be especially useful for
applications.

C 8.9. – For every k in f1; : : : ; dg, let us denote by 1k the vector of Nd whose
k-th coordinate is one and all others are zero. Let e and f D .1k1

; : : : ; 1kv
/ be two disjoint

tuples of non-zero vectors in Nd such that jej D jf j and ki 2 f1; : : : ; dg, 1 � i � v. Then
Fe;f .x/ satisfies the p-Lucas property for all primes p.

Proof. – Let x be in De;f . By assumption, there is a coordinate d of either e or f such
that d �x � 1. But, since x belongs to Œ0; 1/d and f D .1k1

; : : : ; 1kv
/, d has to be a coordinate

of the vector e so that

�e;f .x/ D
uX
iD1

bei � xc �
vX

jD1

b1kj
� xc

D

uX
iD1

bei � xc

� 1:

Proposition 8.8 then applies to conclude the proof.

In order to transfer the p-Lucas property from multivariate series of type Fe;f to
one-variable formal power series, we will prove the following useful complement to Propo-
sition 8.8.

P 8.10. – We keep all assumptions and notation of Proposition 8.8. Set

N WD
˚
n 2 Nd W 8x 2 Œ0; 1/d with n � x � 1; one has �e;f .x/ � 1

	
:

Let n D .n1; : : : ; nd / be in N and .b1; : : : ; bd / be a vector of non-zero rational numbers. Then
Fe;f .b1x

n1 ; : : : ; bdx
nd / belongs to L1.S 0/, where

S 0 WD
n
p 2 S W .b1; : : : ; bd / 2 Zd.p/

o
:

Let us illustrate this result with the example given just after Proposition 8.8, that is with
the function

Fe;f .x; y/ D
X

.n;m/2N2

.2nCm/Š.nCm/Š

nŠ3mŠ2
xnym:
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We consider the specialization given by n D .1; 1/ and b1 D b2 D 1. Then Proposition 8.10
applies because we already observed that�e;f .x1; x2/ � 1 for all .x1; x2/ in Œ0; 1/2 satisfying
x1C x2 � 1. A small computation shows that we obtain yet another proof of Gessel’s result
stating that the Apéry sequence 0@ nX

kD0

 
n

k

!2 
nC k

k

!1A
n�0

satisfies the p-Lucas property for all primes p.
Applying Proposition 8.10 to the same function but with the specialization given

by n D .2; 1/, b1 D �1 and b2 D 2, we get that

Fe;f .�x
2; 2x/ D

1X
nD0

bn=2cX
kD0

.�1/k2n�2k

 
n

k

! 
n � k

n � 2k

!2
xn

also satisfies the p-Lucas property for all primes p.
Now, we prove Proposition 8.10.

Proof of Proposition 8.10. – Set

N WD
˚
n 2 Nd W 8x 2 Œ0; 1/d with n � x � 1; one has �e;f .x/ � 1

	
:

Let n D .n1; : : : ; nd / be in N , .b1; : : : ; bd / be a vector of non-zero rational numbers. Set

S 0 WD
n
p 2 S W .b1; : : : ; bd / 2 Zd.p/

o
and let p be a prime number in S 0. We will simply write F for Fe;f , Q for Qe;f , and �
for �e;f . By Proposition 8.8, the sequence Q.n/ has the p-Lucas property, so that

F.x/ �

0@ X
0�a�.p�1/1

Q.a/xa

1AF.xp/modpZ.p/ŒŒx��:

This gives:

F.b1x
n1 ; : : : ; bdx

nd / �

0@ X
0�a�.p�1/1

ba Q.a/xn�a

1AF �bp1 xn1p; : : : ; b
p

d
xndp

�
modpZ.p/ŒŒx��

�

0@ X
0�a�.p�1/1

ba Q.a/xn�a

1AF �b1xn1p; : : : ; bdx
ndp

�
modpZ.p/ŒŒx�� ;

since bpi � bi modpZ.p/ for all i in f1; : : : ; dg. For all a in f0; : : : ; p�1gd satisfying n �a � p,
we have n � a=p � 1 and thus �.a=p/ � 1. It follows that

vp
�

Q.a/
�
D

1X
`D1

�

�
a
p`

�
� �

�
a
p

�
� 1 ;

because � is non-negative on Rd . Thus there is a polynomial A.x/ with coefficients in Z.p/
and of degree at most p � 1 such that

F.b1x
n1 ; : : : ; bdx

nd / � A.x/F
�
b1x

n1p; : : : ; bdx
ndp

�
modpZ.p/ŒŒx��:
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This shows that F.b1xn1 ; : : : ; bdx
nd / satisfies the p-Lucas property, as expected.

8.4. Specializations of factorial ratios

Our main interest when working with multivariate power series in this setting is to benefit
from the following general philosophy: interesting classical power series in one variable
can be produced as simple specializations of simple multivariate power series. In particular,
we claim that specializations of functions of type Fe;f lead to many classical examples of
generating functions arising in combinatorics and number theory. As already mentioned in
Section 8.3, the generating function of Apéry’s numbers

f .x/ D

1X
nD0

0@ nX
kD0

 
n

k

!2 
nC k

k

!1A xn
can be for instance obtained as the specialization f .x/ D Fe;f .x; x/ of the two-variate
generating series of factorial ratios

(8.20) Fe;f .x1; x2/ D
X

.n1;n2/2N2

.2n1 C n2/Š.n1 C n2/Š

n1Š3n2Š2
x
n1

1 x
n2

2 ;

corresponding to the choice

e D
�
.2; 1/; .1; 1/

�
and f D

�
.1; 0/; .1; 0/; .1; 0/; .0; 1/; .0; 1/

�
:

In order to support our claim, we gather in the following table some classical sequences
for which we prove that they satisfy the p-Lucas property for all primes p. Indeed, they
all arise from the specialization in .x; x/ of bivariate power series Fe;f .x1; x2/ that belong
to L2.P/. The fact these bivariate power series belong to L2.P/ is a direct consequence
of Corollary 8.9. Proposition 8.10 then implies that the specialization Fe;f .x; x/ belongs
to L1.P/.

As pointed out to us by the referee, there is also another way to prove that all (univariate)
sequences listed in the following table have the p-Lucas property for all prime numbers p.
Indeed, the generating series corresponding to all two-variate sequences listed in this table
are Hadamard products of multivariate power series whose coefficients have the formX

n1;:::;nk�0

.a1n1 C � � � C aknk/Š

.n1Š/a1 � � � .nkŠ/ak
�

Furthermore, the latter power series turn out to be partial diagonalizations of the power
series

1

1 � x1 � � � � � xm

for which we already proved that they belong to Lm.Z/.
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Sequence Qe;f .n1; n2/ Reference from OEIS 
2n

n

!
D

nX
kD0

 
n

k

!2
.n1 C n2/Š

2

n1Š2n2Š2
Central binomial coefficients (A000984)

nX
kD0

 
n

k

!2 
nC k

k

!2
.2n1 C n2/Š

2

n1Š4n2Š2
Apéry numbers (A005259)

nX
kD0

 
n

k

!2 
nC k

k

!
.2n1 C n2/Š.n1 C n2/Š

n1Š3n2Š2
Apéry numbers (A005258)

nX
kD0

 
n

k

!3
.n1 C n2/Š

3

n1Š3n2Š3
Franel numbers (A000172)

nX
kD0

 
n

k

!4
.n1 C n2/Š

4

n1Š4n2Š4
(A005260)

nX
kD0

 
n

k

! 
2k

k

! 
2.n � k/

n � k

!
.n1 C n2/Š.2n1/Š.2n2/Š

n1Š3n2Š3
(A081085)

nX
kD0

 
n

k

!2 
2k

k

!
.n1 C n2/Š

2.2n1/Š

n1Š4n2Š2

Number of abelian squares
of length 2n over an alphabet

with 3 letters (A002893)
nX
kD0

 
n

k

!2 
2k

k

! 
2.n � k/

n � k

!
.n1 C n2/Š

2.2n1/Š.2n2/Š

n1Š4n2Š4
Domb numbers (A002895)

nX
kD0

 
n

k

! 
nC k

k

!
.2n1 C n2/Š

n1Š2n2Š
Central Delannoy numbers (A001850)

nX
kD0

 
2k

k

!2 
2.n � k/

n � k

!2
.2n1/Š

2.2n2/Š
2

n1Š4n2Š4
(A036917)

Let us end this section with an example of a different type, that is for which f is not of
the form .1k1

; : : : ; 1kv
/. Set

Fe;f .x1; x2/ WD
X

.n1;n2/2N2

.3n1 C 2n2/Š

.n1 C n2/Šn1Š2n2Š
x
n1

1 x
n2

2 :

In that case, we obtain De;f D f.x; y/ 2 Œ0; 1/
2 W 3x C 2y � 1g. When .x1; x2/ belongs

to De;f , we get that

�e;f .x1; x2/ D b3x1 C 2x2c � bx1 C x2c � 1:

By Proposition 8.8, it follows that Fe;f .x1; x2/ has the p-Lucas property for all primes.
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Using specializations in .�x; x/ and .2x3; 3x2/, we then infer from Proposition 8.10 that
both sequences

nX
kD0

.�1/k

 
2nC k

n

! 
nC k

k

! 
n

k

!
and

bn=3cX
kD0

k�n mod 2

2k3
n�3k

2

 
n

k

! 
n � k
n�k
2

! 
n�k
2

k

!

also satisfy the p-Lucas property for all prime numbers p.

8.5. Examples from differential equations of Calabi-Yau type

Motivated by the search for differential operators associated with particular families of
Calabi-Yau varieties, Almkvist et al. [6] gave a list of more than 400 differential operators
satisfying some algebraic conditions [6, Section 1]. In particular, a condition is that the
associated differential equation admits a unique power series solution near z D 0 with
constant term 1 and that this power series has integral Taylor coefficients. In most of the
cases, this solution is also given in [6]. It turns out that our method enables us to prove that
most of these solutions have the p-Lucas property for infinitely many primes p.

By studying the integrality of the Taylor coefficients of mirror maps, Kratthentaler and
Rivoal in [34] and Delaygue in [18, Section 10.2] showed that the power series solutions
near z D 0 of 143 equations in Table [6] are specializations of series of type Fe;f . Further-
more, they showed that in 140 cases the associated functions � are greater than or equal
to 1 on De;f . Hence, to prove that these specializations have the p-Lucas property for
all primes p, it suffices to show that the specialization is given by a vector n such that
if x 2 Œ0; 1/d and n � x � 1, then �e;f .x/ � 1 and to apply Proposition 8.10. A similar
approach also works in the more general framework of multivariate generalized hyper-
geometric series previously mentioned at the beginning of Section 8 (see [4] for more
details).

Following this method, we checked that 212 cases have the p-Lucas property for infinitely
many primes p, namely Cases 1-25, 29, 3�, 4�, 4��, 6�-10�, 7��-10��, 13�, 13��, O1- O14, 30, 31,
34-41, 43-83, 85-108, 110-116, 119-122, 124-132, 145-153, 155-172, 180, 185, 188, 190-192,
197, 208, 209, 212, 232, 233, 237-241, 243, 278, 284, 288, 292, 307, 323, 330, 337, 338, 340,
367, 369-372, 377, 380, 398.

Among the cases not covered in [34] nor [18], we give two examples: Cases 4� and 31. In
Case 4�, the power series solution near z D 0 is

f .z/ D

1X
nD0

nX
kD0

27n

 
2n

n

! 
�1=3

k

!2 
�2=3

n � k

!2
zn:

Hence f .z/ D F.27z; 27z/ where

F.x; y/ D
X

n1;n2�0

.2n1 C 2n2/Š.1=3/
2
n1
.2=3/2n2

.n1 C n2/Š2n1Š2n2Š2
xn1yn2 ;

which is not a series of type Fe;f but a two-variate generalized hypergeometric series. Using
the general approach of [4], it can be shown that f .z/ has the p-Lucas property for all
primes p > 3.
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In Case 31, the power series solution near z D 0 can be rewritten as

f .z/ D

1X
nD0

nX
kD0

kX
iD0

43n42.n�k/4k�i .�1/i

 
2k

k

! 
2i

i

!
.1=4/n.1=4/n�k.3=4/k

nŠ.n � k/Š.k � i/Ši Š
zn:

Hence f .z/ D F.45z; 44z;�43z/ where F.x; y; z/ isX
n1;n2;n3�0

 
2.n2 C n3/

n2 C n3

! 
2n3

n3

!
.1=4/n1Cn2Cn3

.1=4/n1
.3=4/n2Cn3

.n1 C n2 C n3/Šn1Šn2Šn3Š
xn1yn2zn3 ;

which is now a three-variate generalized hypergeometric series. Using the general approach
of [4], it can be shown that f .z/ has the p-Lucas property for all primes p � 1mod 4.

9. Algebraic independence of G-functions: a few examples

In this last section, we gather various examples of statements concerning algebraic inde-
pendence of G-functions that follow from simple applications of our method.

9.1. Factorial ratios

Given two tuples of vectors of natural numbers, e D .e1; : : : ; eu/ and f D .f1; : : : ; fv/,
we recall that the associated sequence of factorial ratios is defined by

Qe;f .n/ WD

Qu
iD1.ein/ŠQv
iD1.fin/Š

and that the generating series of such a sequence is denoted by

Fe;f .x/ WD

1X
nD0

Qe;f .n/x
n:

In the sequel, we always assume that the sets fe1; : : : ; eug and ff1; : : : ; fvg are disjoint. We
also recall that jej WD

Pu
iD1 ei , jf j WD

Pv
iD1 fi , and

me;f WD .maxfe1; : : : ; eu; f1; : : : ; fvg/
�1 :

We set

Ce;f WD

Qu
iD1 e

ei

iQv
iD1 f

fi

i

�

From Stirling’s formula, we deduce the following general asymptotics:

(9.21) Qe;f .n/ �n!1
C ne;f

�p
2�n

�u�vsQu
iD1 eiQv
iD1 fi

�

As an application of these asymptotics and Proposition 7.4, we obtain for instance the
following result.

T 9.1. – The functions
1X
nD0

.3n/Š

nŠ3
zn;

1X
nD0

.5n/Š.3n/Š

.2n/Š2nŠ4
zn and

1X
nD0

.10n/Š

.5n/Š.3n/ŠnŠ2
zn

are algebraically independent over C.z/.
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Proof. – We infer from (9.21) that these power series belong toM and all have distinct
radii of convergence, while Proposition 8.1 can be used to prove that they do satisfy the
p-Lucas property for all prime numbers p. The results then follow from Proposition 7.4.

Using Proposition 7.6, we can also obtain the following result.

P 9.2. – Let e1 and f1, respectively e2 and f2, be disjoint tuples of positive
integers such that the following hold:

(i) v1 � u1 D 2.
(ii) v2 � u2 � 3.

(iii) Qe1;f1
and Qe2;f2

satisfy the p-Lucas property for all primes p.

Then Fe1;f1
.z/ and Fe2;f2

.z/ are algebraically independent over C.z/.

Proof. – We first observe that ifCe1;f1
6D Ce2;f2

, we can use Proposition 7.4 as previously
to obtain the desired result. We can thus assume that Ce1;f1

D Ce2;f2
DW C and we will use

Proposition 7.6.
We first remark that Fe1;f1

.z/ and Fe2;f2
.z/ are both transcendental. This follows for

instance from applying Proposition 9.6 twice with a single function. Now, by Pringsheim’s
theorem, Fe1;f1

.z/ and Fe2;f2
.z/ have a singularity at 1=C . Using (9.21), we infer from the

assumption v1 � u1 D 2 that Fe1;f1
satisfies Condition (i) of Proposition 7.6, while we infer

from the assumption v2�u2 � 3 that Fe2;f2
satisfies Condition (ii) of Proposition 7.6. Since,

by assumption, Fe1;f1
and Fe2;f2

both belong to L.P/, we can apply Proposition 7.6 to
conclude the proof.

R 9.3. – Using the discussion in [41], one can actually show that the only case
where Fe;f .z/ belongs to L.P/ and, at the same time, is an algebraic function that corre-
sponds to e D .2/ and f D .1; 1/, is the case where

Fe;f .z/ D
1

p
1 � z

� :

We give the following illustration of Proposition 9.2.

T 9.4. – The functions
1X
nD0

.4n/Š

.2n/ŠnŠ2
zn and

1X
nD0

.2n/Š3

nŠ6
zn

are algebraically independent over C.z/.

Proof. – Here we have e1 D .4/ and f1 D .2; 1; 1/, so that v1�u1 D 2. Furthermore, for
all x in Œ1=4; 1/, we have

�e1;f1
.x/ D b4xc � b2xc � 1 ;

which shows that Qe1;f1
satisfies the p-Lucas property for all primes p. On the other hand,

we also have e2 D .2; 2; 2/ and f2 D .1; 1; 1; 1; 1; 1/, so that v2 � u2 D 3. Furthermore, for
all x in Œ1=2; 1/, we have

�e2;f2
.x/ D 3b2xc � 1 ;

which shows that Qe2;f2
also satisfies the p-Lucas property for all primes p. Then the result

follows from Proposition 9.2.
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9.2. Generalized hypergeometric functions

Using Stirling formula, it is easy to give general asymptotics for the coefficients of gene-
ralized hypergeometric functions. Indeed, it implies that

�.x/ �
x!1

xx�
1
2 e�x

p
2� ;

and hence

.˛/n D
�.˛ C n/

�.˛/
�

n!1
.˛ C n/˛�

1
2Cne�˛�n

p
2�

�.˛/
�

Let us recall that

Q
α;β.n/ WD

.˛1/n � � � .˛r /n

.ˇ1/n � � � .ˇs/n
and Fα;β.x/ WD

1X
nD0

Q
α;β.n/x

n:

When r D s, that is when Fα;β.x/ is a G-function, we thus obtain that

Q
α;β.n/ �n!1

n
Pr

iD1.˛i�ˇi /

 Qr
iD1.˛i C n/Qr
jD1. ǰ C n/

!n
e
Pr

iD1.ˇi�˛i /

Qr
iD1 �.˛i /Qr
jD1 �. ǰ /

which leads to the following simple asymptotics:

(9.22) Q
α;β.n/ �n!1

 Qr
iD1 �.˛i /Qr
jD1 �. ǰ /

!
n
Pr

iD1.˛i�ˇi /:

Note that it is usually easy to detect from such asymptotics when the hypergeometric
function Fα;β.z/ is transcendental by comparison with asymptotics of coefficients of alge-
braic functions. Otherwise, one can always use the interlacing criterion of Beukers and
Heckman [11]. For instance, one can use our asymptotics to show that the hypergeometric
function

f.z/ WD

1X
nD0

.1=5/n.4=5/n

nŠ2
zn

is transcendental and belongs to W (see the proof of Theorem 9.7). Furthermore, Corol-
lary 8.7 shows it has the p-Lucas property for all primes larger than 5. We can thus apply
Proposition 7.4 to deduce the following result.

T 9.5. – All elements of the set ff.nz/ W n � 1g are algebraically independent
over C.z/.

As pointed out to us by the referee, this can actually be generalized as follows.

P 9.6. – Let f1; : : : ; fs be transcendental generalized hypergeometric series
with rational parameters, radii of convergence 1 and which all belong to L .S / for some infinite
set S of non-zero prime ideals of Z. Let �1; : : : ; �s be pairwise distinct non-zero algebraic
numbers, then f1.�1z/; : : : ; fs.�sz/ are algebraically independent over C.z/.

Proof. – Let i be in f1; : : : ; sg. Then fi is a G-function annihilated by a differential
operator with three singularities at 0; 1 and1. Since fi is transcendental, there is no power
of fi which is meromorphic at 1. Indeed, otherwise there would exist a positive integer n
and a non-zero polynomial Q.x/ with integer coefficients such that Q.x/fi .x/n would be
an entire G-function and thus a polynomial. Since fi is transcendental, this would provide
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a contradiction. Hence fi belongs toM. Since the �j ’s are algebraic, there exist a number
field K and a suitable infinite set S 0 of non-zero prime ideals of OK such that the fj .�j z/’s
belong to L . OK ; S 0/. The power series f1.�1z/; : : : ; fs.�sz/ have pairwise distinct radii of
convergence so the result follows from Proposition 7.4.

Let us give another kind of example derived from Proposition 7.6.

T 9.7. – The hypergeometric functions

f1.z/ D

1X
nD0

.1=5/n.4=5/n

nŠ2
zn and f2.z/ D

1X
nD0

.1=3/n.1=2/
2
n

.2=3/nnŠ2
zn

are algebraically independent over C.z/.

Proof. – For α D .1=5; 4=5/ and β D .1; 1/, we infer from Equation (9.22) that

(9.23) Q
α;β.n/ �n!1

�.1=5/�.4=5/

n

which are the asymptotics of a transcendental series. For α D .1=3; 1=2; 1=2/ and
β D .2=3; 1; 1/, we have

(9.24) Q
α;β.n/ �n!1

�.1=3/�.1=2/2

�.2=3/

1

n4=3
;

so that f2 belongs toW. By Corollary 8.7, we first get that f1 belongs to L.S 0/, where S 0 is
the set of primes larger than 5, while Proposition 8.5 implies that f2 belongs to L.S 1/, where
S 1 D fp 2 P W p � 1mod 6g. In particular, both belong to L.S 1/. The series f2 belongs
toW \ L.S 1/ so is transcendental over C.z/ by Proposition 7.4. Note that these functions
are hypergeometric and thus have the same radius of convergence 1. Then (9.23) and (9.24)
show, as earlier, that one can apply Proposition 7.6, which ends the proof.

9.3. Sums and products of binomials

As an application of Proposition 7.4, we give below a proof of the following result already
mentioned in the introduction.

T 9.8. – Let F be the set formed by the union of the three following sets:(
1X
nD0

nX
kD0

 
n

k

!r
zn W r � 3

)
;

(
1X
nD0

nX
kD0

 
n

k

!r 
nC k

k

!r
zn W r � 2

)
and 8<: 1X

nD0

nX
kD0

 
n

k

!2r 
nC k

k

!r
zn W r � 1

9=; :
Then all elements of F are algebraically independent over C.z/.

4 e SÉRIE – TOME 52 – 2019 – No 3



ALGEBRAIC INDEPENDENCE OF G-FUNCTIONS 555

Proof. – McIntosh [39] proves general asymptotics for sequences of the form

S.n/ WD

nX
kD0

mY
jD0

 
nC jk

k

!rj
;

where m; r0; : : : ; rm are natural integers. Indeed, he shows that

S.n/ �
n!1

�nC1=2p
�.2��n/r�1

;

with r D r0 C � � � C rm, and where �, 0 < � < 1, is defined by
mY
jD0

�
.1C j�/j

�.1C j� � �/j�1

�rj
D 1 ;

and where � and � are respectively defined by

� D

mY
jD0

�
1C j�

1C j� � �

�rj
and

� D

mX
jD0

rj

.1C j� � �/.1C j�/
�

The particular case we are interested in is considered in [39]. For a positive integer r , we then
obtain the following asymptotics:

nX
kD0

 
n

k

!r
�

n!1

2rnp
r.�n=2/r�1

;

nX
kD0

 
n

k

!r 
nC k

k

!r
�

n!1

.1C
p
2/2nrCrq

4r.�n
p
2/2r�1

;

and
nX
kD0

 
n

k

!2r 
nC k

k

!r
�

n!1

�
.1C

p
5/=2

�5nrC4rq
.5C 2

p
5/r.2�n/3r�1

�

These asymptotics show that all functions in F have distinct radii of convergence. Further-
more, we infer from Remark 7.5 and these asymptotics that they all belong toW since r � 3
for the first family, r � 2 for the second, and r � 1 for the third. On the other hand, we
already proved in Section 8.3 that all functions in F belong toL.P/. The result now follows
directly from Proposition 7.4.

9.4. A mixed example

One special feature of our approach is that one can easily mix functions of rather different
type without having to consider all their derivatives and finding a common differential equa-
tion for them. We illustrate this claim with the following simple example already mentioned
in the introduction.
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T 9.9. – The functions

f .z/ WD

1X
nD0

.4n/Š

.2n/ŠnŠ2
zn; g.z/ WD

1X
nD0

nX
kD0

 
n

k

!2 
nC k

k

!2
zn; h.z/ WD

1X
nD0

.1=6/n.1=2/n

.2=3/nnŠ
zn;

and

i.z/ WD

1X
nD0

.1=5/3n
.2=7/nnŠ2

zn

are algebraically independent over C.z/.

Note that the two last functions are not globally bounded so they cannot be obtained as
the diagonal of some rational functions.

Proof. – On the one hand, we already showed in Section 8.1 that f .z/ belongs to L.P/,
in Section 6 that g.z/ belongs to L.P/, in Section 8.2 that h.z/ belongs to L.S /, where
S D fp 2 P W p � 1mod 6g, and it follows from Proposition 8.5 that i.z/ belongs
to L.S 0/, where S 0 D fp 2 P W p � 1mod 35g. Hence all belong to L.S 1/, where
S 1 D fp 2 P W p � 1mod 210g.

On the other hand, we infer from Remark 7.5 and asymptotics for the coefficients of these
functions (see Sections 9.1, 9.2, and 9.3) that they all belong to W and that �f D 4�3,
�g WD .1C

p
2/�4, �h D 1, and �i D 1.

Now, let us assume that f; g; h; i are algebraically dependent over C.z/. Then by
Theorem 5.1, there should exist integers a; b; c; d , not all zero, such that

f .z/ag.z/bh.z/ci.z/d D r.z/ ;

where r.z/ is a rational fraction. If a 6D 0, we infer from the equality

f .z/a D r.z/g.z/�bh.z/�ci.z/�d

that f .z/a is meromorphic at �f , which provides a contradiction with the fact that f .z/
belongs to W. Thus a equals 0. Now, if b 6D 0, we obtain in the same way that g.z/b is
meromorphic at �g , which provides a contradiction with the fact that g.z/ belongs to W.
Thus b D 0 and we have

h.z/ci.z/d D r.z/ ;

with c and d not all zero. This means that h and i are algebraically dependent. However, using
the asymptotics of Section 9.2, we see that h and i satisfy the assumption of Proposition 7.6
and are thus algebraically independent. We thus get a contradiction, concluding the proof.
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