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Abstract. We prove congruence relations modulo cyclotomic polynomials for multi-
sums of q-factorial ratios, therefore generalizing many well-known p-Lucas congru-
ences. Such congruences connect various classical generating series to their q-analogs.
Using this, we prove a propagation phenomenon: when these generating series are
algebraically independent, this is also the case for their q-analogs.

Résumé. Nous démontrons des relations de congruences modulo des polynômes cy-
clotomiques pour des sommes multiples de quotients de q-factorielles, ce qui généralise
de nombreuses congruences p-Lucas. Ces congruences relient des familles classiques
de séries génératrices et leurs q-analogues. Nous en déduisons un phénomène de
propagation : l’indépendance algébrique de telles séries génératrices se transmet sys-
tématiquement à leurs q-analogues.

Keywords: cyclotomic polynomials, congruences, q-analogs, algebraic independence.

1 Introduction and main results

After the seminal work of Lucas [9], a great attention has been paid on congruences
modulo prime numbers p satisfied by various combinatorial sequences related to bino-
mial coefficients. A typical example of these so-called p-Lucas congruences is given by:(

2(m + np)
m + np

)r

≡
(

2m
m

)r(2n
n

)r
mod p, (1.1)

where 0 ≤ m ≤ p − 1, r ≥ 1, and n ≥ 0. In terms of generating series these congru-
ences (1.1) translate as

gr(x) ≡ A(x)gr(xp) mod pZ[[x]], (1.2)

where

gr(x) :=
∞

∑
n=0

(
2n
n

)r
xn
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and A(x) is a polynomial (depending on r and p) in Z[x] of degree at most p− 1. This
functional point of view led the authors of [2] to define general sets of multivariate
power series including the following one which is of particular interest for our purpose.

Definition 1.1. Let d be a positive integer and x = (x1, . . . , xd) be a vector of indeterminates.
We let Ld denote the set of all power series g(x) in Z[[x]] with constant term equal to 1 and such
that for every prime number p:

(i) there exist a positive integer k and a polynomial A in Z[x] satisfying

g(x) ≡ A(x)g
(
xpk)

mod pZ[[x]].

(ii) degxi
(A) ≤ pk − 1 for all i, 1 ≤ i ≤ d.

Using p-adic computations inspired by works of Christol and Dwork, it was proved
in [2] that a large family of multivariate generalized hypergeometric series belongs to
Ld. This provides, by specialization, a unified way to reprove most of known p-Lucas
congruences as well as to find many new ones. In addition, a general method to prove
algebraic independence of power series whose coefficients satisfy p-Lucas type congru-
ences was developed. Let us illustrate this approach with the following example. In
1980, Stanley [13] conjectured that the series gr are transcendental over C(x) except for
r = 1, in which case we have g1(x) = (

√
1− 4x)−1. He also proved the transcendence for

r even. The conjecture was solved independently by Flajolet [6] through asymptotic con-
siderations and by Sharif and Woodcock [12] by using the previously mentioned Lucas
congruences. Incidentally, this result is also a consequence of the interlacing criterion
proved by Beukers and Heckman [3] for generalized hypergeometric series. Though
there are three different ways to obtain the transcendence of gr for r ≥ 2, not much was
apparently known about their algebraic independence, until Congruence (1.1) was used
in [1, 2] to prove the following result: all elements of the set {gr(x) : r ≥ 2} are algebraically
independent over C(x).

In the present work, we aim at generalizing the approach of [2] in the setting of q-
series. It started with the following observation which can be derived from [7, 11, 14]:[

2(m + nb)
m + nb

]r

q
≡
[

2m
m

]r

q

(
2n
n

)r
mod φb(q)Z[q] , (1.3)

where n, m, b, r are nonnegative integers with b ≥ 1, 0 ≤ m ≤ b − 1, and φb(x) :=
∏k∧b=1(x− e2ikπ/b) denotes the bth cyclotomic polynomial over Q. Here, for every com-
plex number q, the central q-binomial coefficients are defined as[

2n
n

]
q

:=
[2n]q!
[n]q!2

∈N[q], where [n]q! :=
n

∏
i=1

1− qi

1− q

is the q-analog of n!. It is implicitly considered as a polynomial in q so that the formula
is still valid for q = 1. In particular, one has [n]1! = n! and the congruence (1.3) allows
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one to recover (1.1) since φp(1) = p. Moreover, congruences like (1.3) do not seem to
be true in general if the cyclotomic polynomials are replaced by other polynomials, like
for instance (1− xb)/(1− x). This convinced us that considering congruences modulo
cyclotomic polynomials might be the correct point of view to generalize p-Lucas congru-
ences. Again in terms of generating series, (1.3) translates as

fr(q; x) ≡ A(q; x)gr(xb) mod φb(q)Z[q] [[x]] , (1.4)

where A(q; x) is a polynomial in Z[q][x] of degree (in x) at most b− 1 and we have set

fr(q; x) :=
∞

∑
n=0

[
2n
n

]r

q
xn.

This provides an arithmetic connection between the generating series gr(x) and its q-
analog fr(q; x). It leads us to associate a set D(q; g) of q-deformations with every element
g in Ld. We stress that D(q; g) is closed under q-derivation.

Definition 1.2. Let q be a fixed nonzero complex number. Let g(x) be a power series in
Ld. We let D(q; g) denote the set of all nonzero power series f (q; x) in Z[q][[x]] such that
for all integers b ≥ 1 there exists a polynomial A(q; x) with coefficients in Z[q] satisfying:

f (q; x) ≡ A(q; x)g
(
xb) mod φb(q)Z[q][[x]].

Our first result shows a propagation phenomenon of algebraic independence from
generating series in Ld to their q-analogs. We stress that, in comparison with [2], some
extra difficulties arise from the fact that Z[q] is in general not a Dedekind domain. We
derive suitable properties for the ring Z[q] (see Proposition 4.2) from the S-unit theorem
(respectively Chebotarev’s theorem) when q is algebraic (respectively transcendental).

Theorem 1.3. Let q be a nonzero complex number. Let g1(x), . . . , gn(x) be power series in Ld,
which are algebraically independent over C(x). Then for any fi(q; x) in D(q; gi), 1 ≤ i ≤ n, the
series f1(q; x), . . . , fn(q; x) are also algebraically independent over C(x).

This immediately implies that all elements of the set { fr(q; x) : r ≥ 2} are alge-
braically independent over C(x) for all nonzero complex numbers q. More generally,
there is a long tradition for combinatorists in studying q-analogs of famous sequences
of natural numbers, as the additional variable q gives the opportunity to refine the enu-
meration of combinatorial objects counted by the q = 1 case. To some extent, the nature
of a generating series reflects the underlying structure of the objects it counts [4]. By
nature, we mean for instance whether the generating series is rational, algebraic, or D-
finite. In the same line, algebraic (in)dependence of generating series can be considered
as a reasonable way to measure how distinct families of combinatorial objects may be
(un)related.
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It is known from [2] that many generating series g of multisums of factorial ratios
belong to Ld. For such series g, we will define q-analogs and prove that they lie in the set
D(q; g). This will yield at once algebraic independence results, but also many generaliza-
tions of Congruence (1.3). Finding congruences with respect to cyclotomic polynomials
is actually not a recent problem (see for instance [11, 8, 10] and the references cited
there).

Our second result below is a general congruence relation extending (1.3) to the mul-
tidimensional case, by considering q-factorial ratios in the spirit of the ones in [15]. For
positive integers d, u, v, let e = (e1, . . . , eu) and f = (f1, . . . , fv) be tuples of vectors in
Nd. For n ∈Nd, we define a q-analog of multidimensional factorial ratios (see Section 2
for precise notations) by:

Qe, f (q; n) :=
[e1 · n]q! · · · [eu · n]q!
[f1 · n]q! · · · [fv · n]q!

·

Furthermore, we consider the Landau step function ∆e, f defined on Rd by

∆e, f (x) :=
u

∑
i=1
bei · xc −

v

∑
j=1
bfj · xc.

We also define |e| = ∑u
i=1 ei, | f | = ∑v

j=1 fj, and set:

De, f :=
{

x ∈ [0, 1)d : there is t in e or f such that t · x ≥ 1
}

.

Proposition 1.4. Let e and f be two tuples of vectors in Nd such that |e| = | f | and ∆e, f is
greater than or equal to 1 on De, f . Then, for every positive integer b, every a in {0, . . . , b− 1}d

and every n in Nd, we have Qe, f (q; n) ∈ Z[q] and

Qe, f (q; a + nb) ≡ Qe, f (q; a)Qe, f (1; n) mod φb(q)Z[q].

Proposition 1.4 extends many known results, both for q-analogs and p-Lucas congru-
ences. For instance, choosing d = 1, u = 1, v = 2, e1 = 2, and f1 = f2 = 1 yields (1.3),
while taking b prime and q = 1 allows one to recover Proposition 8.7 in [2]. As we will
see in Section 3, Proposition 1.4 also leads to congruences for (multi-)sums of q-factorial
ratios. As an illustration, we provide below two examples connected to the famous
Apéry sequences.

Proposition 1.5. Consider for a given nonnegative integer t the following q-analogs of the Apéry
sequences

an(q) :=
n

∑
k=0

qtk
[

n
k

]2

q

[
n + k

k

]
q

and bn(q) :=
n

∑
k=0

qtk
[

n
k

]2

q

[
n + k

k

]2

q
.

Then, for all nonnegative integers n, m, b with b ≥ 1, 0 ≤ m ≤ b− 1, we have

am+nb(q) ≡ am(q)an(1) mod φb(q)Z[q] and bm+nb(q) ≡ bm(q)bn(1) mod φb(q)Z[q].
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Setting
Fe, f (q; x) := ∑

n∈Nd

Qe, f (q; n)xn

and assuming the conditions of Proposition 1.4, we obtain that Fe, f (q; x) belongs to
D(q; Fe, f (1; x)), as Fe, f (1; x) is in Ld by [2, Proposition 8.1]. Theorem 1.3 therefore implies
that algebraic independence among series Fe, f (1; x) propagates to their corresponding
q-analogs Fe, f (q; x). As noticed before, this holds for the series gr(x) and their q-analogs
fr(q; x). Proposition 1.4 and a result about specializations of the series Fe, f (q; x) (stated
in Section 3) actually provide much more general results, such as the following one.

Proposition 1.6. For a fixed nonzero complex number q, let Fq be the set formed by the union
of the three following sets:{

∞

∑
n=0

n

∑
k=0

[
n
k

]r

q
xn : r ≥ 3

}
,

{
∞

∑
n=0

n

∑
k=0

[
n
k

]r

q

[
n + k

k

]r

q
xn : r ≥ 2

}

and {
∞

∑
n=0

n

∑
k=0

[
n
k

]2r

q

[
n + k

k

]r

q
xn : r ≥ 1

}
.

Then all elements of Fq are algebraically independent over C(x).

Proposition 1.6 is derived from Proposition 1.2 in [2], which corresponds to the case
q = 1.

In the next section, we fix some notation and recall basic facts about Dedekind do-
mains. In Section 3, we focus on congruence relations modulo cyclotomic polynomials
and prove Proposition 1.4. We also show how to derive results like Propositions 1.5
and 1.6. Finally, the last section is devoted to a sketch of proof of Theorem 1.3.

2 Background and notations

Let us introduce some notation and basic facts that will be used throughout this extended
abstract. Let d be a positive integer. Given d-tuples of real numbers m = (m1, . . . , md)
and n = (n1, . . . , nd), we set m + n := (m1 + n1, . . . , md + nd) and m · n := m1n1 +
· · · + mdnd. If moreover λ is a real number, then we set λm := (λm1, . . . , λmd). We
write m ≥ n if we have mk ≥ nk for all k in {1, . . . , d}. We also set 0 := (0, . . . , 0) and
1 := (1, . . . , 1).

Polynomials. Given a d-tuple of natural numbers n = (n1, . . . , nd) and a vector of
indeterminates x = (x1, . . . , xd), we will denote by xn the monomial xn1

1 · · · x
nd
d . The

(total) degree of such a monomial is the nonnegative integer n1 + · · · + nd. Given a
ring R and a polynomial P in R[x], we denote by deg P the (total) degree of P, that is the
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maximum of the total degrees of the monomials appearing in P with nonzero coefficient.
The partial degree of P with respect to the indeterminate xi is denoted by degxi

(P).
Algebraic power series and algebraic independence. Let K be a field. We denote by K[[x]]

the ring of formal power series with coefficients in K and associated with the vector of in-
determinates x. We say that a power series f (x) ∈ K[[x]] is algebraic if it is algebraic over
the field of rational functions K(x), that is, if there exist polynomials A0, . . . , Am in K[x],
not all zero, such that A0(x) + A1(x) f (x) + · · ·+ Am(x) f (x)m = 0. Otherwise, f is said
to be transcendental. Let f1, . . . , fn be in K[[x]]. We say that f1, . . . , fn are algebraically
dependent if they are algebraically dependent over the field K(x), that is, if there exists
a nonzero polynomial P(Y1, . . . , Yn) in K[x][Y1, . . . , Yn] such that P( f1, . . . , fn) = 0. When
there is no algebraic relation between them, the power series f1, . . . , fn are said to be
algebraically independent (over K(x)).

Dedekind domains. Let R be a Dedekind domain; that is, R is Noetherian, integrally
closed, and every nonzero prime ideal of R is a maximal ideal. Furthermore, any nonzero
element of R belongs to at most a finite number of maximal ideals of R. In other words,
given an infinite set S of maximal ideals of R, then one always has

⋂
p∈S p = {0}. For

every power series f (x) = ∑n∈Nd a(n)xn with coefficients in R, we set

f|p(x) := ∑
n∈Nd

(
a(n) mod p

)
xn ∈ (R/p)[[x]] .

The power series f|p is called the reduction of f modulo p. Let K denote the field of
fractions of R. The localization of R at a maximal ideal p is denoted by Rp. Recall here
that Rp can be seen as the following subset of K:

Rp = {a/b : a ∈ R, b ∈ R \ p} .

Then Rp is a discrete valuation ring and the residue field Rp/p is equal to R/p.

3 Some general congruences and appplications

We first give the detailed proof of Proposition 1.4, and we will then see how to derive
results like Propositions 1.5 and 1.6.

Proof of Proposition 1.4. In this proof, we write Q for Qe, f , ∆ for ∆e, f and D for De, f .
Recall that for all nonnegative integers n we have

1− qn

1− q
= ∏

b|n,b≥2
φb(q) ⇒ [n]q! =

n

∏
b=2

φb(q)bn/bc,

from which we deduce, by definition of the step function ∆,

Q(q; n) =
∞

∏
b=2

φb(q)∆(n/b). (3.1)
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As |e| = | f |, the function ∆ is 1-periodic in each of its variable and one easily obtains
from (3.1) that Q(q; n) is in Z[q] for every n in Nd if, and only if ∆ is nonnegative over
Rd. This proves the first part of our proposition.

Let x be a complex variable. As |e| = | f |, we derive

Q(x; a + nb) = Q(x; nb)
∏u

i=1 ∏ei·a
k=1(1− xei·nb+k)

∏v
j=1 ∏

fj·a
k=1(1− xfj·nb+k)

.

If a/b is not in D, then for each t in e or f , no element of {1, . . . , t · a} is divisible by b.
Hence, if ξb is a complex primitive bth root of unity, then we have

Q(ξb; a + nb) = Q(ξb; nb)
∏u

i=1 ∏ei·a
k=1(1− ξk

b)

∏v
j=1 ∏

fj·a
k=1(1− ξk

b)
= Q(ξb; nb)Q(ξb; a),

so that
Q(x; a + nb) ≡ Q(x; nb)Q(x; a) mod φb(x)Z[x]. (3.2)

We shall prove that this congruence also holds when a/b belongs to D. Indeed, in this
case we have ∆(a/b) ≥ 1 by assumption. By (3.1), the φb(x)-valuation of Q(x; a + nb) is
∆( a

b + n) = ∆(a/b) ≥ 1, and the φb(x)-valuation of Q(x; a) is also ∆(a/b) ≥ 1. Hence
both polynomials are divisible by φb(x) and (3.2) holds.

Now we shall prove that

Q(x; nb) ≡ Q(1; n) mod φb(x)Z[x]. (3.3)

We have

Q(x; nb) =
∏u

i=1 ∏ei·nb
k=1 (1− xk)

∏v
j=1 ∏

fj·nb
k=1 (1− xk)

=
∏u

i=1 ∏ei·n
k=1(1− xkb)

∏v
j=1 ∏

fj·n
k=1(1− xkb)

×
b−1

∏
`=1

∏u
i=1 ∏ei·n−1

k=1 (1− x`+kb)

∏v
j=1 ∏

fj·n−1
k=1 (1− x`+kb)

·

From |e| = | f |, we also derive

∏u
i=1 ∏ei·n

k=1(1− xkb)

∏v
j=1 ∏

fj·n
k=1(1− xkb)

=
∏u

i=1 ∏ei·n
k=1

1−xkb

1−xb

∏v
j=1 ∏

fj·n
k=1

1−xkb

1−xb

,

which is a rational fraction without pole at x = ξb and whose value at ξb equals Q(1; n).
Furthermore, for each ` in {1, . . . , b− 1}, we have

∏u
i=1 ∏ei·n−1

k=1 (1− ξ`+kb
b )

∏v
j=1 ∏

fj·n−1
k=1 (1− ξ`+kb

b )
= (1− ξ`b)

(|e|−| f |)·n = 1.

Since Q(x; nb) ∈ Z[x] and Q(ξb; nb) = Q(1; n), we obtain (3.3) as expected.
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We now show how Proposition 1.4 yields on the one hand congruences through a
specialization rule, and on the other hand algebraic independence results.

Recall that, under the conditions of Proposition 1.4, we have

Fe, f (q; x) = ∑
n∈Nd

Qe, f (q; n)xn ∈ Z[q][[x]] .

Then the congruence relation in Proposition 1.4 is equivalent to

Fe, f (q; x) ≡ A(q; x)Fe, f (1; xb) mod φb(q)Z[q][[x]]

for every positive integer b and with the additional condition that A(q; x) in Z[q][x]
satisfies degxi

A(q; x) ≤ b− 1 for all i, 1 ≤ i ≤ d. The following proposition is the key to
prove congruences for multisums of q-factorial ratios as in Proposition 1.6.

Proposition 3.1. Assume the conditions of Proposition 1.4 are satisfied. Moreover, let t ∈ Nd

and m ∈ Nd be such that if x in [0, 1)d satisfies m · x ≥ 1, then ∆e, f (x) ≥ 1. Then, for every
positive integer b, we have:

Fe, f (q; qt1 xm1 , . . . , qtd xmd) ≡ B(q; x)Fe, f (1; xbm1 , . . . , xbmd) mod φb(q)Z[q][[x]],

where B(q; x) is a one variable polynomial in Z[q][x] satisfying degx B(q; x) ≤ b− 1.

Choosing e =
(
(2, 1), (1, 1)

)
and f =

(
(1, 0), (1, 0), (1, 0), (0, 1), (0, 1)

)
, we get that

Fe, f (q; x, y) = ∑
n1,n2≥0

[2n1 + n2]q![n1 + n2]q!
[n1]q!3[n2]q!2

xn1yn2 .

By Proposition 2 in [5], the function ∆e, f is greater than or equal to 1 on De, f so that the
conditions of Proposition 1.4 are satisfied. Furthermore, we can use Proposition 3.1 with
t = (t, 0) and m = (1, 1) which yields

Fe, f (q; qtx, x) ≡ B(q; x)Fe, f (1; xb, xb) mod φb(q)Z[q][[x],

where B(q; x) is a polynomial in Z[q][x] satisfying degx B(q; x) ≤ b− 1. A direct compu-
tation shows that

Fe, f (q; qtx, x) =
∞

∑
n=0

n

∑
k=0

qtk
[

n
k

]2

q

[
n + k

k

]
q
xn

and

Fe, f (1; x, x) =
∞

∑
n=0

n

∑
k=0

(
n
k

)2(n + k
k

)
xn .

This yields the congruences for q-analogs of the first Apéry sequence an(q) given in
Proposition 1.5. The result for the second Apéry sequence bn(q) is derived along the
same line.
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To prove Proposition 1.6, we first show by Proposition 3.1 that each series f (q; x) in
Fq belongs to D(q; f (1; x)). For example, we use the following specialization associated
with t = (0, 0) and m = (1, 1):

∞

∑
n=0

n

∑
k=0

[
n
k

]r

q
xn = Fe, f (q; x, x) ,

where

Fe, f (q; x, y) = ∑
n1,n2≥0

[n1 + n2]q!r

[n1]q!r[n2]q!r
xn1yn2 .

By Proposition 1.2 and Section 9.3 in [2], we know that F1 (the set of all series f (1; x))
is a subset of L1 and that all elements of F1 are algebraically independent over C(x).
Hence Theorem 1.3 implies that, for every nonzero complex number q, all elements of
Fq are algebraically independent over C(x).

4 Sketch of proof of Theorem 1.3

Though Theorem 1.3 holds true for all nonzero complex number q, we will focus here on
the case where q is an algebraic number. The case where q is transcendental is actually
simpler even if it requires specific considerations we do not want to deal with here for
space limitation.

Throughout this section, we fix a nonzero algebraic number q. We let K be the number
field Q(q) and R := O(K) be its ring of integers. Recall that R is thus a Dedekind
domain.

The proof of Theorem 1.3 relies on the following Kolchin-like proposition which is a
special instance of Proposition 4.3 in [2].

Proposition 4.1. Let p be a prime number, F be a finite extension of degree dp of Fp, and k be
a positive integer such that dp | k. Let f1, . . . , fn be nonzero power series in F[[x]] satisfying
fi(x) = Ai(x) fi(xpk

) for some Ai ∈ F[x] and every 1 ≤ i ≤ n. If f1, . . . , fn satisfy a nontrivial
polynomial relation of degree d with coefficients in F(x), then there exist m1, . . . , mn ∈ Z, not
all zero, and a nonzero r(x) ∈ F(x) such that

A1(x)m1 · · · An(x)mn = r(x)pk−1 .

Furthermore, |m1 + · · ·+ mn| ≤ d and |mi| ≤ d for 1 ≤ i ≤ n.

We will also need the following result which will enable us to connect reductions
modulo prime numbers and modulo cyclotomic polynomials.

Proposition 4.2. There exist an infinite set S of maximal ideals of R such that, for all p ∈ S , we
have Z[q] ⊂ Rp and φb(q)Z[q] ⊂ pRp for some prime number b (depending on p).
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For space limitation, Proposition 4.2 will not be proved here. Its proof is elementary
when q is a root of unity and relies on the S-unit theorem otherwise. We will also need
the two following auxiliary results, the first of which being Lemma 4.4 in [2].

Lemma 4.3. Let R be a Dedekind domain, K be its field of fractions, and g1, . . . , gn be power
series in R[[x]]. If g1|p, . . . , gn|p are linearly dependent over R/p for infinitely many maximal
ideals p, then f1, . . . , fn are linearly dependent over K.

Lemma 4.4. Let K be a commutative field and set b a positive integer. Let r(x) ∈ K(x) and
s(x) ∈ K(x)∩ K[[x]] be two rational fractions such that s(0) 6= 0. If there exists a nonzero (mod
p if char(K) = p) integer m satisfying s(xb) = r(x)m, then there exists t(x) in K(x) such that
r(x) = t(xb).

Proof of Theorem 1.3. Let S be the set of maximal ideals of R := O(K) given in Proposi-
tion 4.2. With all p in S , we associate a prime number p such that the residue field R/p is
a finite field of characteristic p so that pZ ⊂ p. Let dp be the degree of the field extension
R/p over Fp. Since gi belongs to Ld, there exists a polynomial Ai ∈ Z[x] such that

gi(x) ≡ Ai(x)gi(xpki ) mod p[[x]]

with degxj
Ai ≤ pki − 1. We set k := lcm(dp, k1, . . . , kn). Then iterating the above relation,

for all i in {1, . . . , n} and all p in S , there exists Bi(x) in Z[x] satisfying

gi(x) ≡ Bi(x)gi
(
xpk)

mod p[[x]], (4.1)

with degxj
(Bi) ≤ pk − 1.

Now let us assume by contradiction that f1, . . . , fn are algebraically dependent over
C(x) and thus over K(x) for the coefficents of the formal power series fi belong to K
(see for instance [2]). Let Q(x, y1, . . . , yn) be a nonzero polynomial in R[x][y1, . . . , yn]
of total degree at most κ in y1, . . . , yn such that Q

(
x, f1(q; x), . . . , fn(q; x)

)
= 0. Since

fi ∈ D(q; gi), for every i in {1, . . . , n}, Proposition 4.2 implies that fi(q; x) ≡ Ai(q; x)gi(xb)
mod pRp[[x]], for some prime b. Since Q and the series fi are all nonzero and R is a
Dedekind domain, there thus exists an infinite subset S ′ of S such that, for every p in S′,
the relation

Q
(
x, A1(q; x)g1(xb), . . . , An(q; x)gn(xb)

)
≡ 0 mod pRp[[x]]

provides a nontrivial algebraic relation over Rp/p = R/p between the series gi|p(xb).

By (4.1), one has gi(xb) ≡ Bi(xb)gi
(
xbpk)

mod p[[x]] and Proposition 4.1 then applies
to g1|p(xb), . . . , gn|p(xb) by taking F = R/p. There thus exist integers m1, . . . , mn, not all
zero, and a nonzero rational fraction r(x) in F(x) such that

B1|p(x
b)m1 · · · Bn|p(x

b)mn = r(x)pk−1. (4.2)
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As gi belongs to Ld, the constant coefficient in the left-hand side of (4.2) is equal to 1.
By Lemma 4.4, as pk − 1 6= 0 mod p, there exists a rational fraction u(x) in F(x) such
that r(x) = u(xb) and we obtain that B1|p(x)m1 · · · Bn|p(x)mn = u(x)pk−1. Furthermore,
we have |m1 + · · ·+ mn| ≤ κ and |mi| ≤ κ for 1 ≤ i ≤ n. Note that the rational fractions
Bi, u and the integers mi all depend on p. However, since all the integers mi belong to
a finite set, the pigeonhole principle implies the existence of an infinite subset S ′′ of S ′
and of integers t1, . . . , tn such that, for all p in S ′′, we have mi = ti for 1 ≤ i ≤ n. We
can thus assume that p belongs to S ′′ and write u(x) = s(x)/t(x) with s(x) and t(x) in
F[x] and coprime. Since deg Bi ≤ pk − 1, the degrees of s(x) and t(x) are bounded by
|t1|+ · · ·+ |tn| ≤ nκ. Set h(x) := g1(x)−t1 · · · gn(x)−tn ∈ Z[[x]] ⊂ R[[x]]. Then we obtain
that

h|p
(
xpk)

= g1|p
(
xpk)−t1 · · · gn|p

(
xpk)−tn

= g1|p(x)
−t1 · · · gn|p(x)

−tn B1|p(x)
t1 · · · Bn|p(x)

tn

= h|p(x)u(x)
pk−1.

Since h|p is nonzero, we obtain that h|p(x)pk−1 = u(x)pk−1 and there exists a in a suitable
algebraic extension of F such that h|p(x) = au(x). As the coefficients of h|p and u belong
to R/p, we get a ∈ R/p. Thus for infinitely many maximal ideals p, the reduction
modulo p of the power series xm

i h(x) and xm
i , 1 ≤ i ≤ n, 0 ≤ m ≤ nκ, are linearly

dependent over R/p. Since R is a Dedekind domain, Lemma 4.3 implies that these
power series are linearly dependent over K, which means that h(x) belongs to K(x). This
is a contradiction as g1, . . . , gn are algebraically independent over C(x).
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