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Abstract. We investigate the β-expansion of an algebraic number in an algebraic base β.
Using tools from Diophantine approximation, we prove several results that may suggest a
strong difference between the asymptotic behaviour of eventually periodic expansions and
that of non-eventually periodic expansions.

1. Introduction
Among the different possible representations of real numbers in a real (or complex) base β,
the β-expansion introduced by Rényi [32] takes a very special place. This expansion and
related objects have been studied for many reasons and in many areas, including ergodic
theory and symbolic dynamics [10, 22, 30, 32, 33], tilings [9, 36], quasi-crystals and
mathematical physics [28, 29], number theory [5, 10, 16, 34, 37], and formal languages
and theoretical computer science [26, Ch. 7]. For more details on these topics, the reader
is referred to the nice book of Dajani and Kraaikamp [18], (see also [26, Ch. 7]), or to
the PhD thesis of Bernat [8] and the references quoted therein. The present paper mainly
focuses on the Rényi β-expansion (or, for short, β-expansion) of an algebraic number in
an algebraic base β, with a point of view from Diophantine approximation.

Let β > 1 be a real number. The β-transformation Tβ is defined on [0, 1] by Tβ : x 7−→

βx mod 1. The β-expansion of a real x in [0, 1] is denoted by dβ(x), and defined as
follows:

dβ(x) = 0.x1x2 . . . xn . . . ,

where xi = bβT i−1
β (x)c, except when β is an integer and x = 1 (in this latter case we set

dβ(1) := 0.(β − 1)(β − 1)(β − 1)(β − 1) . . .). For x < 1, this expansion coincides with
the representation of x computed by the ‘greedy algorithm’. If β is an integer, the digits xi
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of x lie in the set {0, 1, . . . , β − 1} and, for x 6= 1, dβ(x) corresponds to the usual β-adic
expansion of x . When β is not an integer, the digits xi lie in the set {0, 1, . . . , bβc}. Here
and throughout the present paper, b·c is the integer part function. As proved by Rényi [32],
the map Tβ has a unique (up to proportionality) invariant measure µβ that is absolutely
continuous with respect to the Lebesgue measure on [0, 1]. Furthermore, µβ is ergodic
[32] and it is the unique measure of maximal entropy [22]. The symbolic counterpart
of this geometric dynamical system is the β-shift Sβ , defined as the set, endowed with the
shift, of all bi-infinite sequences for which every factor appears in the β-expansion of some
x in [0, 1]. An important feature of monotone one-dimensional expanding maps such as
Tβ is that their dynamics are ruled by the orbits of the critical points. Here, this implies
that all of the information of the β-shift is already contained in the expansion of 1. This
explains why dβ(1) plays a crucial role.

Unlike the case of the expansion in an integer base, it generally remains open to decide
whether or not an algebraic number has an eventually periodic β-expansion in an algebraic
base β. Moreover, it seems to be very difficult to describe the β-expansion of an algebraic
number when this expansion is neither finite nor eventually periodic. For instance, if we
look at the first digits of the expansion of 1 in the base 3/2 (we know that such a sequence
cannot be eventually periodic), there is no evidence of a particular structure. It is then
tempting to provide a framework in which such a chaotic-looking expansion would find a
more natural explanation.

Dynamical systems sometimes offer such a suitable framework thanks to the ergodic
theorem. In particular, we mention the classical ‘Borel conjecture’ on the normality of
algebraic irrational numbers (see for instance [2, 7, 13, 24]), and the speculations of Lang
[25] on the continued fraction expansion of algebraic numbers of degree at least three (see
also [1]). In view of this, we are led to introduce the two hypotheses below. Of course, we
do not claim to confirm them, but we believe that it can be fruitful to keep them in mind as
a guideline. This is precisely what we will do throughout this paper.

Hypothesis H1. Let β > 1 and α be two real algebraic numbers. Then, α is either a
periodic point or a generic point for the dynamical system (Tβ , [0, 1], µβ).

When β ≥ 2 is an integer, the measure µβ is nothing else than the Lebesgue measure,
and HypothesisH1 thus reduces to the Borel conjecture evoked above.

We can also formulate the following weaker conjecture.

HypothesisH2. Let β > 1 and α be two real algebraic numbers. Then, α is either a periodic
point for the map Tβ or the orbit of α is dense in [0, 1].

Unsurprisingly, both Hypotheses H1 and H2 appear, at this point, to be intractable.
However, they seem to be supported by numerical experiments [4].

The authors of [20] (see also the discussion in [8]) present as a conjecture a statement
which can be reformulated as follows: if β is a Perron number, then the origin cannot be an
accumulation point for the orbit (T n

β (1))n≥1. Note that their conjecture is in contradiction
with both HypothesesH1 andH2.

Our paper is organized as follows. In §2, we present our two main results which
reveal a (weak) combinatorial dichotomy for the representations of algebraic numbers
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in an algebraic base β. Theorem 1 applies to general representations in an algebraic
(real or complex) base, while Theorem 2 and the rest of the paper are only devoted to
β-expansions. In §3, we investigate some consequences of Theorem 2 on the complexity
of the β-expansion of an algebraic number in an algebraic base β. Section 4 is devoted to
Blanchard’s classification and related results, while in §5 we discuss the gaps (occurrences
of strings of zeros) in dβ(1). The proofs of Theorems 1 and 2 are based on the approach
started in [2, 3] and the rest are based on the Schmidt subspace theorem for number fields
(see [19, 35]). They are postponed to §6.

2. Main results
We first associate with an infinite sequence a defined over a finite alphabet a combinatorial
exponent, denoted by Dio(a), the so-called Diophantine exponent of a. As we will see,
this exponent is a measure of the periodicity of the sequence, and appears to be useful
for deriving Diophantine properties of the real (or complex) number whose expansion is
given by the sequence a. In particular, we will show that if β > 1 is an algebraic number,
algebraic numbers whose β-expansion is not eventually periodic all have a Diophantine
exponent uniformly bounded in terms of the Mahler measure of β.

Let A be a finite set. The length of a word W on the alphabet A, that is, the number of
letters composing W , is denoted by |W |. For any positive integer `, we write W ` for the
word W . . . W (the concatenation of the word W repeated ` times). More generally, for
any positive real number x , we denote by W x the word W bxcW ′, where W ′ is the prefix
of W of length d(x − bxc)|W |e. Here, and in all that follows, dye denotes the ceiling of
the real number y, that is, the smallest integer greater than or equal to y. Let a = (ak)k≥1

be a sequence of elements from A, which we identify with the infinite word a1a2 . . .. Let
ρ ≥ 1 be a real number. We say that a satisfies Condition (∗)ρ if there exist two sequences
of finite words (Un)n≥1, (Vn)n≥1, and a sequence of positive real numbers (wn)n≥1 such
that:
(i) for any n ≥ 1, the word Un V wn

n is a prefix of the word a;
(ii) for any n ≥ 1, |Un V wn

n |/|Un Vn| ≥ ρ;
(iii) the sequence (|V wn

n |)n≥1 is increasing.
We then define Dio(a) to be the supremum of the real numbers ρ for which a satisfies

Condition (∗)ρ . It follows from this definition that for any sequence a, we have

1 ≤ Dio(a) ≤ +∞.

Clearly all eventually periodic sequences have an infinite Diophantine exponent. Note
that many of the classical sequences studied in symbolic dynamics, number theory and
combinatorics on words have a Diophantine exponent greater than 1 (in [2], sequences
with this property are called stammering sequences). This is for instance the case for the
Sturmian sequences, the sequences of sublinear complexity, the automatic sequences and
most of the substitutive sequences (see [2]).

With the above notation, the main result of [3] can be reformulated as follows.

THEOREM ABL. Let b > 1 be a positive integer and let a = (ak)k≥1 be a sequence of
integers with values in {0, 1, . . . , b − 1}. Assume that Dio(a) > 1. Then, the real number
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α :=

+∞∑
k=1

ak

bk

is either rational or transcendental.

Theorem ABL was extended in [2] in the following way. Recall that a Pisot (respectively
Salem) number is a real algebraic integer greater than 1, whose complex conjugates lie
inside the open unit disc (respectively inside the closed unit disc, with at least one of them
on the unit circle). In particular, every integer b > 1 is a Pisot number.

THEOREM AB. Let β be a Pisot or a Salem number. Let a = (ak)k≥1 be a bounded
sequence of rational integers. Assume that Dio(a) > 1. Then, the real number

α :=

+∞∑
k=1

ak

βk

either lies in Q(β) or is transcendental.

A natural question is whether the above condition on β to be a Pisot or a Salem number
can be relaxed to include all algebraic numbers lying outside the closed unit disc.

As a first result, we establish that, for any given algebraic number β with |β| > 1 and
for any bounded sequence of rational integers a = (ak)k≥1, the real number

∑
+∞

k=1 ak/β
k

is either in Q(β), or is transcendental, provided that the Diophantine exponent of a is
sufficiently large in terms of β. Throughout this paper, we denote by M(β) the Mahler
measure of the algebraic number β. We recall that if b is the leading coefficient of
the minimal polynomial of β, and if β1 := β, and if β2, . . . , βd denote the algebraic
conjugates of β, then

M(β) = |b| ·

d∏
i=1

max{|βi |, 1}.

THEOREM 1. Let β be an algebraic number with |β| > 1. Let a = (ak)k≥1 be a bounded
sequence of rational integers. Assume that

Dio(a) >
log M(β)

log |β|
· (2.1)

Then, the real number

α :=

+∞∑
k=1

ak

βk

either lies in Q(β), or is transcendental.

Note that M(β) = β when β is a Pisot or Salem number. Consequently, Theorem 1
implies Theorem AB, and thus Theorem ABL.

The main drawback of Theorem 1 is that it gives no information about the
representations of the elements lying in the number field Q(β). This is really unfortunate,
since, as already mentioned in §1, the β-expansion of 1 plays a crucial role in the study of
the β-shift. Of course, if the sequence a is eventually periodic, then α clearly lies in Q(β),
but the converse is in general not true. Indeed, even if we only consider β-expansions
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(instead of the more general representations considered in Theorem 1), there generally
exist some elements in Q(β) with a non-eventually periodic β-expansion. This is actually
the case if β is neither a Pisot nor a Salem number [34].

In order to remove this inconvenience, we now restrict our attention to the case
of β-expansions. We are then able to modify the proof of Theorem 1 in order to
include all algebraic numbers. This yields the following combinatorial dichotomy for the
β-expansions of algebraic numbers in an algebraic base β.

THEOREM 2. Let β > 1 be a real algebraic number. Let α be an algebraic number in
[0, 1] such that

dβ(α) = 0.a1a2 . . . ak . . . .

Then, either the sequence a = (ak)k≥1 is eventually periodic, and thus

Dio(a) = +∞,

or

Dio(a) ≤
log M(β)

log β
.

The proofs of Theorems 1 and 2 are postponed to §6.

3. Complexity and β-expansions with zero entropy
A classical measure of disorder for an infinite word a defined over a finite alphabet A of
cardinality |A| is the complexity function pa which associates with every positive integer
n the number pa(n) of distinct blocks of n consecutive letters occurring in a. Then, the
topological entropy of the sequence a is defined by

H(a) := lim
n→∞

log|A|(pa(n))

n
·

Now, given two real numbers β > 1 and α in [0, 1], we define the complexity function
pα,β of α with respect to the base β as the complexity function of the β-expansion of α,
that is, we set

pα,β(n) := pdβ (α)(n) for any n ≥ 1.

Then, both Hypotheses H1 and H2 predict the following dichotomy for algebraic
parameters α and β:
• either (pα,β(n))n≥1 is bounded, which corresponds to an eventually periodic orbit

(T n
β (α))n≥1;

• or pα,β(n) is maximal for every integer n, which means that every admissible block
of digits occurs, and thus corresponds to a dense orbit.

In the latter case, the entropy of dβ(α) is equal to logbβc+1 β, the entropy of the
β-shift [30, 32]; thus, we have limn→∞(log pα,β(n))/n = logbβc+1 β. Our hypotheses
would imply that the sequence (pα,β(n))n≥1 grows exponentially with n as soon as it is
unbounded.

In this section, although we are very far away from confirming such a strong dichotomy,
we show how to derive from Theorem 2 a first result in this direction.
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THEOREM 3. Let β > 1 be a real algebraic number. Assume that there exists a positive
constant c such that

log M(β)

log β
< 1 +

1
c
· (3.1)

Let α be an algebraic number in [0, 1]. Then, either (pα,β(n))n≥1 is bounded, or

lim inf
n→+∞

pα,β(n)

n
> c.

This result is especially interesting when β is a Pisot or a Salem number, as shown by
the following two corollaries.

COROLLARY 1. Let β be a Pisot or a Salem number and α be an algebraic number
in [0, 1]. Then, we have the following dichotomy: either the sequence (pα,β(n))n≥1 is
bounded, or

lim inf
n→+∞

pα,β(n)

n
= +∞.

Proof. If β is a Pisot or a Salem number β, we have M(β) = 1. Thus, condition (3.1) is
fulfilled for every positive real number c. The result directly follows from this observation.

2

It is also interesting to consider the complexity of the β-expansions from a more
algorithmic point of view. We refer the reader to [6] for a definition of a finite automaton.

COROLLARY 2. Let β be a Pisot or a Salem number and α be an algebraic number in
[0, 1]. Then, the β-expansion of α can be generated by a finite automaton if and only if it
is eventually periodic.

For instance, Corollary 2 implies that the expansion of 1/
√

2 with respect to the base
(1 +

√
5)/2 cannot be generated by a finite automaton.

Corollaries 1 and 2 for Pisot numbers have already been obtained in [2], but the proofs
given there depend on a result of Schmidt [34].

Proof. It is well known that an eventually periodic sequence can always be generated by
a finite automaton (see for instance [6, Theorem 5.4.2]): this proves the ‘if part’. On the
other hand, if the β-expansion of α can be generated by a finite automaton, then we have
pα,β(n) = O(n) (see for instance [6, Theorem 10.3.1]). We thus infer from Corollary 1
that (pα,β(n))n≥1 is bounded or, equivalently, that dβ(α) is eventually periodic. This ends
the proof. 2

Proof of Theorem 3. Let β > 1 be a real algebraic number and c be a positive constant such
that (3.1) holds. Let α be an algebraic number in [0, 1]. Let a = (ak)k≥1 be such that

dβ(α) = 0.a1a2 . . . ak . . . .

The sequence a takes its values in {0, 1, . . . , bβc}, and by definition pa = pα,β .
We assume that pa(n) ≤ cn for infinitely many integers n ≥ 1, and we shall prove that

the sequence a is then eventually periodic or, equivalently, that (pα,β(n))n≥1 is bounded
(see for instance [31, Ch. 1]).
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Let (nk)k≥1 be an increasing sequence of integers such that pa(nk) ≤ cnk for every
k ≥ 1. For ` ≥ 1, denote by A(`) the prefix of a := a1a2 · · · of length `. Let k ≥ 1 be an
integer. By the Dirichlet schubfachprinzip (often referred to as the ‘pigeon-hole principle’),
there exists at least one word Wk of length nk which has at least two occurrences in
A((c + 1)nk). Thus, there are possibly empty words Bk , Dk , Ek and a non-empty word Ck

such that
A((c + 1)nk) = Bk Wk Dk Ek = BkCk Wk Ek .

We have now to distinguish two cases.
We first assume that |Ck | ≥ |Wk |. Then, there exists a possibly empty word Fk such that

A((c + 1)nk) = Bk Wk Fk Wk Ek .

We set Uk = Bk , Vk = Wk Fk and wk = |Wk Fk Wk |/|Wk Fk |. Then, Uk V wk
k , which is equal

to Bk Wk Fk Wk , is a prefix of a. Moreover, |V wk
k | > nk and

|Uk V wk
k |

|Uk Vk |
= 1 +

|Wk |

|Bk Wk Fk |
≥ 1 +

nk

cnk
= 1 +

1
c
·

Now, we assume that |Ck | < |Wk |. Then, the two occurrences of Wk overlap. In such a
case, there exists a real number wk > 2 such that

Ck Wk = Cwk
k .

We set Uk = Bk and Vk = Ck . Then, Uk V wk
k , which is equal to BkCk Wk , is a prefix of a.

Moreover, |V wk
k | = |Ck Wk | > |Wk | = nk and

|Uk V wk
k |

|Uk Vk |
=

|Uk Vk Wk |

|Uk Vk |
= 1 +

|Wk |

|BkCk |
≥ 1 +

nk

cnk
= 1 +

1
c
·

Thus, we have shown that for every positive integer k there exist two finite words Uk

and Vk and a positive real number wk such that:
(i) Uk V wk

k is a prefix of a;
(ii) |Uk V wk

k |/|Uk Vk | ≥ 1 + 1/c;
(iii) |V wk

k | > nk .
Moreover, thanks to (iii), we can always extract a subsequence of positive integers
(kn)n≥1 such that |V wkn

kn
| increases with n. Consequently, the sequence a satisfies

Condition (∗)1+1/c, and thus Dio(a) ≥ 1 + 1/c. Then, (3.1) implies that

Dio(a) >
log M(β)

log β
,

and we infer from Theorem 2 that a is an eventually periodic sequence. This ends the
proof. 2

4. Blanchard’s classification of β-shifts and transcendental numbers
In this section, we give a continuum of explicit transcendental numbers lying in Class C4

of the classification of β-shifts introduced by Blanchard in [12]. We first briefly recall this
classification and some related results.
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Following [12], we have:
• β belongs to C1 if the β-shift is of finite type or, equivalently, if dβ(1) is finite [30];
• β belongs to C2 if dβ(1) is eventually periodic but not finite (this implies that the

β-shift is sofic [10]);
• β belongs to C3 if dβ(1) does not contain arbitrarily large strings of zeros and if

dβ(1) is not eventually periodic (this implies that the β-shift is specified [10]);
• β belongs to C4 if dβ(1) does not contain some admissible words, but contains

arbitrarily large strings of zeros (this implies that the β-shift is synchronizing [10]);
• β belongs to C5 if dβ(1) contains all admissible words.

Elements of Class C1 ∪ C2 are called Parry numbers. The term simple Parry numbers
usually denotes elements that belong to Class C1. Classes C1 and C2 are both countable
and only contain algebraic integers. Every Pisot number is a Parry number [10, 34]. The
fact that all Salem numbers would be Parry numbers is a particular instance of a conjecture
due to Schmidt [34]. This was proved by Boyd [14] for all Salem numbers of degree four.
However, the same author considered in [15] a heuristic argument suggesting the existence
of Salem numbers of degree eight that are not Parry numbers. This casts doubt on the
Schmidt conjecture.

At the end of [12], Blanchard asked whether there are transcendental numbers in
every Class C3, C4 and C5. A partial answer is given by Allouche, Bertrand-Mathis
and Mauduit in the Appendix of the same paper (related results are recalled below).
Later, Schmeling [33] proved that C3, C4 and C5 all have Hausdorff dimension one, and,
consequently, mostly contain transcendental numbers. However, the method used in [33]
does not provide any explicit example of such numbers. Let us also note that Hypothesis
H2 implies that algebraic numbers can only belong to C1 ∪ C2 or to C5.

Explicit natural examples of transcendental numbers in C3 were given by Allouche and
Cosnard [5], and by Chi and Kwon [16]. Both results are a consequence of the so-called
Mahler’s method introduced in [27].

We are now interested in Class C4. We say that a real number β > 1 is a self-lacunary
number if there exist a positive real number δ and a sequence (un)n≥1 of positive integers
satisfying the following lacunarity condition:

u1 = 1 and
un+1

un
≥ 1 + δ for n ≥ 1, (4.1)

such that

1 =

+∞∑
n=1

1
βun

· (4.2)

As a consequence of a nice result of Corvaja and Zannier [17], which rests on Schmidt’s
subspace theorem, we obtain the following result. This provides a continuum of explicit
and natural transcendental numbers in Class C4.

THEOREM 4. Every self-lacunary number is transcendental and belongs to Class C4.

The special case where un = 2n−1 is suggested by Mauduit in [12] as an example
providing a non-specified subshift associated to a transcendental number. The
transcendence of the associated β follows from a classical result by Mahler [27].
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Proof. Let β be a self-lacunary number and assume that the parameters δ and u = (un)n≥1

occurring in (4.1) are fixed.
We first prove that β belongs to Class C4. Let us recall the so-called Parry condition

introduced in [30]. We say that a sequence a satisfies the Parry condition if, for every
positive integer n, a is greater than or equal to Sn(a) with respect to the lexicographic
order, where S denotes the shift. It was proved by Parry [30] that a sequence a with values
in a finite subset of the non-negative integers is the β-expansion of 1 for some β if and
only if it satisfies the Parry condition.

Let us now consider the sequence a = (ak)k≥1 defined by ak = 1 if k belongs to the
sequence u, and ak = 0 otherwise. Since u1 = 1 and un+1 − un increases with n, we easily
check that a satisfies the Parry condition. We thus infer from (4.2) that

dβ(1) = 0.a1a2 . . . ak . . . .

Since the gap un+1 − un between two consecutive ones increases with n, the sequence
a cannot be eventually periodic and thus β cannot belong to C1 or to C2. Moreover,
the existence of arbitrarily large blocks of consecutive zeros implies that β cannot lie in
Class C3. We thus have to prove that β cannot belong to Class C5.

Let us assume that β is an element of C5. By definition, all admissible words occur in
dβ(1). Since the topological entropy of the β-shift is equal to logbβc+1 β (see [32]), we
thus have

lim
n→∞

log(p1,β(n))

n
= logbβc+1 β. (4.3)

On the other hand, the fact that the gap between two consecutive ones increases with n
easily implies that

pa(n) = p1,β(n) = O(n2).

Such a result is for instance a straightforward consequence of [21, Theorem 1.2]. This
contradicts (4.3). Hence, β belongs to C4.

The transcendence of β follows immediately from [17, Corollary 5]. This ends the
proof. 2

We end this section with an additional remark. At this point, no explicit construction of
an element lying in C5 is known. The latter problem shares some similarity with the one of
the construction of an absolutely normal number. Nevertheless, for any real number β > 1,
it is possible to give explicit examples of numbers with a normal β-expansion thanks to a
Champernowne-like construction (see [11, 23]).

5. Lacunarity in dβ(1) for algebraic β

In the previous section, we have seen, through Blanchard’s classification, that the
occurrences of consecutive zeros in dβ(1) play a crucial role in the study of the β-shift.
This motivates the following problem first investigated in [37].

Let β > 1 be a real number and let a = (ak)k≥1 be the infinite sequence such that
dβ(1) = 0.a1a2 . . . . In particular, we assume that β is not a simple Parry number. Let us
assume that there exist a sequence of positive integers (rn)n≥1 and an increasing sequence
of positive integers (sn)n≥1 such that

asn+1 = asn+2 = · · · = asn+rn = 0,
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for every positive integer n. The problem is then to estimate the gaps occurring in dβ(1)

when β is an algebraic number, that is, to estimate the asymptotic behaviour of the ratio
rn/sn . Of course, if β is a Parry number, then the sequence (rn)n≥1 is bounded, and this
ratio tends to zero when n tends to infinity.

With our notation, the main result of [37] can be reformulated as follows. It mainly
shows that dβ(1) cannot be ‘too lacunary’ when β is an algebraic number.

THEOREM VG. Let β > 1 be a real algebraic number. Then, with the above notation, we
have

lim sup
n→∞

rn

sn
≤

log M(β)

log β
− 1.

As explained below, Theorem VG is a special case of Theorem 2.

Proof of Theorem VG. Let β be a real algebraic number and let a = (ak)k≥1 be an infinite
sequence such that dβ(1) = 0.a1a2 . . . . Let the sequences (rn)n≥1 and (sn)n≥1 be as above.
If β is a Parry number, then the result immediately follows since the sequence (rn)n≥1 is
bounded. We now assume that β is not a Parry number. Thus a is not eventually periodic.
Let Un be the prefix of a of length sn and let Vn = 0. By assumption, Un V rn

n is a prefix of
a, and |Un V rn

n |/|Un Vn| = 1 + rn/(sn + 1). It follows that

Dio(a) ≥ 1 + lim sup
n→∞

rn

sn
·

On the other hand, since 1 is an algebraic number and a is not eventually periodic, we infer
from Theorem 2 that

Dio(a) ≤
log M(β)

log β
·

This ends the proof. 2

6. Proofs of Theorems 1 and 2
Before beginning the proof of Theorem 1, we quote a version of Schmidt’s subspace
theorem, as formulated by Evertse [19].

We normalize absolute values and heights as follows. Let K be an algebraic number
field of degree d . Let M(K) denote the set of places on K. For x in K and a place v in
M(K), define the absolute value |x |v by:
(i) |x |v = |σ(x)|1/d if v corresponds to the embedding σ : K ↪→ R;
(ii) |x |v = |σ(x)|2/d

= |σ(x)|2/d if v corresponds to the pair of conjugate complex em-
beddings σ, σ : K ↪→ C;

(iii) |x |v = (Np)−ordp(x)/d if v corresponds to the prime ideal p of OK.
These absolute values satisfy the product formula∏

v∈M(K)

|x |v = 1 for x in K∗.
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Let x = (x1, . . . , xn) be in Kn with x 6= 0. For a place v in M(K), put

|x|v =



( n∑
i=1

|xi |
2d
v

)1/(2d)

if v is real infinite;( n∑
i=1

|xi |
d
v

)1/d

if v is complex infinite;

max{|x1|v, . . . , |xn|v} if v is finite.

Now define the height of x by

H(x) = H(x1, . . . , xn) =

∏
v∈M(K)

|x|v.

We stress that H(x) depends only on x and not on the choice of the number field K
containing the coordinates of x, see e.g. [19].

We use the following formulation of the subspace theorem over number fields. In the
sequel, we assume that the algebraic closure of K is Q. We choose for every place v in
M(K) a continuation of | · |v to Q, which we denote also by | · |v .

THEOREM E. Let K be an algebraic number field. Let m ≥ 2 be an integer. Let S be a
finite set of places on K containing all infinite places. For each v in S, let L1,v, . . . , Lm,v

be linear forms with algebraic coefficients and with

rank {L1,v, . . . , Lm,v} = m.

Let ε be real with 0 < ε < 1. Then, the set of solutions x in Km to the inequality∏
v∈S

m∏
i=1

|L i,v(x)|v

|x|v
≤ H(x)−m−ε

lies in finitely many proper subspaces of Km .

For a proof of Theorem E, the reader is referred to [19], where a quantitative version is
established (in the sense that an explicit bound for the number of exceptional subspaces is
given).

Proof of Theorem 1. Let β be an algebraic number with |β| > 1. Consider a bounded
sequence a = (ak)k≥1 of rational integers satisfying the condition (2.1). There exists a real
number ρ > log M(β)/ log |β| such that a satisfies Condition (∗)ρ . We assume that the
sequences (Un)n≥1, (Vn)n≥1 and (wn)n≥1 occurring in the definition of Condition (∗)ρ are
fixed. Set also rn = |Un| and sn = |Vn|, for any n ≥ 1.

We have to prove that the real number

α :=

+∞∑
k=1

ak

βk (6.1)

either lies in Q(β) or is transcendental. In order to achieve this, we assume that α is
algebraic and we aim at proving that α is in Q(β). The key fact is the observation that α

admits infinitely many good approximants in the number field Q(β) obtained by truncating
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the series and completing it by periodicity. Precisely, for every positive integer n, we define
the sequence (b(n)

k )k≥1 by

b(n)
h = ah for 1 ≤ h ≤ rn + sn ,

b(n)
rn+h+ jsn

= arn+h for 1 ≤ h ≤ sn and j ≥ 0.
(6.2)

The sequence (b(n)
k )k≥1 is eventually periodic, with preperiod Un and with period Vn . Set

αn =

+∞∑
k=1

b(n)
k
βk , (6.3)

and observe that

α − αn =

+∞∑
k=rn+dwnsne+1

ak − b(n)
k

βk · (6.4)

We recall now [2, Lemma 1].

LEMMA 1. For any integer n, there exists an integer polynomial Pn(X) of degree at most
rn + sn − 1 such that

αn =
Pn(β)

βrn (βsn − 1)
·

Further, the coefficients of Pn(X) are bounded in absolute value by 2 maxk≥1 |ak |.

Set K = Q(β) and denote by d the degree of K. We assume that α is algebraic, and we
consider the following linear forms, in three variables and with algebraic coefficients. For
the place v corresponding to the embedding of K defined by β ↪→ β, set L1,v(x, y, z) = x ,
L2,v(x, y, z) = y and L3,v(x, y, z) = αx + αy + z. It follows from (6.4) and Lemma 1
that

|L3,v(β
rn+sn , −βrn , −Pn(β))|v = |α(βrn (βsn − 1)) − Pn(β)|1/d

�
1

β(wn−1)sn/d , (6.5)

where we have chosen the continuation of | · |v to Q defined by |x |v = |x |
1/d . Here

and throughout this section, the constants implied by the Vinogradov symbol � depend
(at most) on α, β and maxk≥1 |ak |, but are independent of n.

Denote by S′
∞ the set of all other infinite places on K and by S0 the set of all finite

places v on K for which |β|v 6= 1. Observe that S0 is empty if β is an algebraic unit. For
any v in S0 ∪ S′

∞, set L1,v(x, y, z) = x , L2,v(x, y, z) = y and L3,v(x, y, z) = z. Denote
by S the union of S0 and the infinite places on K. Clearly, for any v in S, the linear forms
L1,v , L2,v and L3,v are linearly independent.

To simplify the exposition, set

xn = (βrn+sn , −βrn , −Pn(β)).

We wish to estimate the product

5n :=

∏
v∈S

3∏
i=1

|L i,v(xn)|v

|xn|v
=

∏
v∈S

|βrn+sn |v |βrn |v
|L3,v(xn)|v

|xn|3v
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from above. By the product formula and the definition of S, we immediately get that

5n =

∏
v∈S

|L3,v(xn)|v

|xn|3v
. (6.6)

Since the polynomial Pn(X) has integer coefficients, for any infinite place v in S′
∞,

we have
|L3,v(xn)|v � (rn + sn) · (max{1, |β|v})

rn+sn . (6.7)

Furthermore, we have

|L3,v(xn)|v = |Pn(β)|v � (max{1, |β|v})
rn+sn (6.8)

for any place v in S0. Let b denote the leading coefficient of the minimal defining
polynomial of β. By using the auxiliary result from [38, p. 74], we infer from (6.8) that∏

v∈S0

|L3,v(xn)|v � b−(rn+sn)/d . (6.9)

Combining (6.5), (6.6), (6.7), (6.8) and (6.9), we get that

5n � (rn + sn)d
|β|

−(rn+wnsn)/d M(β)(rn+sn)/d
∏
v∈S

|xn|
−3
v

� (rn + sn)d
|β|

−(rn+wnsn)/d M(β)(rn+sn)/d H(xn)−3, (6.10)

since |xn|v = 1 if v does not belong to S.
Since ρ > log M(β)/ log |β|, there exists δ > 0 such that ρ > (1 + δ) log M(β)/

log |β|. Now, since a satisfies Condition (∗)ρ , we get that

|β|
−(rn+wnsn) M(β)rn+sn � M(β)−δ(rn+sn). (6.11)

Furthermore, it follows from Lemma 1 that

H(xn) � (2M(β))rn+sn . (6.12)

By (6.10), (6.11) and (6.12), there exists a positive real number ε for which

5n � H(xn)−3−ε.

It then follows from Theorem E that the points (βrn+sn , −βrn , −Pn(β)) lie in a finite
number of proper subspaces of K3. Thus, there exist a non-zero triple (x0, y0, z0) in K3

and an infinite set of distinct positive integers integers N such that

x0β
rn+sn − y0β

rn − z0 Pn(β) = 0, (6.13)

for every n lying inN . Dividing (6.13) by βrn+sn and letting n tend to infinity alongN we
obtain

x0 − z0α = 0. (6.14)

Since (x0, y0, z0) is a non-zero triple, we easily derive from (6.13) and (6.14) that z0 6= 0.
It follows that α lies in the field Q(β), which ends the proof of Theorem 1. 2
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We now prove Theorem 2. In order to do this, we need the following auxiliary result.
We keep the notation of the proof of Theorem 1. In particular, α and αn are respectively
defined by (6.1) and (6.3). The only change with respect to Theorem 1 is that the sequence
a = (ak)k≥1 corresponds to the β-expansion of α and thus the ak are non-negative integers
at most equal to bβc. Furthermore, we assume that a is not eventually periodic and that
it satisfies (2.1). We assume that α is an algebraic number and we aim at deriving a
contradiction.

LEMMA 2. Under the previous assumption, we have

α 6= αn,

for every positive integer n.

Proof. The key observation is that for every non-negative integer r we have∑
k≥r+1

ak

βk ≤
1
βr · (6.15)

Note that such an inequality is in general not satisfied by an arbitrary expansion in base β.
However, it holds when one considers the β-expansion, as a by-product of the fact that the
β-expansion arises from the greedy algorithm.

Let n be a positive integer. We first infer from (6.2) and the fact that the sequence
(ak)k≥1 is not eventually periodic, that there exists a positive integer jn > rn + sn

satisfying:
(i) ak = b(n)

k for 1 ≤ k < jn ;
(ii) a jn 6= b(n)

jn .
Since the coefficients ak are non-negative and infinitely many of them are positive, we

infer from (6.15) that

jn∑
k= jn−sn+1

ak

βk <
∑

k≥ jn−sn+1

ak

βk ≤
1

β jn−sn
,

and thus we get

a jn−sn+1β
sn−1

+ a jn−sn+2β
sn−2

+ · · · + a jn < βsn . (6.16)

We also recall that (6.2) easily implies that

b(n)
k = b(n)

k+ jsn
if k > rn and j ≥ 0. (6.17)

Set a jn = l and b(n)
jn = m. We have to distinguish two cases. Let us first assume that

m > l. Then, m is a positive integer and, since the coefficients b(n)
k are non-negative, we

infer from (6.17) and from equalities (i) above that

αn =

+∞∑
k=1

b(n)
k
βk ≥

jn−1∑
k=1

b(n)
k
βk +

b(n)
jn

β jn
+

b(n)
jn+sn

β jn+sn
+

b(n)
jn+2sn

β jn+2sn

=

jn−1∑
k=1

ak

βk +
m
β jn

+
m

β jn+sn
+

m
β jn+2sn

>

jn−1∑
k=1

ak

βk +
m
β jn

+
m

β jn+sn
,
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whereas by inequality (6.15) we have

α =

+∞∑
k=1

ak

βk =

jn−1∑
k=1

ak

βn +
l

β jn
+

∑
k≥ jn+1

ak

βk ≤

jn−1∑
k=1

ak

βk +
l + 1
β jn

≤

jn−1∑
k=1

ak

βk +
m
β jn

·

This yields

αn − α ≥
m

β jn+sn
≥

1
β jn+sn

·

Now, let us assume that l > m. Since b(n)
jn = m ≤ l − 1 = a jn − 1, we deduce from

(6.16) and equalities (i) above that

Qn(β) := b(n)
jn−sn+1β

sn−1
+ b(n)

jn−sn+2β
sn−2

+ · · · + b(n)
jn < βsn − 1. (6.18)

On the one hand, we infer from (6.17) that

αn =

+∞∑
k=1

b(n)
k
βk =

jn∑
k=1

b(n)
k
βk +

+∞∑
k=1

Qn(β)

β jn+ksn

=

jn∑
k=1

b(n)
k
βk +

Qn(β)

β jn+sn
+

+∞∑
k=2

Qn(β)

β jn+ksn

=

jn∑
k=1

b(n)
k
βk +

Qn(β)

β jn+sn
+

Qn(β)

β jn+sn (βsn − 1)

and we then derive from (6.18) that

αn <

jn∑
k=1

b(n)
k
βk +

Qn(β) + 1
β jn+sn

·

On the other hand, we have

α =

+∞∑
k=1

ak

βk ≥

jn∑
k=1

ak

βk =

jn−1∑
k=1

ak

βk +
l

β jn
≥

jn−1∑
k=1

ak

βk +
b(n)

jn + 1

β jn
=

jn∑
k=1

b(n)
k
βk +

1
β jn

·

This gives

α − αn ≥
1

β jn
−

Qn(β) + 1
β jn+sn

=
βsn − Qn(β) − 1

β jn+sn
·

Then, (6.18) implies that
α − αn > 0,

which ends the proof of the lemma. 2

We are now ready to complete the proof of Theorem 2.

Proof of Theorem 2. We first follow the proof of Theorem 1 until we get equalities (6.13)
and (6.14). In addition, (6.5) reads∣∣βrn (βsn − 1)α − Pn(β)

∣∣ �
1

β(wn−1)sn
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and, combined with (6.14), it gives∣∣∣∣βrn (βsn − 1)
x0

z0
− Pn(β)

∣∣∣∣ �
1

β(wn−1)sn
;

hence, ∣∣x0β
rn+sn − x0β

rn − z0 Pn(β)
∣∣ �

1
β(wn−1)sn

· (6.19)

We infer from (6.13) and (6.19) that∣∣(x0 − y0)β
rn

∣∣ �
1

β(wn−1)sn
,

for n lying in N . This implies that y0 = x0. By (6.13) and (6.14), this yields

α =
Pn(β)

βrn (βsn − 1)
= αn,

for every positive integer n lying in N . Thus, we find a contradiction with Lemma 2. This
ends the proof. 2
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