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Rational numbers with purely periodic β-expansion

Boris Adamczewski, Christiane Frougny, Anne Siegel and Wolfgang Steiner

Abstract

We study real numbers β with the curious property that the β-expansion of all sufficiently small
positive rational numbers is purely periodic. It is known that such real numbers have to be Pisot
numbers which are units of the number field they generate. We complete known results due to
Akiyama to characterize algebraic numbers of degree 3 that enjoy this property. This extends
results previously obtained in the case of degree 2 by Schmidt, Hama and Imahashi. Let γ(β)
denote the supremum of the real numbers c in (0, 1) such that all positive rational numbers less
than c have a purely periodic β-expansion. We prove that γ(β) is irrational for a class of cubic
Pisot units that contains the smallest Pisot number η. This result is motivated by the observation
of Akiyama and Scheicher that γ(η) = 0.666 666 666 086 . . . is surprisingly close to 2/3.

1. Introduction

One of the most basic results about decimal expansions is that every rational number has
an eventually periodic expansion (A sequence (an)n!1 is eventually periodic if there exists a
positive integer p such that an+p = an for every positive integer n large enough), the converse
being obviously true. In fact, much more is known for we can easily distinguish rationals with
a purely periodic expansion (A sequence (an)n!1 is purely periodic if there exists a positive
integer p such that an+p = an for every positive integer n): a rational number p/q in the
interval (0, 1), in lowest form, has a purely periodic decimal expansion if and only if q and
10 are relatively prime. Thus, both rationals with a purely periodic expansion and rationals
with a non-purely periodic expansion are, in some sense, uniformly spread on the unit interval.
These results extend mutatis mutandis to any integer base b ! 2, as explained in the standard
monograph of Hardy and Wright [15].

However, if one replaces the integer b by an algebraic number that is not a rational integer, it
may happen that the situation would be drastically different. As an illustration of this claim, let
us consider the following two examples. First, let ϕ denote the golden ratio, that is, the positive
root of the polynomial x2 − x − 1. Every real number ξ in (0, 1) can be uniquely expanded as

ξ =
∑

n!1

an

ϕn
,

where an takes only the values 0 and 1, and with the additional condition that anan+1 = 0
for every positive integer n. The binary sequence (an)n!1 is termed the ϕ-expansion of ξ.
In 1980, Schmidt [22] proved the intriguing result that every rational number in (0, 1) has
a purely periodic ϕ-expansion. Such a regularity is somewhat surprising as one may imagine
ϕ-expansions of rationals more intricate than their decimal expansions. Furthermore, the latter
property seems to be quite exceptional. Let us now consider θ = 1 + ϕ, the largest root of the
polynomial x2 − 3x + 1. Again, every real number ξ in (0, 1) has a θ-expansion, that is, ξ can
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be uniquely expanded as

ξ =
∑

n!1

an

θn
,

where an takes only the values 0, 1 and 2 (and with some extra conditions that we do not care
about here). In contrast to our first example, it was proved by Hama and Imahashi [14] that
no rational number in (0, 1) has a purely periodic θ-expansion.

Both ϕ- and θ-expansions mentioned above are typical examples of the so-called β-expansions
introduced by Rényi [20]. Let β > 1 be a real number. The β-expansion of a real number
ξ ∈ [0, 1) is defined as the sequence dβ(ξ) = (an)n!1 over the alphabet Aβ := {0, 1, . . . , #β$ − 1}
produced by the β-transformation Tβ : x %→ βx mod 1 with a greedy procedure; that is, such
that, for all n ! 1, an = 'βTn−1

β (ξ)(. The sequence dβ(ξ) replaces in this framework the classical
sequences of decimal and binary digits since we have

ξ =
∑

n!1

an

βn
.

Set

γ(β) := sup{c ∈ [0, 1) | ∀ 0 " p/q " c, dβ(p/q) is a purely periodic sequence}.

This note is concerned with those real numbers β with the property that all sufficiently small
rational numbers have a purely periodic β-expansion, that is, such that

γ(β) > 0. (1.1)

With this definition, we get that γ(ϕ) = 1, while γ(θ) = 0. As one could expect, Condition (1.1)
turns out to be very restrictive. We deduce from the works of Akiyama [5] and Schmidt [22]
(see details in Proposition 2.1) that such real numbers β have to be Pisot units. This means
that β is both a Pisot number and a unit of the integer ring of the number field it generates.
Recall that a Pisot number is a real algebraic integer which is greater than 1 and which has
all Galois conjugates (different from itself) inside the open unit disc.

One relevant property for our study is as follows:

(F) : every x ∈ Z[1/β] ∩ [0, 1) has a finite β-expansion.

This property was introduced by Frougny and Solomyak [13]. It has been studied for various
reasons during the last twenty years. In particular, Akiyama [2] proved the following unexpected
result.

Theorem A. If β is a Pisot unit satisfying (F), then γ(β) > 0.

The fact that (F) plays a crucial role in the study of γ(β) looks somewhat puzzling but it
will become more transparent in what follows.

The results of Hama, Imahashi and Schmidt previously mentioned, about ϕ- and θ-
expansions, are actually more general and, using Proposition 2.1, lead to a complete
understanding of γ(β) when β is a quadratic number.

Theorem HIS. Let β > 1 be a quadratic number. Then, γ(β) > 0 if and only if β is a
Pisot unit satisfying (F). In that case, γ(β) = 1.

Furthermore, quadratic Pisot units satisfying (F) have been characterized in a simple way:
they correspond to positive roots of polynomials x2 − nx − 1, with n running along the positive
integers. These exactly correspond to quadratic Pisot units which have a Galois conjugate that
is negative.
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First, we establish the converse of Theorem A for algebraic numbers of degree 3. This provides
a result similar to Theorem HIS in that case.

Theorem 1.1. Let β > 1 be a cubic number. Then γ(β) > 0 if and only if β is a Pisot unit
satisfying (F).

We recall that Pisot units of degree 3 satisfying (F) have been nicely characterized in [4]:
they correspond to the largest real roots of polynomials x3 − ax2 − bx − 1, with a, b integers,
a ! 1 and −1 " b " a + 1.

It is tempting to ask whether, in Theorem 1.1, Property (F) would imply that γ(β) = 1 as
it is the case for quadratic Pisot units. However, Akiyama [2] proved that such a result does
not hold. Indeed, he obtained that the smallest Pisot number η, which is the real root of the
polynomial x3 − x − 1, satisfies 0 < γ(η) < 1. More precisely, it was proved in [8] that γ(η) is
abnormally close to the rational number 2/3 since one has

γ(η) = 0.666 666 666 086 . . . .

This intriguing phenomenon naturally leads us to ask about the arithmetic nature of γ(η).
In this direction, we will prove that γ(η) is irrational as a particular instance of the following

result.

Theorem 1.2. Let β be a cubic Pisot unit satisfying (F) and such that the number field
Q(β) is not totally real. Then γ(β) is irrational. In particular, 0 < γ(β) < 1.

Note that in Theorem 1.2 the condition that β does not generate a totally real number field
is equivalent to the fact that the Galois conjugates of β are complex (that is, they belong to
C \ R). Throughout the paper, a complex Galois conjugate of an algebraic number β denotes
a Galois conjugate that belongs to C \ R.

The proofs of our results rely on some topological properties of the tiles of the so-called
Thurston tilings associated with Pisot units. We introduce the notion of spiral points for
compact subsets of C that turns out to be crucial for our study. The fact that γ(β) vanishes
for a cubic Pisot unit that does not satisfy (F) is a consequence of the fact that the origin is a
spiral point with respect to the central tile of the underlying tiling. Theorem 1.2 comes from
the fact that γ(β) cannot be a spiral point with respect to this tile, which provides a quite
unusual proof of irrationality.

2. Expansions in a non-integer base

In this section, we recall some classical results and notation about β-expansions. We first
explain why we focus on bases β that are Pisot units.

Proposition 2.1. Let β > 1 be a real number that is not a Pisot unit. Then γ(β) = 0.

Proof. Assume that γ(β) > 0. If the β-expansion of a rational number r ∈ (0, 1) has
period p, the following relation holds:

r =
a1βp−1 + a2βp−2 + . . . + ap

βp − 1
. (2.1)
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Since γ(β) > 0, it follows that 1/n has a purely periodic expansion for every positive integer
n large enough. We thus infer from (2.1) that β is an algebraic integer.

A similar argument applies to prove that β is a unit (see [2, Proposition 6]).
It was proved in [22] that the set of rational numbers with a purely periodic β-expansion is

nowhere dense in (0, 1) if β is an algebraic integer that is neither a Pisot nor a Salem number.
(An algebraic integer β > 1 is a Salem number if all its Galois conjugates (different from β)
have modulus at most equal to 1 and with at least one Galois conjugate of modulus equal to 1.)
Hence β is either a Pisot unit or a Salem number.

Let us assume that β is a Salem number. It is known that minimal polynomials of Salem
numbers are reciprocal, which implies that 1/β ∈ (0, 1) is a conjugate of β. Using Galois
conjugation, relation (2.1) still holds when replacing β by 1/β. In this equation, the right-
hand side then becomes non-positive. Therefore 0 is the only number with purely periodic
β-expansion and γ(β) = 0, which is a contradiction with our initial assumption. Note that this
argument already appeared in [2, Proposition 5].

Thus β is a Pisot unit, which concludes the proof.

In what follows, we consider finite, right infinite, left infinite and bi-infinite words over
the alphabet Aβ := {0, 1, . . . , #β$ − 1}. When the location of the 0 index is needed in a bi-
infinite word, it is denoted by the symbol •, as in . . . a−1a0

•a1a2 . . . . A suffix of a right infinite
word a0a1 . . . is a right infinite word of the form akak+1 . . . for some non-negative integer k.
A suffix of a left infinite word . . . a−1a0 is a finite word of the form akak+1 . . . a0 for some
non-positive integer k. A suffix of a bi-infinite word . . . a−1a0

•a1 . . . is a right infinite word of
the form akak+1 . . . for some integer k. Given a finite word u = u0 . . . ur, we denote by uω =
u0 . . . uru0 . . . ur . . . or ωu = . . . u0 . . . uru0 . . . ur the right or left infinite periodic word obtained
by an infinite concatenation of u, respectively. A left infinite word . . . a−1a0 is eventually
periodic if there exists a positive integer p such that a−n−p = a−n for every positive integer n
large enough.

It is well known that the β-expansion of 1 plays a crucial role. Set dβ(1) := (ti)i!1. When
dβ(1) is finite with length n, that is, when tn += 0 and ti = 0 for every i > n, an infinite
expansion of 1 is given by d∗β(1) = (t1 . . . tn−1(tn − 1))ω. If dβ(1) is infinite, we just set
d∗β(1) = dβ(1). The knowledge of this improper expansion of 1 allows us to decide whether
a given word over Aβ is the β-expansion of some real number.

Definition 2.2. A finite, left infinite, right infinite or bi-infinite word over the alphabet
Aβ is an admissible word if all its suffixes are lexicographically smaller than d∗β(1).

A classical result of Parry [18] is that a finite or right infinite word a1a2 . . . is the β-expansion
of a real number in [0, 1) if and only if it is admissible. Admissible conditions are of course
easier to check when d∗β(1) is eventually periodic. In the case where β is a Pisot number, d∗β(1)
is eventually periodic and every element in Q(β) ∩ [0, 1) has eventually periodic β-expansion
according to [11, 22]. In contrast, algebraic numbers that do not belong to the number field
Q(β) are expected to have a chaotic β-expansion (see [1]). Note that if the set of real numbers
with an eventually periodic β-expansion forms a field, then β is either a Salem or a Pisot
number [22].

Warning. In what follows, β will denote a Pisot unit and admissibility will refer to this
particular Pisot number. The sequence d∗β(1) is thus eventually periodic and we set d∗β(1) :=
t1t2 . . . tm(tm+1 . . . tm+n)ω. Note that since β is a Pisot unit, we have Z[1/β] = Z[β].
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3. Thurston’s tiling associated with a Pisot unit

Given a real number β, there is a natural way to tile the real line using the notion of β-integers
(see below). In his famous lectures, Thurston [23] discussed the construction of a dual tiling,
a sort of Galois conjugate of this tiling, when β is a Pisot number. Note that some examples
of similar tiles had previously been introduced by Rauzy [19] to study arithmetic properties
of an irrational translation on a two-dimensional torus. In this section, we recall Thurston’s
construction.

The vectorial space Rn × Cm is endowed with its natural product topology. In what follows,
the closure X, the interior X̊ and the boundary ∂X of a subset X of Rn × Cm will refer to
this topology.

The β-transformation induces a decomposition of every positive real number in a β-fractional
and a β-integral part as follows. Let k ∈ N be such that β−kx ∈ [0, 1) and dβ(β−kx) =
a−k+1a−k+2 . . . . Then

x = a−k+1β
k−1 + . . . + a−1β + a0︸ ︷︷ ︸
β-integral part

+ a1β
−1 + a2β

−2 + . . .︸ ︷︷ ︸
β-fractional part

.

In the following, we use the notation x = a−k+1 . . . a−1a0.a1a2 . . . . We also note that x =
a−k+1 . . . a−1a0. when the β-fractional part vanishes and x = .a1a2 . . . when the β-integral part
vanishes.

Since a−k+1 = 0 if x < βk−1, this decomposition does not depend on the choice of k. The
set of β-integers is the set of positive real numbers with vanishing β-fractional part as follows:

Int(β) := {a−k+1 . . . a−1a0. | a−k+1 . . . a−1a0 is admissible, k ∈ N} .

Let σ2, . . . , σr be the non-identical real embeddings of Q(β) in C and let σr+1, . . . , σr+s be
the complex embeddings of Q(β) in C. We define the map Ξ by

Ξ : Q(β) → Rr−1 × Cs,

x %→ (σ2(x), . . . , σr+s(x)).

Definition 3.1. Let β be a Pisot number. The compact subset of Rr−1 × Cs defined by

T := Ξ(Int(β))

is called the central tile associated with β (see Figure 1).

Figure 1. The central tile for the smallest Pisot number η, which satisfies η3 = η + 1.
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The previous construction can be naturally extended to associate a similar tile with any
y ∈ Z[β] ∩ [0, 1).

Definition 3.2. Given such a number y, we define the tile

T (y) := Ξ(y) + {Ξ(a−k+1 . . . a0.) | a−k+1 . . . a0dβ(y) is an admissible word}.

Note that T (0) = T . It is also worth mentioning the following:
(i) there are exactly n + m different tiles up to translation;
(ii) the tiles T (y) induce a covering of the space Rr−1 × Cs, that is,

⋃

y∈Z[β]∩[0,1)

T (y) = Rr−1 × Cs. (3.1)

The first observation follows from the fact that d∗β(1) is eventually periodic (see, for
instance, [5]). The second property is a consequence of the fact that Ξ(Z[β] ∩ [0,∞)) is dense
in Rr−1 × Cs, as proved in [3, 5].

Furthermore, in the case where β is a cubic Pisot unit, Akiyama, Rao and Steiner [7] proved
that this covering is actually a tiling, meaning that the interior of tiles never meet and their
boundaries have zero Lebesgue measure. We then have the following property (see Figure 2).

Theorem ARS. Let β be a cubic Pisot unit. If x and y are two distinct elements in
Z[β] ∩ [0, 1), then

˚T (x) ∩ ˚T (y) = ∅.

In what follows, we will also need the following observation.

Figure 2. Aperiodic tiling associated with the smallest Pisot number η.
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Fact 3.3. There exists a constant C such that every z ∈ Rr−1 × Cs is contained in at most
C different tiles T (y).

Indeed, since T (y) ⊆ Ξ(y) + T and T is compact, a point z ∈ Rr−1 × Cs cannot belong to
the tile T (y) as soon as the distance between y and z is large enough. The result then follows
since the set Ξ(Z[β] ∩ [0, 1)) is uniformly discrete.

4. A Galois type theorem for expansions in a Pisot unit base

We introduce now a suitable subdivision of the central tile T . The set Int(β) is a discrete
subset of R, so that it can been ordered in a natural way. Then we have the nice property
that two consecutive points in Int(β) can differ only by a finite number of values. Namely, if
t1 . . . ti, with i ! 0, is the longest prefix of d∗β(1) which is a suffix of a−k+1 . . . a0, then this
difference is equal to T i

β(1) (see [6, 23]). Since d∗β(1) = t1 . . . tm(tm+1 . . . tm+n)ω, then we have
T i

β(1) = T i+n
β (1) for i ! m, which confirms our claim.

A natural partition of Int(β) is now given by considering the distance between a point and
its successor in Int(β).

Definition 4.1. For every 0 " i < m + n, we define the subtile Ti of T to be the closure of
the set of those points Ξ(a−k+1 . . . a0.) such that the distance from a−k+1 . . . a0. to its successor
in Int(β) is equal to T i

β(1) (see Figure 3).

As detailed in [9, 10], the Perron–Frobenius theorem coupled with self-affine decompositions
of tiles implies that the subtiles have nice topological properties. One of them will be useful in
the following proposition: their interiors are disjoint.

Proposition BS. Let β be a Pisot unit. For every pair (i, j), with i += j and 0 " i, j <
m + n, we have

T̊i ∩ T̊j = ∅.

Figure 3. The decomposition of the central tile associated with η into subtiles. According to
the expansion dη(1) = 10001, the central tile is subdivided into exactly five subtiles.
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Figure 4. The set Eη and the line (−x, x), with x ∈ R.

The subdivision of the central tile into the subtiles Ti allows us to characterize those real
numbers in (0, 1) having a purely periodic β-expansion. More precisely, Ito and Rao [16] proved
the following result (see also [10] for a shorter and more natural proof).

Theorem IR. Let β be a Pisot unit and let x ∈ [0, 1). The β-expansion of x is purely
periodic if and only if x ∈ Q(β) and

(−Ξ(x), x) ∈ Eβ :=
n+m−1⋃

i=0

Ti × [0, T i
β(1)).

We immediately deduce the following result from Theorem IR (see Figure 4).

Corollary 4.2. Let β be a Pisot unit. Then one of the following holds:

(i) γ(β) = T i
β(1) for some i ∈ {0, . . . , n + m − 1};

(ii) the (r + s − 1)-dimensional vector (−γ(β), . . . ,−γ(β)) is in Ti ∩ Tj with T j
β(1) < γ(β) <

T i
β(1);

(iii) the (r + s − 1)-dimensional vector (−γ(β), . . . ,−γ(β)) lies on the boundary of T .

5. Some results on Ξ(β)-representations

In this section, we consider representations of points in the space Rr−1 × Cs that involve
some Galois conjugations related to β. Such representations are termed Ξ(β)-representations.
If x = (x1, . . . , xr+s−1) and z = (y1, . . . , yr+s−1) are two elements in Rr−1 × Cs, then we
set x 0 z := (x1y1, . . . , xr+s−1yr+s−1). From now on, we say that a pointed bi-infinite
word . . . a−1a0

•a1a2 . . . is admissible if . . . a−1a0a1a2 . . . is a bi-infinite admissible word.
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Definition 5.1. A Ξ(β)-representation of z ∈ Rr−1 × Cs is an admissible bi-infinite
word . . . a−1a0

•a1a2 . . . with .a1a2 . . . ∈ Z[β] and such that

z =
∞∑

j=0

a−jΞ(βj) + Ξ(.a1a2 . . .).

We derive now several results about Ξ(β)-representations that will be useful in what follows.
First, we show that such representations do exist.

Lemma 5.2. Every z ∈ Rr−1 × Cs has at least one Ξ(β)-representation.

Proof. As we already mentioned, we have
⋃

y∈Z[β]∩[0,1)

T (y) = Rr−1 × Cs.

Thus every z ∈ Rr−1 × Cs belongs to some tile T (y) with y ∈ Z[β]. By the definition of T (y),
there exists a sequence of finite words Wk such that Wkdβ(y) is an admissible infinite word
and

lim
k→∞

Ξ(Wk.) = z − Ξ(y).

Now, note that there exist infinitely many Wk that end with the same letter, say a0.
Among them, there are infinitely many of them with the same last but one letter, say a−1.
Keeping on this procedure, we deduce the existence of a left infinite word . . . a−1a0 such
that . . . a−1a0

•dβ(y) is a bi-infinite admissible word and

z − Ξ(y) = lim
k→∞

Ξ(ak+1 . . . a0.).

Thus, we have z =
∑+∞

j=0 a−jΞ(βj) + Ξ(y), which has proved that . . . a−1a0
•dβ(y) is a Ξ(β)-

representation of z since y belongs to Z[β]. This ends the proof.

The following results were shown by Sadahiro [21] for cubic Pisot units β satisfying (F) with
a single pair of complex Galois conjugates, that is r = s = 1.

Lemma 5.3. There exists a positive integer C such that every z ∈ Rr−1 × Cs has at most
C different Ξ(β)-representations.

Proof. We already observed in Fact 3.3 that there exists a positive integer, say C, such that
every z ∈ Rr−1 × Cs is contained in at most C different tiles T (y). Let z ∈ Rr−1 × Cs and let
us assume that z has more than C different Ξ(β)-representations, namely

(. . . a(j)
−1a

(j)
0

•a(j)
1 a(j)

2 . . .)1"j"C+1.

Then, there exists some non-negative integer k such that the infinite sequences a(j)
−k+1a

(j)
−k+2 . . .,

with 1 " j " C + 1, are all distinct. This implies that Ξ(βk) 0 z belongs to each tile T (yj)
with yj = .a(j)

−k+1a
(j)
−k+2 . . . . Consequently, Ξ(βk) 0 z lies in more than C different tiles, which

contradicts the definition of C.

Lemma 5.4. Let . . . a−1a0
•a1a2 . . . be a Ξ(β)-representation of Ξ(x) for some x ∈ Q(β).

Then the left infinite word . . . a−1a0 is eventually periodic.
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Proof. Let . . . a−1a0
•a1a2 . . . be a Ξ(β)-representation of Ξ(x) for some x ∈ Q(β). Set xk :=

a−k+1 . . . a0.a1a2 . . . and for every non-negative integer k set zk := β−k(x − xk). Then, we have

zk+1 =
1
β

(zk − a−k),

which implies that the set {zk | k ! 0} is bounded. Furthermore, we have

Ξ(zk) =
∞∑

j=0

a−k−jΞ(βj).

Since β is a Pisot number, this implies that all conjugates of zk are bounded as well. Since all
the zk have a degree bounded by the degree of β, this implies that {zk | k ! 0} is a finite set.

Now observe that . . . a−k−1a−k
•0ω is a Ξ(β)-representation of Ξ(zk). By Lemma 5.3, each

Ξ(zk) has at most C different Ξ(β)-representations. Since there are only finitely many different
zk, the set of left infinite words {. . . a−k−1a−k | k ! 0} is finite. This implies that the left
infinite word . . . a−1a0 is eventually periodic, concluding the proof.

6. Spiral points

In this section, we introduce a topological and geometrical notion for compact subsets of the
complex plane. This notion of spiral point turns out to be the key tool for proving Theorems 1.1
and 1.2. Roughly, x is a spiral point with respect to a compact set X ⊂ C when both the interior
and the complement of X turn around x, meaning that they meet infinitely many times all
rays of positive length issued from x. More formally, we have the following definition.

Definition 6.1. Let X be a compact subset of C. A point z ∈ X is a spiral point with
respect to X if for all positive real numbers ε and θ, both the interior of X and the complement
of X meet the ray z + [0, ε)eiθ :=

{
z + ρeiθ | ρ ∈ [0, ε)

}
.

It seems that the boundary of many fractal objects in the complex plane contains some spiral
points, but we were not able to find a reference for this notion. The most common property
studied in fractal geometry that is related to our notion of spiral point seems to be the non-
existence of weak tangent (see, for instance, [12]). For instance, if X denotes a set with a
non-integer Hausdorff dimension lying between 1 and 2, then almost all points of X do not
have a weak tangent. This result applies in particular to the boundary of some classical fractal
structures such as Julia sets and Heighway dragon.

Our key result now reads as follows (see Figure 5).

Proposition 6.2. Let β be a cubic Pisot number with a complex Galois conjugate α.
Then every point in Q(α) that belongs to the boundary of T or of a subtile Ti is a spiral point
with respect to this tile.

In order to prove Proposition 6.2, we will need the following result.

Lemma 6.3. Let β be a Pisot number with complex Galois conjugates βj , βj , r < j " r + s,
βj = ρje2πiφj . Then 1, φr+1, . . . , φr+s are linearly independent over Q.
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Figure 5. The central tile associated with the real root of x3 − 3x2 + 2x − 1.

Proof. Let k0, . . . , ks be integers such that k0 + k1φr+1 + . . . + ksφr+s = 0. Then the
product βk1

r+1 . . . βks
r+s is a real number and thus

βk1
r+1 . . . βks

r+s = βr+1
k1

. . . βr+s
ks

.

It is proved in [17] that this implies that k1 = . . . = ks = 0, and the lemma is proved.

We are now ready to prove Proposition 6.2.

Proof of Proposition 6.2. First note that since β is a cubic Pisot number, we simply have
Ξ(β) = α. Let z ∈ Q(α) ∩ T and let θ and ε be two positive real numbers.

By Lemma 5.2, we see that z has at least one α-representation. Since z belongs to the
central tile T , the proof of Lemma 5.2 actually implies the existence of a left infinite admissible
word . . . a−1a0 such that . . . a−1a0

•0ω is an α-representation of z. Furthermore, by Lemma 5.4,
such a representation is eventually periodic and there thus exist non-negative integers p and q
such that ω(a−q−p+1 . . . a−q)a−q+1 . . . a0

•0ω is an α-representation of z.
For every non-negative integer k, set zk := (a−q−p+1 . . . a−q)ka−q+1 . . . a0.. There exists a

positive integer - (depending on β) such that, for every left infinite admissible word . . . b−1b0,
the bi-infinite word

. . . b−1b00&(a−q−p+1 . . . a−q)ja−q+1 . . . a0
•0ω (6.1)

is also admissible. Roughly, this means that the lexicographic condition cannot ‘jump over 0&’.
Consequently, we have

zk + αq+kp+&T ⊆ T . (6.2)

Since β is a Pisot unit, we know that T has a non-empty interior, a result obtained in [5]. Thus,
T contains some ball, say B. Set B′ := αq+&B. By (6.2), it also contains the balls zk + αkpB′

for every non-negative integer k.
Note that there exists some non-empty interval (η, ζ) ⊂ (0, 1) and some positive real number

R such that every ray z + [0, R)e2πiψ with ψ ∈ (η, ζ) contains an interior point of z0 + B′.
Furthermore, ω(a−q−p+1 . . . a−q)0q+kp•0ω is an α-representation of z − zk and thus

αkpB′ + zk − z = αkp(B′ + z0 − z).
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Let ρ and φ be positive real numbers such that α = ρe2πiφ. Then every ray

z + [0, ρkpR)e2πi(ψ+kpφ)

with ψ ∈ (η, ζ) contains an interior point of zk + αkpB′. By Lemma 6.3, we see that φ is
irrational and the sequence (kpφ mod 1)k!0 is thus dense in (0, 1). It follows that there are
infinitely many positive integers k1 < k2 < . . . and infinitely many real numbers x1, x2, . . . ∈
(η, ζ) such that θ/2π = khpφ+ xh mod 1 for h ! 1. Since β is a Pisot number, we have 0 <
ρ < 1. For - large enough, we thus obtain that the ray z + [0, ε)eiθ contains an interior point
of T .

If z belongs to the boundary of T , from the covering property (3.1) it follows that z is also
contained in some tile T (y) with y += 0.

Then, arguing as previously, we obtain that z has an α-representation of the form
ω(a′

−q′−p′+1 . . . a′
−q′)a′

−q′+1 . . . a′
0
•dβ(y)

and by similar arguments as above, we can show that the ray z + [0, ε)eiθ contains an interior
point of the tile T (y). By Theorem ARS, such a point lies in the complement of T . This shows
that z is a spiral point with respect to T .

We shall now detail why similar arguments apply if we replace T by a subtile Tj . Recall
that d∗β(1) = t1 . . . tm(tm+1 . . . tm+n)ω denotes the expansion of 1. From the definition of the
subtiles Tj it follows that:

(i) when 0 " j < m, a point z belongs to Tj if and only if z has an α-representation with
t1 . . . tj•0ω as a suffix;

(ii) when m " j < m + n, a point z belongs to Tj if and only if there exists - ! 0 such that
z has an α-representation with t1 . . . tm(tm+1 . . . tm+n)&tm+1 . . . tj•0ω as a suffix.

Let us assume that z ∈ Q(α) ∩ ∂Tj for some 0 " j < m + n. If z also belongs to ∂T , we fall
into the previous case. We can thus assume that this is not the case, and hence z belongs to
the boundary of another tile Th, with h += j. By Proposition BS, it remains to prove that the
ray z + [0, ε)eiθ contains an interior point of both Tj and Th.

Let us briefly justify this claim. Coming back to the proof above, we deduce from (i) and (ii)
that zk belongs to Tj for k large enough. Moreover, there exists a positive integer - (depending
on β) such that, for every left infinite admissible word . . . b−1b0, the bi-infinite word

. . . b−1b00&(a−q−p+1 . . . a−q)ka−q+1 . . . a0
•0ω

satisfies the admissibility condition for Tj given in (i)/(ii).
This allows us to replace (6.2) by

zk + αq+kp+&T ⊆ Tj

and to conclude as previously.

7. Proof of Theorems 1.1 and 1.2

In this section, we complete the proof of Theorems 1.1 and 1.2. In this section, β denotes a
cubic Pisot unit.

Lemma 7.1. For every i ! 1, either T i
β(1) = 0 or T i

β(1) +∈ Q.

Proof. This follows from T i
β(1) ∈ Z[β] ∩ [0, 1).

Lemma 7.2. If β satisfies (F), then Ξ(−1) lies on the boundary of T .
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Proof. If β satisfies (F), then we have dβ(1) = t1 . . . tn0ω, with tn > 0. If 1 " j " n is an
integer such that tj > 0, then

ω(t1 . . . tn−1(tn − 1))t1 . . . tj−1(tj − 1)•tj+1 . . . tn0ω

is a Ξ(β)-expansion of −1 since this sequence is admissible and

lim
k→∞

Ξ
(
(t1 . . . tn−1(tn − 1))kt1 . . . tj.tj+1 . . . tn

)
= lim

k→∞
Ξ(βj+kn) = 0.

Since by definition tn > 0, it follows that Ξ(−1) belongs to the central tile T . Since t1 > 0, it
follows that Ξ(−1) also lies in the tile T (y) where y := .t2 . . . tn += 0. By Theorem ARS, we
obtain that Ξ(−1) lies on the boundary of the tile T , as claimed.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. As previously mentioned, if β satisfies (F), we infer from [2] that
γ(β) > 0.

If β does not satisfy (F), then Akiyama [4] proved that the minimal polynomial p(x) of β
satisfies either p(0) = 1 or p(x) = x3 − ax2 − bx − 1 with −a + 1 " b " −2. Hence, β has either
a positive real Galois conjugate or two complex Galois conjugates. In the first case, it is easy
to see that γ(β) = 0, as observed in [2]. In the latter case, it is known that the origin belongs
to the boundary of the central tile T . By Proposition 6.2, we get that 0 is a spiral point with
respect to T . Hence, there are rational numbers arbitrarily close to 0 which have a β-expansion
that is not purely periodic (as well as intervals where all rational numbers have purely periodic
β-expansion). Consequently, we also have γ(β) = 0 in that case, concluding the proof.

Proof of Theorem 1.2. Let β be a cubic Pisot unit satisfying (F). Let us assume that Q(β)
is not a totally real number field. Let us assume that γ(β) is a rational number and we aim at
deriving a contradiction. Note that by assumption we have Ξ(−γ(β)) = −γ(β).

We first observe that if γ(β) = T i
β(1) for some non-negative integer i, then −γ(β) belongs

to the boundary of the central tile T . Indeed, in that case, Lemma 7.1 implies that γ(β) =
T 0(1) = 1 and the result follows from Lemma 7.2.

Let us assume that −γ(β) belongs to the boundary of the central tile T . By Proposition 6.2,
−γ(β) is a spiral point with respect to T . Thus there exists a rational number 0 < r < γ(β)
such that −r lies in the interior of a tile T (y) for some y += 0. By Theorem ARS, −r = Ξ(−r)
does not belong to T and thus

(−r, r) +∈
m+n−1⋃

i=0

Ti × [0, T i
β(1)).

Theorem IR then implies that dβ(r) is not purely periodic, which contradicts the definition of
γ(β) since 0 < r < γ(β).

Let us assume now that −γ(β) does not belong to the boundary of the central tile T . By
Corollary 4.2 and our first observation, this ensures the existence of two integers 0 " i += j "
m + n − 1 such that −γ(β) ∈ Ti ∩ Tj and T j

β(1) < γ(β) < T i
β(1). By Proposition BS, we get

that −γ(β) ∈ ∂Tj . We then infer from Proposition 6.2 that −γ(β) is a spiral point with respect
to Tj . The interior of Tj thus contains a rational number −r such that T j

β(1) < r < γ(β). By
Proposition BS, −r = Ξ(−r) does not belong to any other subtile Ti and thus

(−r, r) +∈
m+n−1⋃

i=0

Ti × [0, T i
β(1)).

By Theorem IR, the β-expansion of r is not purely periodic, which yields a contradiction with
the fact that 0 < r < γ(β). This concludes the proof.
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