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ADDENDUM TO: MAHLER’S METHOD IN SEVERAL

VARIABLES AND FINITE AUTOMATA

BORIS ADAMCZEWSKI AND COLIN FAVERJON

The aim of this note is to prove the following extension of one of the main
results of [2] concerning the algebraic independence of values of M -functions
at multiplicatively independent algebraic points. We retain the notations
introduced in [2].

Theorem A.1. Let r ≥ 1 be an integer and K ⊆ Q be a field. For every

integer i, 1 ≤ i ≤ r, we let qi ≥ 2 be an integer, fi(z) ∈ K[[z]] be an Mqi-

function, and αi ∈ K, 0 < |αi| < 1, be such that fi(z) is well-defined at

αi. Let us assume that the numbers α1, . . . , αr are pairwise multiplicatively

independent. Then f1(α1), f2(α2), . . . , fr(αr) are algebraically independent

over Q, unless one of them belongs to K.

Theorem A.1 strengthens part (i) of [2, Theorem 1.1] in which a stronger
condition was required: the points αi had to be (globally) multiplicatively in-
dependent and not just pairwise multiplicatively independent. For instance,
assuming that f1(z), f2(z) and f3(z) are M -functions that take transcen-
dental values at 1

2 ,
1
5 and 1

10 respectively, Theorem A.1 implies that these
three numbers are algebraically independent, while [2, Theorem 1.1] could
not apply.

We deduce from Theorem A.1 the following generalization of [2, Theo-
rem 2.3].

Theorem A.2. Let r ≥ 1 be an integer. Let b1, . . . , br be pairwise multi-

plicatively independent positive integers, and, for every i, 1 ≤ i ≤ r, let xi
be a real number that is automatic in base bi. Then the numbers x1, . . . , xr
are algebraically independent over Q, unless one of them is rational.

We omit the proof of Theorem A.2 as it can be deduced from Theorem A.1,
just as [2, Theorem 2.3] can be deduced from [2, Theorem 1.1].

The rest of this note is devoted to the proof of Theorem A.1. As with
the proof of [2, Theorem 1.1], it mainly relies on some of the general results
concerning Mahler’s method in several variables proved in [2] (e.g., Corol-
lary 3.5, Corollary 3.9, and Theorem 5.9). The main novelty is the use of
a trick introduced by Loxton and van der Poorten [3] in this framework to
deal with values of Mahler functions at certain points with multiplicatively
dependent coordinates.

1. Proof of Theorem A.1

In order to prove Theorem A.1, we first need three auxiliary results.
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1.1. Auxiliary results. Our first auxiliary result is a lemma concerning
algebraic numbers, on which Loxton and van der Poorten’s trick is based.

Lemma A.3. Let α1, . . . , αr ∈ Q be algebraic numbers such that 0 < |αi| < 1
for every i, 1 ≤ i ≤ r. Then there exist multiplicatively independent algebraic

numbers β1, . . . , βt ∈ Q, 0 < |βj | < 1, 1 ≤ j ≤ t, roots of unity ζ1, . . . , ζr,
and nonnegative integers µi,j, 1 ≤ i ≤ r, 1 ≤ j ≤ t, such that

αi = ζi

t
∏

j=1

β
µi,j

j , ∀i, 1 ≤ i ≤ r .

Proof. This is [3, Lemma 3] (see also [4, Lemma 3.4.9]). �

Our second auxiliary result is the following result about M -functions.

Lemma A.4. Let q ≥ 2 be an integer, f(z) be an Mq-function and ζ be a

root of unity. Then f(ζz) is also an Mq-function.

Proof. We first recall that the set of Mq-functions is a ring containing Q(z)∩

Q[[z]] and that, given any positive integer ℓ, a power series is an Mq-function

if and only if it is an Mqℓ-function. Let k be such that ζ0 := ζq
k

has order

coprime with q. Then there exists a positive integer ℓ such that ζq
ℓ

0 = ζ0.
Since f(z) is also an Mqℓ-function, we deduce that f(ζ0z) is an Mqℓ -function
and hence an Mq-function. The same argument applies to any power of ζ0, so
that f(ζ i0z) is an Mq-function for every integer i ≥ 0. Given a positive integer

j, substituting z with zq
jk

and taking i := qk(j−1), we thus deduce that

f((ζz)q
jk
) is an Mq-function. Now, substituting ζz to z in the minimal qk-

Mahler equation satisfied by f(z), we can write f(ζz) as a linear combination

over Q(z) of the series f((ζz)q
jk
), j ∈ {1, . . . , r}, where r is the order of this

minimal equation. Since f(ζz) is a power series, we can ensure that f(ζz)
can in fact be written as a linear combination over Q(z)∩Q[[z]] of some Mq-
functions. It therefore follows that f(ζz) is an Mq-function, as wanted. �

Our third auxiliary result is about algebraic independence of power series.

Lemma A.5. Let r and t be two positive integers, µ1, . . . ,µr ∈ Nt be vectors

that are pairwise linearly independent over Q, and, for every i, 1 ≤ i ≤ r, let

mi be a positive integer and fi,1(z), . . . , fi,mi
(z) ∈ Q[[z]]. Let z := (z1, . . . , zt)

be a vector of indeterminates. Then

tr.deg
Q(z)(fi,j(z

µi) : 1 ≤ i ≤ r, 1 ≤ j ≤ mi)

=

r
∑

i=1

tr.degQ(z)(fi,j(z) : 1 ≤ j ≤ mi) .

We recall that zµj :=
∏t

i=1 z
µi,j

i . In order to prove Lemma A.5, we first
need to establish a simple result about cones in Rt. We define the convex
cone C spanned by some vectors µ1, . . . ,µr ∈ Rt as the set

C := {a1µ1 + · · ·+ arµr : a1, . . . , ar ∈ R≥0} .

A basis of C is a minimal set of vectors in Rt such that the convex cone
spanned by these vectors is C.



ADDENDUM TO: MAHLER’S METHOD IN SEVERAL VARIABLES AND FINITE AUTOMATA3

Lemma A.6. Let µ1, . . . ,µr ∈ Nt be pairwise linearly independent over Q

and C denote the convex cone spanned by µ1, . . . ,µr. Let us assume that

{µ1, . . . ,µs} is a basis of C, for some 1 ≤ s ≤ r. Then, µ1 does not belong

to the convex cone C◦ spanned by µ2, . . . ,µr. Furthermore, for any λ ∈ Nt

and any finite set Γ ⊂ Nt, the intersection

(λ+ Nµ1)
⋂

(Γ + C◦)

is finite.

Proof. Let us start with the first part of the proof. We first note that,
since the vector µ1, . . . ,µr are pairwise linearly independent over Q, µ1

is a nonzero vector. By assumption, for every i, s < i ≤ r, there exist
nonnegative real numbers λi,j, 1 ≤ j ≤ s, such that

(1.1) µi =

s
∑

j=1

λi,jµj .

Let us assume by contradiction that µ1 belongs to the convex cone spanned
by µ2, . . . ,µr. Then, there exist nonnegative real numbers θ2, . . . , θr such
that

(1.2) µ1 =

r
∑

j=2

θjµj .

We deduce from (1.1) and (1.2) that

µ1 =
s
∑

j=2

θjµj +
r
∑

i=s+1

θi

s
∑

j=1

λi,jµj

=

(

r
∑

i=s+1

θiλi,1

)

µ1 +

s
∑

j=2

(

θj +

r
∑

i=s+1

θiλi,j

)

µj

and hence
(

1−
r
∑

i=s+1

θiλi,1

)

µ1 =
s
∑

i=2

(

θj +
r
∑

i=s+1

θiλi,j

)

µj .

On the one hand, if 1 −
∑r

i=s+1 θiλi,1 > 0, then µ1 would belong to the
convex cone generated by µ2, . . . ,µs, which would contradict the fact that
{µ1, . . . ,µs} is a basis of C. On the other hand, if 1 −

∑r
i=s+1 θiλi,1 < 0,

since µ1 6= 0, at least one of the coordinates of µ1 would be negative, which
is impossible. Hence 1−

∑r
i=s+1 θjλi,1 = 0 and we deduce that

(1.3) θj +

r
∑

i=s+1

θiλi,j = 0, ∀j, 2 ≤ j ≤ s .

Since all these numbers are nonnegative, we first observe that θj = 0, for
every j ∈ {2, . . . , s}. Since µ1 is nonzero, we infer from (1.2) the existence of
i0 > s such that θi0 6= 0. Then, we deduce from (1.3) that λi0,j = 0 for every
j ∈ {2, . . . , s}. Thus, it follows from (1.1) that µi0

= λi0,1µ1, providing a
contradiction with the fact that µ1, . . . ,µr are pairwise linearly independent
over Q. This concludes the first part of the proof.
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We now turn to the second part. Let λ ∈ Nt and Γ be a finite subset of
Nt. Let d := infκ∈C◦ |µ1 − κ| denote the distance between µ1 and C◦. Since
we just proved that µ1 does not belong to C◦, we easily deduce that d > 0.
Set

B := max{|γ|+ |λ| : γ ∈ Γ} .

Let k ∈ N be such that λ+ kµ1 ∈ Γ + C◦. Then

λ+ kµ1 = γ + µ ,

for some γ ∈ Γ and µ ∈ C◦. Since µ/k ∈ C◦, it follows that

B

k
≥

|γ − λ|

k
=
∣

∣

∣
µ1 −

µ

k

∣

∣

∣
≥ d

and hence k ≤ B/d. We deduce that

(λ+ Nµ1) ∩ (Γ + C◦) ⊂ {λ+ kµ1 : 0 ≤ k ≤ B/d} .

In particular, it is a finite set. �

Proof of Lemma A.5. We argue by induction on r. When r = 1, there is
nothing to prove. We now assume that r ≥ 2 and that the result is proven
for r − 1. Up to reordering the indices, we can assume that {µ1, . . . ,µs} is
a basis of the cone C spanned by µ1, . . . ,µr, for some s ≤ r. According to
our induction hypothesis, we only have to prove that

tr.deg
Q(z)(fi,j(z

µi) : 1 ≤ i ≤ r, 1 ≤ j ≤ mi)

= tr.degQ(z)(f1,j(z) : 1 ≤ j ≤ m1)

+ tr.deg
Q(z)(fi,j(z

µi) : 2 ≤ i ≤ r, 1 ≤ j ≤ mi) .

We are going to prove the following stronger fact: for any g1(z), . . . , gm(z) ∈
Q[[z]] that are linearly independent over Q(z), the power series

g1(z
µ1), . . . , gm(zµ1) ∈ Q[[z]]

are linearly independent over the ring A := Q[[zµ2 , . . . ,zµr ]][z].

Let g1(z), . . . , gm(z) ∈ Q[[z]] be linearly independent over Q(z) and let
us assume by contradiction that the series g1(z

µ1), . . . , gm(zµ1) are linearly
dependent over A. Then, there exist h1(z), . . . , hm(z) ∈ A, not all zero, such
that

(1.4) h1(z)g1(z
µ1) + · · ·+ hm(z)gm(zµ1) = 0 .

Let C◦ denote the convex cone spanned by µ2, . . . ,µr. By definition of A,
there exists a finite set Γ ⊂ Nt such that the support of each hi(z) is included
in Γ + C◦. Thus, we can write

hi(z) =
∑

κ∈Γ+C◦

hi,κz
κ, ∀i, 1 ≤ i ≤ m.

We also set hi,κ := 0 when κ /∈ Γ+ C◦. Considering the equivalence relation
on Nt defined by λ1 ∼ λ2 if λ1 − λ2 ∈ Zµ1, we can defined a set Λ ⊂ Nt

by picking the vector of smallest norm in each equivalence class, so that Nt

can be written as the disjoint union
⊔

λ∈Λ (λ+ Nµ1). For every λ ∈ Λ, set
Γλ := (Γ + C◦) ∩ (λ + Nµ1). It follows from Lemma A.6 that all the sets
Γλ are finite. Since the sets Γλ, λ ∈ Λ, form a partition of Γ + C◦, and
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since every element of Γλ can be written λ+ nµ1 for some n ∈ N, we have
a decomposition of the form

hi(z) =
∑

λ∈Λ

zλai,λ(z
µ1), ∀i, 1 ≤ i ≤ m,

where ai,λ(z) :=
∑∞

n=0 hi,λ+nµ1
zn. Since all the sets Γλ are finite, the

ai,λ(z) are in fact polynomials. Since the sets λ+Nµ1, λ ∈ Λ, are disjoints,
identifying the powers of z that belong to λ+ Nµ1 in (1.4) leads to

m
∑

i=1

ai,λ(z)gi(z) = 0 , ∀λ ∈ Λ .

Since the power series g1(z), . . . , gm(z) are linearly independent over Q(z),
we deduce that ai,λ(z) = 0 for every pair (i,λ) ∈ {1, . . . ,m} × Λ. Hence
hi(z) = 0 for all i ∈ {1, . . . ,m}, which provides a contradiction. �

1.2. Existence of a suitable linear Mahler system. The following propo-
sition ensures the existence of suitable linear Mahler systems in several vari-
ables that will be used to deduce Theorem A.1 from the main results of
[2].

Proposition A.7. Let q ≥ 2 be an integer, α1, . . . , αr ∈ Q be pairwise

multiplicatively independent, 0 < |αi| < 1 and, for every i, 1 ≤ i ≤ r,
fi(z) ∈ Q[[z]] be an Mq-function that is well defined at αi. Then there exist

a positive integer t, a positive integer ℓ, a point β ∈ Q
t
, a matrix T ∈ Mt(N),

some vectors µ1, . . . ,µr ∈ Nt, and for every i, 1 ≤ i ≤ r, roots of unity ζi, a

positive integer mi and some Mq-functions gi,1(z), . . . , gi,mi
(z) ∈ Q[[z]] such

that the following hold.

(a) For every i ∈ {1, . . . , r}, αi = ζiβ
µi .

(b) For every i ∈ {1, . . . , r}, fi(αi) = gi,1(β
µi).

(c) For every i ∈ {1, . . . , r}, gi,1(z), . . . , gi,mi
(z) are related by a qℓ-

Mahler system and βµi is regular w.r.t. this system.

(d) The functions gi,j(z
µi), 1 ≤ i ≤ r, 1 ≤ j ≤ mi are related by a T -

Mahler system, where z = (z1, . . . , zt) is a vector of indeterminates.

(e) The pair (T,β) is admissible and the point β is regular w.r.t. this

system.

(f) The spectral radius of T is equal to qℓ.
(g) The vectors µ1, . . . ,µr are pairwise linearly independent over Q.

Proof. We first infer from Lemma A.3 the existence of a positive integer
t, multiplicatively independent algebraic numbers β1, . . . , βt, 0 < |βj | < 1,
1 ≤ j ≤ t, roots of unity ζ1, . . . , ζr and nonnegative integers µi,j, 1 ≤ i ≤ r,
1 ≤ j ≤ t, such that

αi = ζi

t
∏

j=1

β
µi,j

j , ∀i, 1 ≤ i ≤ r .

Setting β := (β1, . . . , βt) and µi := (µi,1, . . . , µi,t), we get that (a) is satisfied.
By Lemma A.4, each fi(ζiz) is an Mq-function. Applying [2, Lemma 11.1]

to the functions fi(ζiz) and the points ζ−1
i αi = βµi , we can find, for ev-

ery i ∈ {1, . . . , r}, some Mq-functions gi,1(z), . . . , gi,mi
(z) related by some
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qℓi-Mahler system with respect to which βµi is a regular point and such
that gi,1(β

µi) = fi(αi), so that (b) holds. Iterating each one of these sys-
tems an appropriate number of times if necessary, we can further assume
that the integers ℓi, 1 ≤ i ≤ r, are all equal to some common integer, say
ℓ. Hence (c) is satisfied. Let A1(z), . . . , Ar(z) denote the matrices asso-
ciated with each of these Mahler systems. Let z := (z1, . . . , zt) be a vec-
tor of indeterminates and let B(z) denote the block-diagonal matrix with
blocks A1(z

µ
1), . . . , Ar(z

µr). Set T := qℓIt. By construction, the functions
gi,j(z

µi), 1 ≤ i ≤ r, 1 ≤ j ≤ mi, are related by the T -Mahler system as-
sociated with the matrix B(z), which proves (d). Since, for every i, βµi is
regular w.r.t. the qℓ-Mahler system associated with the matrix Ai(z), the
point β is regular w.r.t. the T -Mahler system with matrix B(z). Further-
more, since the coordinates of β are multiplicatively independent and of
modulus smaller that 1, it follows from [2, Theorem 5.9] that (T,β) is ad-
missible, hence (e) is satisfied. Since T = qℓIt, (f) also holds true. Finally,
since the numbers α1, . . . , αr are pairwise multiplicatively independent, so
are the numbers βµ1 , . . . ,βµr . Thus, the vectors µ1, . . . ,µr are pairwise
linearly independent over Q, which proves (g). �

1.3. Proof of Theorem A.1. We are now ready to prove our main result.
We assume that none of the complex numbers f1(α1), . . . , fr(αr) belongs to
K, so that it remains to prove that they are algebraically independent over
Q. We first notice that, according to [1, Corollaire 1.8], this assumption
implies that the numbers f1(α1), . . . , fr(αr) are all transcendental.

Let us divide the natural numbers 1, . . . , r into s classes I1, . . . ,Is, such
that i and j belong to the same class if and only if qi and qj are multiplica-
tively dependent. Since an Mq-function is also an Mqk -function for every in-
teger k ≥ 1, we can assume without any loss of generality that qi = qj := ρk
whenever i and j belong to the same class Ik. Set E := {f1(α1), . . . , fr(αr)}
and Ek := {fi(αi) : i ∈ Ik}, 1 ≤ k ≤ s.

For each k ∈ {1, . . . , s}, we consider the Mahler system given by Propo-
sition A.7 when applied with q = ρk and with the pairs (fi(z), αi), i ∈ Ik.
Let βk, (µi)i∈Ik , Tk,zk, (gi,j(z))i∈Ik ,1≤j≤mi

and Bk(zk) denote, respectively,
the corresponding algebraic point, vectors of nonnegative integers, transfor-
mation, vector of indeterminates, family of Mρk -functions and matrix asso-
ciated with the corresponding Tk-Mahler system. Proposition A.7 ensures
that each pair (Tk,βk) is admissible and that the point βk is regular w.r.t.
the Tk-Mahler system associated with the matrix Bk(zk). Since the numbers
ρ1, . . . , ρs are pairwise multiplicatively independent, Condition (f) of Propo-
sition A.7 further implies that the spectral radii of T1, . . . , Ts are pairwise
multiplicatively independent. Thus, we can apply [2, Corollary 3.9] to these
s Mahler systems. We deduce that

(1.5) tr.degQ(E) =

s
∑

k=1

tr.degQ(Ek) .

Now, let us fix k ∈ {1, . . . , s} and set Fk := {gi,j(β
µi

k ) : i ∈ Ik, 1 ≤ j ≤ mi}
and

Fk,i := {(gi,j(β
µi

k ) : 1 ≤ j ≤ mi}, i ∈ Ik .
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Applying [2, Corollary 3.5] to the Tk-Mahler system associated with the
matrix Bk(zk), we obtain that

tr.deg
Q
(Fk) = tr.deg

Q(zk)
(gi,j(z

µi

k ) : i ∈ Ik, 1 ≤ j ≤ mi) .

Since Condition (g) of Proposition A.7 ensures that the vectors µi, i ∈ Ik,
are pairwise linearly independent over Q, it follows from Lemma A.5 that

tr.deg
Q(zk)

(gi,j(z
µi

k ) : i ∈ Ik, 1 ≤ j ≤ mi)

=
∑

i∈Ik

tr.degQ(z)(gi,j(z) : 1 ≤ j ≤ mi) .

For each i ∈ Ik, we infer from Condition (c) of Proposition A.7 that we can
apply [2, Corollary 3.5] to the Mahler system connecting gi,1(z), . . . , gi,mi

(z)
at the regular point β

µi

k . We obtain that

tr.degQ(z)(gi,j(z) : 1 ≤ j ≤ mi) = tr.degQ(Fk,i) .

Combining these three identities, we get that

(1.6) tr.degQ(Fk) =
∑

i∈Ik

tr.degQ(Fk,i) .

We infer from Condition (b) of Proposition A.7 that fi(αi) ∈ Fk,i, so that
Fk = ∪i∈IkFk,i and Ek = ∪i∈Ikfi(αi). Then, it follows from [2, Lemma 10.3]
and (1.6) that

tr.degQ(Ek) =
∑

i∈Ik

tr.degQ(fi(αi)) .

Since fi(αi) is transcendental for all i, we have tr.deg
Q
(fi(αi)) = 1 and we

deduce that tr.deg
Q
(Ek) = Card(Ik). Then, it follows from (1.5) that

tr.deg
Q
(E) =

s
∑

k=1

Card(Ik) = r .

Hence the numbers f1(α1), . . . , fr(αr) are algebraically independent over Q,
just as we wanted. �
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