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1 Introduction

Among infinite sequences or infinite sets of integers, some are well-behaved, such as pe-

riodic sequences and arithmetic progressions, whereas others, such as random sequences

and random sets, are completely chaotic and cannot be described in a simple way. Finite

automata are one of the most basic models of computation and thus lie at the bottom of

the hierarchy associated with Turing machines. Such machines can naturally be used to

generate sequences with values over a finite set, and also as devices to recognize certain

subsets of the integers.

One of the main interests of these automatic sequences/sets arises from the fact that

they are in many ways very well-behaved without necessarily being trivial. One can thus

consider that they lie somewhere between order and chaos, even if, in many respects, they

are well-behaved.

In this chapter, we survey some of the connections between automatic sequences/sets

and number theory. Several substantial advances have recently been made in this area

and we give an overview of some of these new results. This includes discussions about

prime numbers, the decimal expansion of algebraic numbers, the search for an analogue

of the Skolem-Mahler-Lech theorem in positive characteristic and the description of an

algebraic closure of the field Fp(t).
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2 Automatic sequences and automatic sets of integers

In this section, we recall some basic facts about automatic sequences and automatic sets

of integers. The main reference on this topic is the book of Allouche and Shallit [7]. An

older reference is Eilenberg [20]. In [20] k-automatic sets are called k-recognizable.

2.1 Automatic sequences

Let k > 2 be an integer. An infinite sequence (an)n>0 is said to be k-automatic if an
is a finite-state function of the base-k representation of n. This means that there exists a

deterministic finite automaton with output (DFAO) taking the base-k expansion of n as

input and producing the term an as output. We say that a sequence is generated by a finite

automaton, or for short is automatic, if it is k-automatic for some k > 2.

A more concrete definition of k-automatic sequences can be given as follows. Let Ak

denote the alphabet {0, 1, . . . , k − 1}. By definition, a k-automaton is a 6-tuple

A = (Q,Ak, δ, q0,∆, τ) ,

where Q is a finite set of states, δ : Q × Ak → Q is the transition function, q0 is the

initial state, ∆ is the output alphabet and τ : Q → ∆ is the output function. For a state

q in Q and for a finite word w = w1w2 · · ·wn on the alphabet Ak, we define δ(q, w)
recursively by δ(q, w) = δ(δ(q, w1w2 · · ·wn−1), wn). Let n > 0 be an integer and

let wrwr−1 · · ·w1w0 in (Ak)
r+1

be the base-k expansion of n starting with the most

significant digit. Thus n =
∑r

i=0 wik
i := [wrwr−1 · · ·w0]k. We let w(n) denote the

word wrwr−1 · · ·w0. Then a sequence (an)n>0 is said to be k-automatic if there exists a

k-automaton A such that an = τ(δ(q0, w(n))) for all n > 0.

Example 2.1. The Thue–Morse sequence t := (tn)n>0 is probably the most famous

example of an automatic sequence. It is defined as follows: tn = 0 if the sum of the

binary digits of n is even, and tn = 1 otherwise. We thus have

t = 01101001100101 · · · .
It is easy to check that the Thue–Morse sequence can be generated by the following

finite 2-automaton: A = ({A,B}, {0, 1}, δ, A, {0, 1}, τ), where δ(A, 0) = δ(B, 1) = A,

δ(A, 1) = δ(B, 0) = B, τ(A) = 0 and τ(B) = 1.

A/0 B/1

0 0
1

1
Figure 1. A DFAO generating Thue–Morse word.

Example 2.2. Let w = (wn)n>0 be the 3-automatic sequence generated by the DFAO

represented in Figure 2. Note that though this 3-automaton has only two states, it seems

to be non-trivial to give a simple expression of wn as a function of the ternary expansion

of n.
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A/0 B/1
2

0, 2

0, 1 1

Figure 2. A DFAO generating the sequence w.

2.1.1 Morphisms of free monoids For a finite set A, we let A∗ denote the free monoid

generated by A. The empty word ε is the identity element of A∗. Let A and B be two

finite sets. A map from A to B∗ extends uniquely to a homomorphism between the free

monoids A∗ and B∗. We call such a homomorphism from A∗ to B∗ a morphism. If there

is a positive integer k such that each element of A is mapped to a word of length k, then

the morphism is called k-uniform or simply uniform. A coding is a 1-uniform morphism.

A morphism σ from A∗ to itself is said to be prolongable if there exists a letter a
such that σ(a) = aw, where the word w is such that σn(w) is a nonempty word for every

n > 0. In that case, the sequence of finite words (σn(a))n>0 converges inAω = A∗∪AN,

endowed with its usual topology, to an infinite word denoted σω(a). This infinite word

is clearly a fixed point for σ (extended by continuity to infinite words) and we say that

σω(a) is generated by the morphism σ.

For instance, the morphism τ defined over the alphabet {0, 1} by τ(0) = 01 and

τ(1) = 10 is a 2-uniform morphism that generates the Thue–Morse sequence

t = τω(0) = 01101001100101 · · · .
Uniform morphisms and automatic sequences are strongly connected, as the following

classical result of Cobham shows [15]. A notable consequence of Theorem 2.1 is that

finite automata are Turing machines that produce sequences in linear time.

Theorem 2.1 (Cobham). An infinite word is k-automatic if and only if it is the image by

a coding of a word that is generated by a k-uniform morphism.

Example 2.3. Let us consider the 3-uniform morphism ω defined over the monoid {0, 1, 2}∗
by ω(0) = 012, ω(1) = 020, and ω(2) = 021. This morphism has a unique fixed point

x = ωω(0) = 012020021012021012012 · · · .
Letting φ denote the coding that maps 0 and 1 to 0, and 2 to 1, we thus obtain that

y := y1y2 · · · := φ(x) = 001010010001010001001 · · ·
is a 3-automatic word.

Example 2.4. The word w defined in Example 2.2 is the unique fixed point generated by

the binary morphism ψ satisfying ψ(0) = 001 and ψ(1) = 010.

2.1.2 Kernels An important notion in the study of k-automatic sequences is the notion

of k-kernel. The k-kernel of a sequence a = (an)n>0 is defined as the set of subsequences

Nk(a) =
{

(akin+j)n>0 : i > 0, 0 6 j < ki
}

.
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This notion gives rise to another useful characterization of k-automatic sequences which

was first proved by Eilenberg in [20].

Theorem 2.2 (Eilenberg). A sequence is k-automatic if and only if its k-kernel is finite.

Example 2.5. The 2-kernel of the Thue–Morse sequence t has only two elements: t and

the sequence t obtained by exchanging the symbols 0 and 1 in t.

2.2 Automatic sets of integers

Another important aspect of finite automata is that they can naturally be used as a device

to recognize sets of integers.

2.2.1 Automatic subsets of N A set N ⊂ N is said to be recognizable by a finite k-

automaton, or for short k-automatic, if the characteristic sequence of N , defined by an =
1 if n ∈ N and an = 0 otherwise, is a k-automatic sequence. This means that there exists

a finite k-automaton that reads as input the base-k expansion of n and accepts this integer

(producing as output the symbol 1) if n belongs to N ; otherwise this automaton rejects

the integer n, producing as output the symbol 0.

Example 2.6. The simplest automatic sets are arithmetic progressions. Moreover, arith-

metic progressions have the very special property of being k-automatic sets for every

integer k > 2 (see Cobham’s theorem in Chapter 26).

A/0 B/1

C/0 D/0 E/0

1 0
1

0

1

1

0

0

1
0

Figure 3. A 2-DFAO recognizing the arithmetic progression 5N+ 3.

Example 2.7. The set {1, 2, 4, 8, 16, . . .} formed by the powers of 2 is also a typical

example of a 2-automatic set.

A/0 B/1 C/0
1 1

0 0 0, 1

Figure 4. A 2-DFAO recognizing the powers of 2.



74 B. Adamczewski, J. Bell

Example 2.8. In the same spirit, the set formed by taking all integers that can be ex-

pressed as the sum of at most two powers of 3 is 3-automatic (see Figure 5).

A/0 B/1

C/1 D/0

1

1
2

0 0

0 0, 1, 2

2

Figure 5. A 3-DFAO recognizing those integers that are the sum of tat most wo

powers of 3.

There are also much stranger automatic sets. For instance, the set of integers whose

binary expansion has an odd number of digits, does not contain three consecutive 1’s, and

contains an even number of two consecutive 0’s is a 2-automatic set. Furthermore, the

class of k-automatic sets is closed under various natural operations such as intersection,

union and complement. On the other hand, some classical sets of integers, such as the

set of prime numbers and the set of perfect squares, cannot be recognized by a finite

automaton (see Theorem 3.1 and [56, 49]).

2.2.2 Automatic subsets of Nd and multidimensional automatic sequences Salon [58]

extended the notion of automatic sets to include subsets of Nd, where d > 1. To describe

Salon’s construction, we let Ak denote the alphabet {0, 1, . . . , k − 1}. We then consider

an automaton

A =
(

Q,Ad
k, δ, q0,∆, τ

)

,

where Q is a finite set of states, δ : Q × Ad
k → Q is the transition function, q0 is the

initial state, ∆ is the output alphabet and τ : Q → ∆ is the output function. Just as in

the one-dimensional case, for a state q in Q and for a finite word w = w1w2 · · ·wn on

the alphabetAd
k, we recursively define δ(q, w) by δ(q, w) = δ(δ(q, w1w2 · · ·wn−1), wn).

We call such an automaton a d-dimensional k-automaton.

We identify
(

Ad
k

)∗
with the subset of (A∗

k)
d

consisting of all d-tuples (u1, . . . , ud)
such that u1, . . . , ud all have the same length. Each nonnegative integer n can be written

uniquely as

n =
∞
∑

j=0

ej(n)k
j ,

in which ej(n) ∈ {0, . . . , k−1} and ej(n) = 0 for all sufficiently large j. Let (n1, . . . , nd)
be a d-tuple of nonnegative integers and let

h := max (⌊log n1/ log k⌋, · · · , ⌊log nd/ log k⌋) ,
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that is, if ai represents the number of digits in the base-k expansion of ni, then h + 1 is

the maximum of a1, . . . , ar. We can then produce an element

wk(n1, . . . , nd) := (w1, . . . , wd) ∈
(

Ad
k

)∗

corresponding to (n1, . . . , nd) by defining

wi := eh(ni)eh−1(ni) · · · e0(ni) .
In other words, we are taking the base-k expansions of n1, . . . , nr and then “padding” the

expansions of each ni at the beginning with 0’s if necessary to ensure that each expansion

has the same length. We say that a map f : Nd → ∆ is k-automatic if there is a d-

dimensional k-automaton A =
(

Q,Ad
k, δ, q0,∆, τ

)

such that

f(n1, . . . , nd) = τ(δ(q0, wd(n1, . . . , nd))) .

Similarly, we define a k-automatic subset of Nd to be a subset S such that the character-

istic function of S, f : Nd → {0, 1}, defined by f(n1, . . . , nd) = 1 if (n1, . . . , nd) ∈ S;

and f(n1, . . . , nd) = 0, otherwise, is k-automatic.

Example 2.9. Let f : N2 → {0, 1} be defined by f(n,m) = 1 if the sum of the binary

digits of n added to the sum of the binary digits of m is even, and f(n,m) = 0 oth-

erwise. Then f(m,n) is a 2-automatic map. One can check that f can be generated

by the following 2-dimensional 2-automaton: A =
(

{A,B}, {0, 1}2, δ, A, {0, 1}, τ
)

,

where δ(A, (0, 0)) = δ(A, (1, 1)) = δ(B, (1, 0)) = δ(B, (0, 1)) = A, δ(A, (1, 0)) =
δ(A, (0, 1)) = δ(B, (0, 0)) = δ(B, (1, 1)) = B, τ(A) = 1 and τ(B) = 0.

A/1 B/0

(0, 0), (1, 1) (0, 0), (1, 1)
(0, 1), (1, 0)

(0, 1), (1, 0)

Figure 6. A DFAO generating the map f defined in Example 2.9.

Just as k-automatic sequences can be characterized by the finiteness of the k-kernel,

multidimensional k-automatic sequences have a similar characterization.

Definition 2.1. Let d be a positive integer and let ∆ be a finite set. We define the k-kernel

of a map f : Nd → ∆ to be the collection of all maps of the form

g(n1, . . . , nd) := f(kan1 + b1, . . . , k
and + bd)

where a > 0 and 0 6 b1, . . . , bd < ka.

For example, if f : N2 → {0, 1} is the map defined in Example 2.9, then the 2-kernel

of f consists of the 2 maps f1(m,n) := f(m,n), f2(m,n) = f(2m + 1, 2n). Just as

Eilenberg [20] showed that being k-automatic is equivalent to having a finite k-kernel for

k-automatic sequences, Salon [58, Theorem 1] showed that a similar characterization of

multidimensional k-automatic maps holds.
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Theorem 2.3 (Salon). Let d be a positive integer and let ∆ be a finite set. A map f :
Nd → ∆ is k-automatic if and only if its k-kernel is finite.

3 Prime numbers and finite automata

In this section, we briefly discuss some results concerning primes and finite automata.

3.1 Primes and randomness

An efficient way to produce conjectures about prime numbers comes from the so-called

Cramér probabilistic model (see [16, 64, 65]). It is based on the principle that the set

P of prime numbers behaves roughly like a random sequence, in which an integer of

size about n has—as inspired by the prime number theorem—a 1 in log n chance of be-

ing prime. Of course, this probabilistic model has some limitations: for instance prime

numbers are all odd with only one exception (see [53] for more about such limitations).

Thus the set of prime numbers should be thought of as being a hybrid set rather than

as a pseudorandom set (see the discussion in [66]). However, the Cramér model allows

one to predict precise answers concerning occurrences of large gaps between consecutive

prime numbers and concerning small gaps between primes (twin prime conjecture) and

of some special patterns in P such as arithmetic progressions (Hardy–Littlewood conjec-

tures). Some spectacular breakthrough were made recently in the two latter topics. See in

particular [26] and [25].

A consequence of this probabilistic way of thinking is that the set P should be suffi-

ciently random that it cannot be recognized by a finite automaton. This result was in fact

proved to be true by Minsky and Papert [49] in 1966.

Theorem 3.1 (Minsky and Papert). The set of prime numbers cannot be recognized by a

finite automaton.

Schützenberger [60] (also see [29]) even proved the stronger result that an automatic

set always contains infinitely many composite numbers.

Theorem 3.2 (Schützenberger). No infinite subset of the set of prime numbers can be

recognized by a finite automaton.

The intriguing question we are now left with is: how can we prove that a set of inte-

gers is not automatic? There are actually several different approaches: one can use the

k-kernel and show that it is infinite or one can use some density properties (the logarith-

mic frequency of an automatic set exists; also if an automatic set has a positive density

then it is rational). Another very efficient tool is the so-called pumping lemma, which is

recalled below. For more details about the different ways of proving that a sequence is

not automatic, we refer the reader to [7].
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Lemma 3.3 (Pumping lemma). Let N ⊂ N be a k-automatic set. Then for every suffi-

ciently large integer n in N , there exist finite words w1, w2 and w3, with |w2| > 1, such

that n = [w1w2w3]k and [w1w
i
2w3]k belong to N for all i > 1.

Sketch of proof . Let n = [arar−1 · · · a0]k be an element of N and assume that r is larger

than the number of states in the underlying automaton. By the pigeonhole principle,

there is a state that is encountered twice when reading the input a0a1 · · · ar, say just

after reading ai and aj , i < j. Then setting w1 = ar · · · aj+1, w2 = aj · · · ai+1 and

w3 = ai · · · a0, gives the result.

Proof of Theorem 3.2. Let us assume that N is an infinite k-automatic set consisting only

of prime numbers. Let p be an element of N that is sufficiently large to apply the pumping

lemma. By the pumping lemma, there exist finite words w1, w2 and w3, with |w2| > 1,

such that p = [w1w2w3]k and such that all integers of the form [w1w
i
2w3]k, with i > 1,

belong to N . However, it is not difficult to see, by using Fermat’s little theorem, that

[w1w
p
2w3]k ≡ [w1w2w3]k( mod p) and thus [w1w

p
2w3]k ≡ 0( mod p). It follows

that the integer [w1w
p
2w3]k belongs to N but is not a prime number. Hence we obtain a

contradiction.

3.2 Primes in automatic sets

We have just seen that the set of all prime numbers is not automatic. However, it is

believed that many automatic sets should contain infinitely many prime numbers. The

most basic example of such a result is the famous Dirichlet theorem.

Theorem 3.4 (Dirichlet). Let a and b be two relatively prime positive integers. Then the

arithmetic progression aN+ b contains infinitely many primes.

Note that the special case of the arithmetic progression 2N+ 1 was known by Euclid

and his famous proof that there are infinitely many prime numbers. A more complete

discussion about Dirichlet’s theorem can be found in [54]. Beyond Dirichlet’s theorem,

the more general result concerning automatic sets and prime numbers is Theorem 3.5

from [23]. Recall that an automaton is irreducible if for all pairs of states (A,B) there

is a path from A to B. Recall also that a positive integer is an r-almost prime if it is the

product of at most r prime numbers. It is well-known that results about almost-primes are

much easier to prove than those concerning primes (compare for instance Chen’s theorem

[12] with known results about the twin prime conjecture and the Goldbach conjecture).

Theorem 3.5 (Fouvry and Mauduit). Given an automatic set N ⊂ N associated with

an irreducible automaton, there exists a positive integer r such that N contains infinitely

many r-almost primes.

Theorem 3.5 is not too difficult to prove using results similar to Chen’s theorem. In

contrast, to prove that there are infinitely many primes in sparse automatic sets such as

{2n − 1, n > 1} and {2n + 1, n > 1} appears to be extremely difficult. This would

solve two long-standing conjectures about the existence of infinitely many Fermat primes

and Mersenne primes.
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3.3 A problem of Gelfond: the sum of digits of prime numbers

Given a natural number n and a base b, we let sb(n) denote the sum of the digits of n in

base b. Given two natural numbers a and m with 0 6 a < m and gcd(m, b − 1) = 1,

one can then look at the set of positive integers n such that sb(n) ≡ a (mod m). This

set is known to be recognizable by a finite b-automaton. In 1968, Gelfond [24] asked

about the collection of prime numbers that belong to this set. Theorem 3.5 implies that

such a set contains infinitely r-almost primes for some r, but until recently it was still

not known whether it contains infinitely many primes. Remarkably, Mauduit and Rivat

[46] proved a much stronger result that gives the exact proportion of primes that belong to

this automatic set. As usual with analytic number theory, the proof of their result—which

relies on strong estimates of exponential sums—is long and difficult. As an example,

an immediate corollary of the work of Mauduit and Rivat is that half of prime numbers

belong to the Thue–Morse set {1, 2, 4, 7, 8, 11, 13, . . .}.

Theorem 3.6 (Mauduit and Rivat). One has

lim
N→∞

{0 6 n 6 N,n ∈ P and s2(n) ≡ 1 ( mod 2)}
{0 6 n 6 N,n ∈ P} =

1

2
·

4 Expansions of algebraic numbers in integer bases

The decimal expansions of classical constants like
√
2, π and e appear to be very mysteri-

ous and have baffled mathematicians for a long time. Numerical observations suggest that

a complex underlying structure exists and several famous mathematicians have suggested

possible rigorous definitions to try to formalize what “complex structure” actually means

(see, for instance, [10, 50, 30]). These mathematicians were mainly influenced by notions

from probability theory, dynamical systems, or theoretical computer science. These pi-

oneering works lead us to a cluster of interesting conjectures concerning expansions of

irrational periods in integer bases. However, even some of the simplest questions one can

ask about the decimal expansions of classical irrational constants are still far out of reach.

The seminal work of Turing [67] gives rise to a rough classification of real numbers.

On one side we find computable real numbers; that is, real numbers whose binary (or more

generally base-b) expansion can be produced by a Turing machine, while on the other side

lie uncomputable real numbers which, in some sense, “evade computers.” Though most

real numbers belong to the second class (the first one being countable), classical math-

ematical constants are usually computable. Following the pioneering ideas of Turing,

Hartmanis and Stearns [30] proposed the emphasis of the quantitative aspect of the notion

of computability, and to take into account the number T (n) of operations needed by a

(multitape) Turing machine to produce the first n digits of the expansion. In this regard, a

real number is considered to be simple if its base-b expansion can be produced quickly by

a Turing machine. A general problem is then to determine where our mathematical con-

stants take place in such a classification. It is a source of challenging open questions such

as the Hartmanis–Stearns problem which asks whether there exists an irrational algebraic

number computable in linear time; that is, with T (n) = O(n).
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In 1968, Cobham [14] suggested to restrict this problem to a particular class of Turing

machines, namely to the case of finite automata. Several attempts at a resolution to this

problem are due to Cobham in 1968 [14] and to Loxton and van der Poorten [39, 40]

during the 1980s. Both of these works are based on the so-called Mahler transcendence

method [41]. The aim of this section is to give a proof, due to Adamczewski and Bugeaud

[2], of Cobham’s conjecture following a completely different approach based on a deep

Diophantine result known as the Schmidt subspace theorem.

Theorem 4.1 (Adamczewski and Bugeaud). The base-b expansion of an algebraic irra-

tional number cannot be generated by a finite automaton.

4.1 Rational approximations and transcendence of some automatic

numbers

Given an integer k > 2, a real number is said to be k-automatic if there exists an integer

b > 2 such that its base-b expansion is a k-automatic sequence.

4.1.1 Liouville’s inequality In 1844, Liouville [38] proved that transcendental numbers

exist. Moreover, he constructed explicit examples of such numbers. His approach relies

on the famous Liouville inequality recalled below.

Proposition 4.2 (Liouville’s inequality). Let ξ be an algebraic number of degree d > 2.

Then there exists a positive real number cξ such that
∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

>
cξ
qd

for every rational number p/q with q > 1.

Proof. Let P denote the minimal polynomial of ξ, let P ′ denote its derivative, and set

cξ := 1/(1 + max
|ξ−x|<1

|P ′(x)|) .

If |ξ − p/q| > 1, then our choice of cξ ensures that |ξ − p/q| > cξ/q
d.

Let us now assume that |ξ−p/q| < 1. Since P is the minimal polynomial of ξ, it does

not vanish at p/q and qdP (p/q) is a nonzero integer. Consequently,

|P (p/q)| > 1

qd
· (4.1)

Since |ξ − p/q| < 1, the mean value theorem implies the existence of a real number t in

(p/q − 1, p/q + 1) such that

|P (p/q)| = |P (ξ)− P (p/q)| =
∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

· |P ′(t)| ,

which ends the proof in view of Inequality (4.1) and the definition of cξ.
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Liouville’s inequality can be used to easily construct transcendental numbers. Indeed,

if ξ is an irrational real number such that for every integer d > 2 there exists a rational

number p/q satisfying |ξ − p/q| < q−d, then ξ is transcendental. Real numbers enjoying

this property are termed Liouville numbers. The number L below is a typical example of

Liouville number, often considered as the first example of a transcendental number.

Theorem 4.3 (Liouville). The real number

L :=

+∞
∑

n=1

1

10n!

is transcendental.

Proof of Theorem 4.3. Let j > d > 2 be two integers. Then, there exists an integer pj
such that

pj
10j!

=

j
∑

n=1

1

10n!
·

Observe that
∣

∣

∣
L − pj

10j!

∣

∣

∣
=
∑

n>j

1

10n!
<

2

10(j+1)!
<

1

(10j!)d
·

It then follows from Proposition 4.2 that L cannot be algebraic of degree less than d.

Since d is arbitrary, L is transcendental.

Adamczewski and Cassaigne [3] confirmed a conjecture of Shallit by proving that

no Liouville number can be generated by a finite automaton. In other words, there is no

automatic real number that can be proved to be transcendental by the elementary approach

described above. However, we will see in the sequel how some deep improvements of

Liouville’s inequality can be used in a similar way to prove the transcendence of automatic

numbers.

4.1.2 Roth’s theorem The following famous improvement of Liouville’s inequality was

established by Roth [57] in 1955. This result is the best possible in the sense that the

exponent 2 + ε in (4.2) cannot be lowered.

Theorem 4.4 (Roth). Let ξ be a real algebraic number and let ε be a positive real number.

Then there are only a finite number of rational numbers p/q such that q > 1 and
∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

<
1

q2+ε
· (4.2)

We give an immediate application of Roth’s theorem to the transcendence of automatic

real numbers.

Corollary 4.5. For every integer k > 3, the k-automatic real number

+∞
∑

n=1

1

10kn
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is transcendental.

Proof. Use the same argument as in the proof of Theorem 4.3.

However, Roth’s theorem gives no information on the arithmetical nature of the 2-

automatic real number
+∞
∑

n=1

1

102n
,

and indeed this number has bounded partial quotients.

Let us now consider the word w defined in Example 2.2. We associate with w the real

number

ξw :=
∑

n>0

wn

10n+1
= 0.001 001 010 001 001 010 001 · · · .

A characteristic of the number L and the numbers defined in Corollary 4.5 is that large

blocks of zeros appear in their decimal expansion much more frequently than one would

expect if the numbers we were dealing with were randomly selected. In contrast, the

decimal expansion of ξw contains no occurrence of more than three consecutive zeros.

However, the combinatorial structure ofw can be used to reveal more hidden good rational

approximations to ξw that imply the following result.

Theorem 4.6. The 2-automatic real number ξw is transcendental.

Proof. Let ψ be the binary morphism defined in Example 2.4. For every positive integer

j, set uj := ψj(0), sj := |uj | and let us consider the rational number ρj defined by

ρj := 0.uωj .

An easy computation shows that there exists an integer pj such that

ρj =
pj

10sj − 1
· (4.3)

The rational number ρj turns out to be a very good approximation to ξw. Indeed, by

definition of w, the decimal expansion of ξw begins with ψj(0)ψj(0)ψj−1(0), which is

also a prefix of uωj . Consequently, the first (2 + 1/3)sj = 7 · 3j−1 digits in the decimal

expansion of ξw and of ρj are the same. We thus obtain that

|ξw − ρj | < 10−(2+1/3)sj . (4.4)

Consequently, we infer from (4.4) and (4.3) that
∣

∣

∣

∣

ξw − pj
10sj − 1

∣

∣

∣

∣

<
1

(10sj − 1)2.3
·

Furthermore, the rational numbers ρj are all different since ψn(0) is not a prefix of the

infinite word (ψm(0))ω when n > m. It thus follows from Roth’s theorem that ξw is

transcendental.
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4.1.3 A p-adic version of Roth’s theorem The following non-Archimedean extension

of Roth’s theorem was proved in 1957 by Ridout [55]. For every prime number ℓ, we let

| · |ℓ denote the ℓ-adic absolute value, which is normalized such that |ℓ|ℓ = ℓ−1. Thus

given an integer n, we have |n|ℓ = ℓ−j where j denotes the largest integer for which ℓj

divides n.

Theorem 4.7. Let ξ be an algebraic number and ε be a positive real number. Let S be

a finite set of distinct prime numbers. Then there are only a finite number of rational

numbers p/q such that q > 1 and
(

∏

ℓ∈S

|p|ℓ · |q|ℓ
)

·
∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

<
1

q2+ε
·

We point out a first classical consequence of Ridout’s theorem.

Corollary 4.8. The real number

K :=
+∞
∑

n=1

1

102n

is transcendental.

Proof. Let j be a positive integer and let us consider the rational number ρj :=

j
∑

n=1

10−2n .

There exists an integer pj such that ρj = pj/qj with qj := 102
j

. Observe that

|K − ρj | =
∑

n>j

1

102n
<

2

102j+1
=

2

(qj)2
,

and set S := {2, 5}. An easy computation gives that
(

∏

ℓ∈S

|qj |ℓ · |pj |ℓ
)

6
∏

ℓ∈S

|qj |ℓ =
1

qj

and thus
(

∏

ℓ∈S

|qj |ℓ · |pj |ℓ
)

· |K − pj/qj | <
2

(qj)3
·

Theorem 4.7 then implies that K is transcendental.

Let us now consider the 3-automatic word y defined in Example 2.3. Let us associate

with y the real number

ξy :=
∑

n>1

yn
10n

= 0.001 010 010 001 010 001 001 · · · .

Unfortunately, the word y does not have sufficiently large initial repetitive patterns to

prove the transcendence of ξy by means of Roth’s theorem as we did in Theorem 4.6. To
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overcome this difficulty we use a trick based on Ridout’s theorem that was first introduced

by Ferenczi and Mauduit [22].

Theorem 4.9. The 3-automatic real number ξy is transcendental.

Proof. For every integer j > 0, set uj := φ(ωj(012020)), vj := φ(ωj(021012)), rj :=
|uj | and sj := |vj |. Let us also consider the rational number ρj defined by

ρj := 0.ujv
ω
j .

An easy computation shows that there exists an integer pj such that

ρj =
pj

10rj (10sj − 1)
· (4.5)

On the other hand, one can check that y begins with the word

φ(ωj(0120200210120210120)) = ujvjvjφ(ω
j(0)) .

Since φ(ωj(0)) is a prefix of vj , we obtain that the first rj + 2sj + |φ(ωj(0))| = 19 · 3j
digits in the decimal expansion of ξy and of ρj are the same. We thus have

|ξy − ρj | <
1

1019·3j
· (4.6)

Note that we obtain very special rational approximations to ξy: their denominators

can be divided by a very large power of 10. More precisely, letting S := {2, 5}, we have

∏

ℓ∈S

|10rj (10sj − 1)|ℓ =
1

10rj
=

1

106·3j
· (4.7)

Set qj := 10rj (10sj − 1). We infer from (4.5), (4.6) and (4.7) that
(

∏

ℓ∈S

|pj |ℓ · |qj |ℓ
)

·
∣

∣

∣

∣

ξy −
pj
qj

∣

∣

∣

∣

<
1

1025·3j
, (4.8)

for every positive integer j. Since qj < 10rj+sj = 1012·3
j

, we deduce from (4.8) that
(

∏

ℓ∈S

|pj |ℓ · |qj |ℓ
)

·
∣

∣

∣

∣

ξy −
pj
qj

∣

∣

∣

∣

<
1

q
2+1/12
j

,

for every integer j large enough. On the other hand, it can be shown that the word y is

not eventually periodic, which implies that the set of rational numbers {pj/qj : j > 1}
is infinite. It thus follows from Theorem 4.7 that ξy is transcendental, concluding the

proof.

4.2 The Schmidt subspace theorem and a proof of Cobham’s

conjecture

A wonderful multidimensional generalization of Roth’s theorem was obtained by Schmidt

in the early 1970s (see [59]). It is now referred to as the Schmidt subspace theorem or,
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for short, as the subspace theorem. We state below a heavily simplified p-adic version of

this theorem. However, Theorem 4.10 turns out to be strong enough for our purpose.

Theorem 4.10. Let m > 2 be an integer and ε be a positive real number. Let S be a

finite set of distinct prime numbers. Let L1, . . . , Lm be m linearly independent (over the

field of algebraic numbers) linear forms with real algebraic coefficients. Then the set of

solutions x = (x1, . . . , xm) in Zm to the inequality
(

m
∏

i=1

∏

ℓ∈S

|xi|ℓ
)

·
m
∏

i=1

|Li(x)| 6 (max{|x1|, . . . , |xm|})−ε

lies in finitely many proper vector subspaces of Qm.

Let us note that Roth’s theorem easily follows from Theorem 4.10. Let 0 < ξ < 1 be

a real algebraic number and let ε be a positive real number. Consider the two independent

linear forms ξX−Y andX . Choosing S = {∅}, Theorem 4.10 implies that all the integer

solutions (p, q) to

|q| · |qξ − p| < |q|−ε (4.9)

are contained in a finite union of proper vector subspaces of Q2. There thus is a finite set

of equations x1X + y1Y = 0, . . . , xtX + ytY = 0 such that, for every solution (p, q) to

(4.9), there exists an integer k with xkp+ykq = 0. This means that there are only finitely

many rational solutions to |ξ−p/q| < |q|−2−ε, which immediately gives Roth’s theorem.

Proof of Theorem 4.1. Let 0 < ξ < 1 be an automatic irrational real number. Then there

is an integer base b > 2 such that the base-b expansion of ξ is a k-automatic word for

some integer k > 2. Let a denote the base-b expansion of ξ.

By Theorem 2.1, there exist a coding ϕ from an alphabet A = {1, 2, . . . , r} to the

alphabet {0, 1, . . . , b− 1} and a k-uniform morphism σ from A into itself such that

a = ϕ(u) ,

where u is a fixed point of σ. By the pigeonhole principle, the prefix of length r + 1 of

u can be written in the form w1cw2cw3, where c is a letter and w1, w2, w3 are (possibly

empty) finite words.

For every integer j > 1, set uj = ϕ(σj(w1)), vj = ϕ(σj(cw2)) and v′j = ϕ(σj(c)).
Since σ is a k-uniform morphism and ϕ is a coding, we get that

|uj | = s · kj , |vj | = t · kj and |v′j | = kj ,

where s := |u1| and t := |v1|. Thus the base-b expansion of ξ begins with the word

ujvjv
′
j , that is,

ξ = 0.ujvjv
′
j · · · .

Let ρj be the rational number whose base-b expansion is the infinite word ujv
ω
j , that is,

ρj = 0.ujv
ω
j .

A simple computation shows that there exists an integer pj such that

ρj =
pj

bs·kj (bt·kj − 1)
·
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Since ρj and ξ have the same first (s+ t+ 1) · kj digits, we have

|ξ − ρj | <
1

b(s+t+1)·kj ·

Henceforth, we assume that ξ is an algebraic number, and we will reach a contradic-

tion. Consider the three linearly independent linear forms with real algebraic coefficients:

L1(X1, X2, X3) = ξX1 − ξX2 −X3 ,
L2(X1, X2, X3) = X1 ,
L3(X1, X2, X3) = X2 .

For j > 1, evaluating them on the integer triple

xj := (x
(j)
1 , x

(j)
2 , x

(j)
3 ) := (b(s+t)·kj

, bs·k
j

, pj) ,

we obtain that

3
∏

i=1

|Li(xj)| 6 b(2s+t−1)·kj

. (4.10)

On the other hand, letting S be the set of prime divisors of b, we get that

3
∏

i=1

∏

ℓ∈S

|x(j)i |ℓ 6
∏

ℓ∈S

|b(s+t)·kj |ℓ ·
∏

ℓ∈S

|bs·kj |ℓ = b−(2s+t)·kj

. (4.11)

Combining (4.10) and (4.11), we get that

(

3
∏

i=1

∏

ℓ∈S

|x(j)i |ℓ
)

·
3
∏

i=1

|Li(xj)| 6 b−kj

.

Set ε = 1/(s+ t). We thus obtain

(

3
∏

i=1

∏

ℓ∈S

|x(j)i |ℓ
)

·
3
∏

i=1

|Li(xj)| 6
(

max{b(s+t)·kj

, bs·k
j

, pj}
)−ε

,

for every positive integer j.
We then infer from Theorem 4.10 that all integer points xj lie in a finite number of

proper vector subspaces of Q3. Thus there exist a nonzero integer triple (z1, z2, z3) and

an infinite set of distinct positive integers J such that

z1b
(s+t)·kj

+ z2b
s·kj

+ z3pj = 0 , (4.12)

for every j in J . Recall that pj/b
(s+t)·kj

tends to ξ when j tends to infinity. Dividing

(4.12) by b(s+t)·kj

and letting j tend to infinity along J , we get that ξ is a rational number

since (z1, z2, z3) is a nonzero triple. This provides a contradiction.
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5 The Skolem-Mahler-Lech theorem in positive

characteristic

5.1 Zeros of linear recurrences over fields of characteristic zero

The Skolem-Mahler-Lech theorem is a celebrated result which describes the set of solu-

tions in n to the equation a(n) = 0, where a(n) is a sequence satisfying a linear recur-

rence over a field of characteristic 0. We recall that if K is a field and a(n) is a K-valued

sequence, then a(n) satisfies a linear recurrence over K if there exists a natural number

d and values c1, . . . , cd ∈ K such that

a(n) =

d
∑

i=1

cia(n− i)

for all sufficiently large values of n. The zero set of the linear recurrence a is defined by

Z(a) := {n ∈ N : a(n) = 0} .

Theorem 5.1 (Skolem-Mahler-Lech). Let a be a linear recurrence over a field of charac-

teristic 0. Then Z(a) is a union of a finite set and a finite number of arithmetic progres-

sions.

This theorem was first proved for linear recurrences over the rational numbers by

Skolem [63]. It was next proved for linear recurrences over the algebraic numbers by

Mahler [42]. The version above was proven first by Lech [35] and later by Mahler [43],

[44]. This history of this theorem can be found in the book by Everest van der Poorten,

Shparlinski, and Ward [21]. The techniques used by Lech to prove the Skolem-Mahler-

Lech theorem are a modification of a method first used by Skolem [63]. The idea of the

proof is to first note that it is no loss of generality to assume that K is a finitely generated

extension of Q. We can then embed K in a p-adic field Qp for some prime p. One can then

show that there exists a natural number a such that for each i = 0, . . . , a − 1, there is a

p-adic analytic map θi on Zp such that θi(n) = f(an+i) for all sufficiently large positive

integers n ∈ N. If f(an+ i) is zero for infinitely many natural numbers n, then the map

θi has infinitely many zeros in Zp. Since an analytic function cannot have infinitely many

zeros in a compact subset of its domain of convergence unless that function is identically

zero, this implies that either f(an + i) = 0 for all n sufficiently large, or there are only

finitely many n for which f(an+ i) = 0, which gives the result.

There are many different proofs and extensions of the Skolem-Mahler-Lech theorem

in the literature [9, 28, 68, 21]. These proofs all use p-adic methods in some way, al-

though the result is valid in any field of characteristic 0. A well-known aspect of Theorem

SML is that it is an ineffective result. Indeed, it is still an open problem whether the set

Z(a) can always be determined for a given linear recurrence a(n) defined over a field of

characteristic 0 (see the discussions in [21] and [66]). In particular, it is still unknown

whether the fact that Z(a) is empty or not is a decidable question.
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5.2 Zeros of linear recurrences over fields of positive characteristic

5.2.1 Pathological examples over fields of positive characteristic It is interesting to

note that the Skolem-Mahler-Lech theorem does not hold for fields K of positive charac-

teristic. The simplest counter-example was given by Lech [35]. Let p be a prime and let

K = Fp(t) be the field of rational functions in one variable over Fp. Let

a(n) := (1 + t)n − tn − 1 .

It is easy to check that a(n) satisfies the recurrence

a(n)− (2 + 2t)a(n− 1) + (1 + 3t+ t2)a(n− 2)− (t+ t2)a(n− 3) = 0

for n > 3. On the other hand, we have

a(pj) = (1 + t)p
j − tp

j − 1 = 0

and a(n) 6= 0 if n is not a power of p, and so we have

Z(a) = {1, p, p2, p3, . . .} .

In fact, there are even more pathological examples, which show that the correct ana-

logue of the Skolem-Mahler-Lech theorem in positive characteristic is much more subtle.

For example, consider the sequence a(n) in F2(x, y, z) defined by

a(n) := (x+ y + z)n − (x+ y)n − (x+ z)n − (y + z)n + xn + yn + zn .

We note that if V denotes the K-vector space consisting of all K-valued sequences

and S : V → V is the “shift” linear operator that sends a sequence a(1), a(2), . . . to the

sequence 0, a(1), a(2), . . ., then a(n) satisfies a linear recurrence if and only if there is

a nonzero polynomial P (t) with coefficients in K such that when P (S) is applied to the

sequence a(n) we obtain a sequence whose terms are eventually zero. Then one can see

that the operator

(1− (x+ y + z)S)(1− (x+ y)S)(1− (y + z)S)(1− xS)(1− yS)(1− zS)

sends the sequence a(n) to a sequence whose terms are eventually zero.

We claim that the zero set of a(n) is precisely all natural numbers n of the form 2i+2j

or of the form 2i. To see this, observe that a(2i) = 0 follows simply from the fact that

(b + c)2
i

= b2
i

+ c2
i

for elements b and c in a field of characteristic 2. To check that

a(2i + 2j) = 0 we note that

G(x1, y1, z1;x2, y2, z2) := (x1 + y1 + z1)(x2 + y2 + z2)

− (x1 + y1)(x2 + y2)− (x1 + z1)(x2 + z2)

− (y1 + z1)(y2 + z2) + x1x2 + y1y2 + z1z2

is identically zero in every field. Notice that if c1, c2, c3 ∈ F2 then

(c1x+ c2y + c3z)
2i+2j = (c1x

2i + c2y
2i + c3z

2i)(c1x
2j + c2y

2j + c3z
2j ) .

Hence

a(2i + 2j) = G(x2
i

, y2
i

, z2
i

;x2
j

, y2
j

, z2
j

) = 0 .
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On the other hand, if n is not a power of 2 or of the form 2i + 2j , then we can write

n = 2i + 2j + 2km where i > j, 2j > 2km and m is an odd positive integer. Note that

(x+ y + z)n = (x+ y + z)2
i

(x+ y + z)2
j
(

(x+ y + z)2
k
)m

= (x2
i

+ y2
i

+ z2
i

)(x2
j

+ y2
j

+ z2
j

)(x2
k

+ y2
k

+ z2
k

)m .

Consider the coefficient of x2
i

y2
j

z2
km in (x+ y + z)n. The only way to get this term is

to take x2
i

from the first term in the product, y2
j

from the second term, and z2
km from

the third term. Hence the coefficient is 1. Since (x+ y+ z)n is the only term in a(n) that

has monomials of the form xbyczd with b, c, d > 0 appearing, we see that a(n) is nonzero

if the binary expansion of n has more than two 1’s.

5.2.2 Derksen’s theorem We now give a remarkable result due to Derksen [17]. We

have seen that the zero set of a linear recurrence in a field of characteristic p > 0 is

often more pathological than in characteristic zero. At the same time, in our pathological

examples, the base-p expansion of a number n gives insight into whether the nth term of

our linearly recurrent sequence vanishes. In fact, Derksen [17] shows that the zero set of

a linearly recurrent sequence can always be described in terms of automata.

Theorem 5.2 (Derksen). Let a be a linear recurrence over a field of characteristic p.

Then the set Z(a) is a p-automatic set.

Derksen gives a further refinement of this result; however the main ingredient of his

proof is the fact that the zero set is p-automatic. Furthermore, each step in Derksen’s

proof can be made effective!

We prove an extension of Derksen’s result for algebraic power series in several vari-

ables in the next section. To explain the connection between Derksen’s result and power

series, we recall the following classical result.

Proposition 5.3. Let K be a field and let a(n) be a K-valued sequence. The following

conditions are equivalent.

(i) The sequence a(n) satisfies a linear recurrence over K.

(ii) There is a natural number d, a matrixA ∈Md(K), and vectors v and w in Kd such

that a(n) = wTAnv.

(iii)
∑

n>0 a(n)t
n is the power series expansion of a rational function in K(t).

Proof. (i) =⇒ (ii). Suppose that a(n) satisfies a linear recurrence

a(n) :=

d
∑

j=1

cja(n− j)

for all n > d. We let

v(i) := [a(i) a(i+ 1) · · · a(i+ d− 1)]T

and

w := [1 0 0 · · · 0]T .
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Finally, we let

A :=















0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

. . . · · ·
...

0 0 0 · · · 0 1
cd cd−1 cd−2 cd−3 · · · c1















.

Then one easily sees that v(i + 1) = Av(i) and so wTAnv = a(n), where v = v(0).
Thus (i) implies (ii).

(ii) =⇒ (iii). Set

f(t) :=
∞
∑

n=0

(wTAnv)tn .

By the Cayley-Hamilton theorem, A satisfies a polynomial Ad +
∑d−1

j=0 cjA
j = 0 and

hence

wTAn+dv +

d−1
∑

j=0

cjw
TAj+nv = 0

for all n. It follows that f(t)(1 +
∑d−1

j=0 cjt
d−j) is a polynomial in t and so f(t) is the

power series expansion of a rational function.

(iii) =⇒ (i). Suppose that f(t) =
∑∞

n=0 a(n)t
n is the power series expansion of a

rational function P (t)/Q(t) with P (t) and Q(t) polynomials and Q(t) nonzero. We may

assume that Q(0) = 1. We write Q(t) = 1 +
∑d

j=1 cjt
j . Then P (t) = f(t)Q(t) and so

a(n)+
∑d

j=1 cja(n− j) = 0 for all n larger than the degree of P (t). It follows that a(n)
satisfies a linear recurrence.

5.3 Vanishing coefficients of algebraic power series

In light of Proposition 5.3, we may interpret Derksen’s result as a statement about the

zero coefficients of the power series expansion of a rational power series over a field

of characteristic p > 0. In this section, we show that this interpretation gives rise to a

far-reaching generalization of Derksen’s result.

We first note that rational power series are a subset of algebraic power series (choosing

m = 1 in the definition below).

Definition 5.1. Let K be a field. We say that a power series

f(t) =

∞
∑

n=0

a(n)tn ∈ K[[t]]

is algebraic if it is algebraic over the field of rational functions K(t), that is, if there exists

a natural number m and polynomials A0(t), . . . , Am(t) ∈ K[t], with Am(t) nonzero,

such that
m
∑

j=0

Aj(t)f(t)
j = 0 .
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More generally, we say that f(t1, . . . , td) ∈ K[[t1, . . . , td]] is algebraic if there exist

polynomials A0, . . . , Am ∈ K[t1, . . . , td], not all zero, such that

m
∑

j=0

Aj(t1, . . . , td)f(t1, . . . , td)
j = 0 .

Given a multivariate power series f(t1, . . . , td) =
∑

n1,...,nd
an1,...,nd

tn1

1 · · · tnd

d ∈
K[[t1, . . . , td]], we let Z(f) denote the set of vanishing coefficients, that is,

Z(f) = {(n1, . . . , nd) ∈ Nd : an1,...,nd
= 0} .

It is interesting to note that the Skolem-Mahler-Lech theorem in characteristic 0 has

no analogue for multivariate rational functions. For instance,

f(t1, t2) =
∑

m,n

(2m − n2)tm1 t
n
2

is a bivariate rational power series in Q[[t1, t2]] with

Z(f) = {(m,n) : m ≡ 0 (mod 2), n = 2m/2} .
Thus we cannot expect the zero set to be given in terms of arithmetic progressions or even

in terms of finite automata.

To see some of the complexities that can occur in the multivariate case, consider the

power series

f(t1, t2) =
∑

m,n>0

(3m − 2n − 1)tm1 t
n
2 .

We see that

f(t1, t2) = (1− 3t1)
−1(1− t2)

−1 − (1− t1)
−1(1− 2t2)

−1 − (1− t1)
−1(1− t2)

−1,

and so it is a rational power series. On the other hand, the coefficient of tm1 t
n
2 is zero if

and only if 3m = 2n + 1. It is now known that this occurs only when (m,n) is (2, 3) or

(1, 1), due to Mihăilescu’s solution to Catalan’s conjecture [48]. In general, finding the

zero set often involves difficult diophantine problems.

Remarkably, in positive characteristic an analogue of Derksen’s result holds for mul-

tivariate rational power series, as shown in [1]—in fact it even holds for multivariate

algebraic power series! In the sequel of this chapter, we will use n and j to represent,

respectively, the d-tuple of natural numbers (n1, . . . , nd) and (j1, . . . , jd). We will also

let tn denote the monomial tn1

1 · · · tnd

d .

Theorem 5.4 (Adamczewski and Bell). Let K be a field of characteristic p > 0 and let

f(t) ∈ K[[t]] be the power series expansion of an algebraic function over K(t). Then

Z(f) is a p-automatic subset of Nd.

We note that this immediately implies Theorem 5.2 by taking d = 1 and taking f(t)
to be a rational function. On the other hand, by taking K to be a finite field, Theorem

5.4 reduces to the difficult part of the multivariate version of Christol’s theorem (see

Theorem 6.2). As with Derksen’s proof, it seems that Theorem 5.4 can be made effective.
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Furthermore, given any p-automatic set N in Nd, N is the zero set of the power series
∑

n 6∈N tn ∈ Fp((t)) which is known to be algebraic over Fp(t) by Theorem 6.2. At this

level of generality, we thus have a nice correspondence between p-automatic sets and the

zero set of algebraic multivariate functions over fields of characteristic p.

5.3.1 Proof of Theorem 5.4 In order to prove this result we need to introduce some

notation.

Let p be a prime number and let d be a natural number. For each j = (j1, . . . , jd) ∈
{0, 1, . . . , p− 1}d, we define ej : N

d → Nd by

ej(n1, . . . , nd) := (pn1 + j1, . . . , pnd + jd) . (5.1)

We let Σ denote the semigroup generated by the collection of all ej under composition.

Remark 5.5. Note that if ∆ is a finite set, then f : Nd → ∆ is p-automatic if and only

the set of functions {f ◦ e : e ∈ Σ} is a finite set.

We also recall that a field K of characteristic p > 0 is perfect if the map x 7→ xp is

surjective on K. Let p be a prime number and let K be a perfect field of characteristic p.

For a power series f(t) :=
∑

n∈Nd a(n)tn ∈ K[[t]], we define

Ej(f(t)) :=
∑

n∈Nd

(a ◦ ej(n))1/ptn (5.2)

for j ∈ {0, 1, . . . , p − 1}d. We let Ω denote the semigroup generated by the collection

of Ej under composition. We let Ω(f) denote the K-vector space spanned by all power

series of the form E ◦ f with E ∈ Ω. We note that if g ∈ Ω(F ) then E ◦ g ∈ Ω(f) for all

E ∈ Ω.

A theorem of Sharif and Woodcock [62] gives a concrete characterization of the alge-

braic power series over a perfect field of positive characteristic.

Theorem 5.6 (Sharif and Woodcock). Let p be a prime number and let K be a perfect

field of characteristic p. A power series f(t) ∈ K[[t]] is algebraic if and only if Ω(f) is a

finite-dimensional K-vector space.

One can rephrase the theorem of Sharif and Woodcock in terms of the coefficients of

an algebraic power series.

Lemma 5.7. Let p be a prime number, let K be a perfect field of characteristic p, and let

a : Nd → K be a sequence with the property that

f(t) :=
∑

n∈Nd

a(n)tn ∈ K[[t]]

is a nonzero algebraic function over K(t). Then there exists a natural number m and

there exist maps a1, . . . , am : Nd → K with the following properties.

(i) The formal power series fi(t) :=
∑

n∈Nd ai(n)t
n, 1 6 i 6 m, form a basis of

Ω(f) as a K-vector space.
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(ii) f1 = f .
(iii) If b : Nd → K has the property that g(t) :=

∑

n∈Nd b(n)tn belongs to Ω(f), then

b ◦ ej ∈ K ap1 + · · ·+K apm for every j ∈ {0, . . . , p− 1}d .

Proof. Since f(t) is algebraic, dimK(Ω(f)) is finite by Theorem 5.6. We can thus pick

maps a1, . . . , am : Nd → K such that the m power series fi(t) :=
∑

n∈Nd ai(n)t
n form

a basis of Ω(f), and with f1 = f . Let b : Nd → K be such that g(t) :=
∑

n∈Nd b(n)tn

belongs to Ω(f). Observe that the power series g can be decomposed as

g(t) =
∑

j∈{0,...,p−1}d

tjEj(g(t))
p . (5.3)

By assumption, Ej(g(t)) ∈ K f1(t) + · · ·+K fm(t) and hence Ej(g(t))
p ∈ K f1(t)

p +
· · · + K fm(t)p. Let j ∈ {0, 1, . . . , p − 1}d. Considering the coefficient of tpn+j in

Equation (5.3), we see that b ◦ ej(n) is equal to the coefficient of tpn in Ej(g(t))
p, which

belongs to K a1(n)
p + · · ·+K am(n)p.

Before proving Theorem 5.4, we first fix a few notions. Given a finitely generated field

extension K0 of Fp, we let K
〈p〉
0 denote the subfield consisting of all elements of the form

xp with x ∈ K0. Given Fp-vector subspaces V and W of K0 we let VW denote the Fp-

subspace of K0 spanned by all products of the form vw with v ∈ V,w ∈W . We let V 〈p〉

denote the Fp-vector subspace consisting of all elements of the form vp with v ∈ V . We

note that since K0 is a finitely generated field extension of Fp, K0 is a finite-dimensional

K
〈p〉
0 -vector space. If we fix a basis

K0 =

r
⊕

i=1

K
〈p〉
0 hi

then we have projections π1, . . . , πr : K0 → K0 defined by

x =

r
∑

i=1

πi(x)
phi . (5.4)

Remark 5.8. For 1 6 i 6 r and a, b, c ∈ K0 we have

πi(c
pa+ b) = cπi(a) + πi(b) .

The last ingredient of the proof is a technical (but very useful) result due to Derksen,

which we state here without proof.

Proposition 5.9 (Derksen). Let K0 be a finitely generated field extension of Fp and let

π1, . . . , πr : K0 → K0 be as in Equation (5.4). Let V be a finite-dimensional Fp-vector

subspace of K0. Then there exists a finite-dimensional Fp-vector subspace W of K0

containing V such that πi(WV ) ⊆W for 1 6 i 6 r.

Proof of Theorem 5.4. By enlarging K if necessary, we may assume that K is perfect. By

Lemma 5.7 we can find maps a1, . . . , am : Nd → K with the following properties.

(1) the power series fi(t) :=
∑

n∈Nd ai(n)t
n, 1 6 i 6 m, form a basis for Ω(f).



Automata in number theory 93

(2) f1 = f .

(3) If b : Nd → K has the property that g(t) :=
∑

n∈Nd b(n)tn belongs to Ω(f), then

b ◦ ej ∈ K ap1 + · · ·+K apm for every j ∈ {0, . . . , p− 1}d.

In particular, given 1 6 i 6 m and j ∈ {0, 1, . . . , p − 1}d, there are elements λ(i, j, k),
1 6 k 6 m, such that

ai ◦ ej =
m
∑

k=1

λ(i, j, k)apk . (5.5)

Since f1, . . . , fm are algebraic power series, there exists a finitely generated field exten-

sion of Fp such that all coefficients of f1, . . . , fm are contained in this field extension. It

follows that the subfield K0 of K generated by the coefficients of f1(t), . . . , fm(t) and

all the elements λ(i, j, k) is a finitely generated field extension of Fp.

Since K0 is a finite-dimensional K
〈p〉
0 -vector space, we can fix a basis {h1, . . . , hr} of

K0, that is,

K0 =

r
⊕

i=1

K
〈p〉
0 hi .

Then we have projections π1, . . . , πr : K0 → K0 defined by

c =

r
∑

i=1

πi(c)
phi . (5.6)

We let V denote the finite-dimensional Fp-vector subspace of K0 spanned by the elements

λ(i, j, k), 1 6 i, k 6 m and j ∈ {0, 1, . . . , p− 1}d, and by 1. By Equation (5.5), we have

ai ◦ ej ∈
m
∑

k=1

V apk , (5.7)

for 1 6 i 6 m and j ∈ {0, 1, . . . , p − 1}d. By Proposition 5.9 there exists a finite-

dimensional Fp-vector subspace W of K0 containing V such that πi(WV ) ⊆ W for

1 6 i 6 r. Set

U :=Wa1 + · · ·+Wam ⊆ {b : b : Nd → K0} .
We note that CardU 6 (CardW )m < ∞. Note also that if ℓ ∈ {1, . . . , r}, i ∈
{1, . . . ,m}, and j ∈ {0, 1, . . . , p− 1}d then by Equation (5.7) and Remark 5.8 we have

πℓ(Wai ◦ ej) ⊆ πℓ(WV ap1 + · · ·+WV apm) ⊆
m
∑

k=1

πℓ(WV )ak

⊆
m
∑

k=1

Wak = U .

Thus by Remark 5.8, if b ∈ U and j ∈ {0, 1, . . . , p − 1}d, then bℓ := πℓ(b ◦ ej) ∈ U for

1 6 ℓ 6 r. In particular, b(pn+ j) = 0 if and only if b1(n) = b2(n) = · · · = br(n) = 0.

Given b : Nd → K0, we let χb : N
d → {0, 1} be defined by

χb(n) =

{

0, if b(n) 6= 0

1, if b(n) = 0 .
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Set

S := {χb1 · · ·χbt : t > 0, b1, . . . , bt ∈ U}.
We note that since χ2

b = χb for all b ∈ U and U is finite, S is finite. Note that if b ∈ U
and j ∈ {0, 1, . . . , p − 1}d, then bℓ := πℓ(b ◦ ej) ∈ U for 1 6 ℓ 6 r. By the above

remarks,

(χb ◦ ej)(n) =
r
∏

ℓ=1

χbℓ(n) ,

and so we see that if χ ∈ S then χ ◦ e ∈ S for all e ∈ Σ. Since S is finite, this proves that

χ : Nd → {0, 1} is p-automatic. In particular, since a(n) = a1(n) ∈ U , we obtain that

χa is p-automatic. In other words, the set of n ∈ Nd such that a(n) = 0 is a p-automatic

set. This ends the proof.

6 The algebraic closure of Fp(t)

6.1 Christol’s theorem

One of the most beautiful results in the theory of automatic sequences is Christol’s the-

orem, which characterizes those Laurent series with coefficients in a finite field that are

algebraic over the field of rational functions.

Theorem 6.1 (Christol). Let K be a finite field of characteristic p > 0. Then f(t) =
∑∞

n>0 a(n)t
n ∈ K((t)) is algebraic over K(t) if and only if the sequence a(n) is p-

automatic.

Christol’s theorem consists of two parts: the “easy” direction in which one shows that

if the sequence of coefficients of a Laurent series is p-automatic, then the Laurent series

is algebraic, and the “hard” direction in which one must show that the coefficients of an

algebraic Laurent series form a p-automatic sequence. The hard direction is generally

proved using Ore’s lemma, which is the observation that if f(t) is algebraic over a field

K(t), then the set {f, fp, fp2

, . . .} is linearly dependent over K(t). Christol’s theorem

was generalized to multivariate Laurent series by Salon [58].

Theorem 6.2 (Salon). Let K be a finite field of characteristic p > 0. Then f(t) =
∑

n∈Nd a(n)tn ∈ K((t)) is algebraic if and only if the sequence a(n) is p-automatic.

Salon’s theorem turns out to be a special case of Theorems 5.6 and 5.4.

Proof of Theorem 6.2. We suppose first that a : Nd → K is p-automatic and we consider

the power series

f(t) :=
∑

n∈Nd

a(n)tn .

Using the notation of Equations 5.1 and 5.2, we infer from Remark 5.5 that there are only

finitely many distinct functions of the form a◦e where e runs over Σ. Consequently, there
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are only finitely many functions of the form E ◦ f where E runs over Ω. Thus Ω(f) is

finite-dimensional and Theorem 5.6 implies that f(t) is algebraic.

We next suppose that f(t) is algebraic and let c ∈ K. Since f(t) is algebraic, then

so is f(t) − c and by Theorem 5.4 the set Sc of d-tuples of natural numbers n such that

a(n)−c = 0 is p-automatic. It follows that the sequence ac : N
d → K given by ac(n) = 1

if n ∈ Sc and ac(n) = 0 otherwise is p-automatic. Thus a(n) =
∑

c∈K cac(n) is also

p-automatic, as p-automatic sequences taking values in a field are closed under the taking

of finite sums and scalar multiplication.

While Christol’s theorem gives a concrete description of the elements of Fq((t)) that

are algebraic over Fq(t), it does not give the whole picture. As Kedlaya [32] points out,

the field Fq((t)) is far from being algebraically closed. Indeed, for an algebraically closed

field K of characteristic 0, a classical result of Puiseux is that the field

∞
⋃

i=1

K((t1/i))

is itself algebraically closed and contains, in particular, the algebraic closure of K(t).
However, over field of positive characteristic, the situation is more subtle. In particular,

the algebraic closure of Fq((t)) is much more complicated to describe, due to the exis-

tence of wildly ramified field extensions. For instance, Chevalley remarked [13] that the

Artin-Schreier polynomial xp−x−1/t does not split in the Puiseux field

+∞
⋃

n=1

Fq((t
1/n)).

6.2 Generalized power series

It turns out that the appropriate framework to describe the algebraic closure of Fp(t) is

provided by the fields of generalized power series Fq((t
Q)) introduced by Hahn [27]. We

briefly describe this construction.

We recall that a subset S of a totally ordered group is said to be well-ordered if every

nonempty subset of S has a minimal element or, equivalently, if there is no infinite de-

creasing sequence within S. Given a commutative ring R and a totally ordered Abelian

group G we construct a commutative ring, which we denote R((tG)), which is defined to

be the collection of all elements of the form

f(t) :=
∑

α∈G

rαt
α

which satisfy the following conditions.

(i) rα ∈ R for all α ∈ G.

(ii) The support of f(t) is well ordered, that is, the subset {α : rα 6=0R} is a well-

ordered set.

Addition and multiplication are defined via the rules
∑

α∈G

rαt
α +

∑

α∈G

sαt
α =

∑

α∈G

(rα + sα)t
α
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and
(

∑

α∈G

rαt
α

)(

∑

α∈G

sαt
α

)

=
∑

α∈G

∑

β∈G

(rβsα−β)t
α .

We note that the fact that the supports of valid series expansions are well-ordered means

that no problems with possible infinite sums appearing in the expression for the coeffi-

cients in a product of two generalized power series will occur. We call the ring R((tG))
the ring of generalized power series over R with exponents in G.

We recall that a group is divisible if for every g ∈ G and n > 1, there exists some

h ∈ G such that hn = g. For an algebraically closed field K and a totally ordered

divisible Abelian group G, the field K((tG)) is known to be algebraically closed [31] (see

also [32, 61]). In what follows, we will only consider the particular case of the divisible

group Q and of a finite field Fq (q being a power of a prime p).

We then have the series of containments

Fq(t) ⊂ Fq((t)) ⊂ Fq((t
Q)) .

Though Fq((t
Q)) is not algebraically closed, it is sufficient for our purpose to consider

such fields. Indeed, taking
⋃

n>1 Fpn as an algebraic closure of Fp, it follows from the

remark above that the field
(
⋃

n>1 Fpn

)

((tQ)) is algebraically closed. For example, the

Artin-Schreier polynomial xp−x−1/t does split in Fp((t
Q)). Indeed, we can check that

the generalized power series

c +
∞
∑

i=1

t−1/pi

, c ∈ Fp ,

are the roots of this polynomial.

6.3 Kedlaya’s theorem

Kedlaya [32] considered whether one can, as in Christol’s theorem, give an automaton-

theoretic characterization of the elements of Fq((t
Q)) that are algebraic over Fq(t). The

work of Kedlaya [33] is thus precisely devoted to a description of the algebraic closure of

Fp(t) as a subfield of generalized power series. For this purpose, Kedlaya introduces the

notion of a p-quasi-automatic function over the rational numbers.

Kedlaya uses automata to produce power series whose exponents take values in the

rational numbers. Hence it is necessary to create automata which accept rational numbers

as opposed to just accepting integers. We now explain how Kedlaya does this.

Let k > 1 be a positive integer. We set

Σ′
k = {0, 1, . . . , k − 1, •}

and we let L(k) denote the language on the alphabet Σ′
k consisting of all words on Σ′

k

with exactly one occurrence of the letter ‘•’ (the radix point) and whose first and last

letters are not equal to 0. This is a regular language [33, Lemma 2.3.3]. We let Sk denote
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the set of nonnegative k-adic rationals, that is,

Sk = {a/kb : a, b ∈ Z, a > 0} .
We note that there is a bijection [ · ]k : L(k) → Sk given by

s1 · · · si−1 •si+1 · · · sn ∈ L(k) 7→
i−1
∑

j=1

sjk
i−1−j +

n
∑

j=i+1

sjk
i−j ,

where s1, . . . , si−1, si+1, . . . , sn ∈ {0, 1, . . . , k−1}. So, for example, we have [110•32]4 =
[20•875]10 = 167/8. We also note that the fact that we exclude strings whose initial and

terminal letters are 0 means that we have the awkward looking expression [ • ]k = 0.

Definition 6.1. We say that a map h : Sk → ∆ is k-automatic if there is a finite state

machine which takes words on Σ′
k as input such that for each W ∈ Lk, h([W ]k) is

generated by the machine using the word W as input.

Since the support of a generalized power series is well-ordered, we need a more gen-

eral notion of automatic functions defined over the set of rationals. For this purpose, we

always implicitly consider sets ∆ containing a special element called zero, which we let

0 denote (of course, when ∆ is a subset of R or N, or if it denotes a finite field, zero will

preserve its usual meaning). Then we will talk about functions h : Q → ∆ as being k-

automatic if their support is contained in Sk and the restriction of h to Sk is k-automatic

(the support of such a function being defined as the set S = {α ∈ Q : h(α) 6= 0}).

Example 6.1. For w ∈ L(2), define

h([w]2) =

{

0, if there are an even number of 1′s inw;

1, otherwise.

Then h : S2 → {0, 1} is K2-automatic.

A/0 B/1

0, • 0, •
1

1

Figure 7. The DFAO associated with the function h of Example 6.1.

Definition 6.2. Let k be a positive integer, let ∆ be a finite set containing a special element

0, and let h : Q → ∆. We say that h is k-quasi-automatic if it satisfies the following

conditions.

(i) The support S of h is well-ordered.

(ii) There exist a positive integer a and an integer b such that the set aS + b consists of

nonnegative k-adic rationals and the map h((x − b)/a) is a k-automatic function

from Sk to ∆.

We are now ready to state Kedlaya’s theorem.
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Theorem 6.3 (Kedlaya). Let p be a prime, let q be a power of p, and let a : Q → Fq .

Then
∑

α∈Q a(α)t
α is algebraic over Fq(t) if and only if the function a : Q → Fq is

p-quasi-automatic.

In light of Salon’s result [58], Kedlaya asked whether his theorem has an extension to

multivariate generalized power series Fq((t
Q
1 , . . . , t

Q
m)). As far as we know, this problem

has not yet been solved.

7 Update

Since the writing of this chapter in 2010 there has been additional work related to the

topics we just discussed. Here we point out a few such references. Concerning Section

3, we mention the papers of Mauduit and Rivat [47], Martin, Mauduit, and Rivat [45],

and Müllner [51]. Concerning Section 4, we mention an extension of Theorem 4.1 to

deterministic pushdown automata due to Adamczewski, Cassaigne and Le Gonidec [4].

Also, a new proof of Theorem 4.1 and some generalizations have been obtained recently

by using the so-called Mahler method (see Philippon [52], Adamczewski and Faverjon

[5, 6]). Concerning Section 5, we mention the work of Derksen and Masser [18, 19],

Leitnik [36, 37], and Bell and Moosa [8]. Concerning Section 6, we mention the papers

of Kedlaya [34] and Bridy [11].
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Bordeaux, 18(2):379–420, 2006. 96

[34] K. S. Kedlaya. On the algebraicity of generalized power series. Beitr. Algebra Geom.,

58(3):499–527, 2017. 98

[35] C. Lech. A note on recurring series. Ark. Mat., 2:417–421, 1953. 86, 87

[36] D. J. Leitner. Linear equations over multiplicative groups in positive characteristic. Acta

Arith., 153(4):325–347, 2012. 98

[37] D. J. Leitner. Linear equations over multiplicative groups in positive characteristic II. J.

Number Theory, 180:169–194, 2017. 98

[38] J. Liouville. Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni
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