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Abstract. Let K be a field of characteristic zero and k and l be two
multiplicatively independent positive integers. We prove the following
result that was conjectured by Loxton and van der Poorten during the
Eighties: a power series F (z) ∈ K[[z]] satisfies both a k- and a l-Mahler-
type functional equation if and only if it is a rational function.
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1. Introduction

In a series of three papers [27, 28, 29] published in 1929 and 1930, Mahler
initiated a totally new direction in transcendence theory. Mahler’s method,
a term coined much later by Loxton and van der Poorten, aims at proving
transcendence and algebraic independence of values at algebraic points of
locally analytic functions satisfying a certain type of functional equations.
In its original form, it concerns equations of the form

(1.1) F (zk) = R(z, F (z)) ,
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where R(z, x) denotes a bivariate rational function with coefficients in a
number field and k ≥ 2 is an integer. For instance, using the fact that
F (z) =

∑∞
n=0 z

2n satisfies the basic functional equation

F (z2) = F (z)− z ,

Mahler was able to prove that F (α) is a transcendental number for every
algebraic number α with 0 < |α| < 1. As observed by Mahler himself, his
approach allows one to deal with functions of several variables and systems of
functional equations as well. It also leads to algebraic independence results,
transcendence measures, measures of algebraic independence, and so forth.
Mahler’s method was later developed by various authors, including Becker,
Kubota, Loxton and van der Poorten, Masser, Nishioka, Töpfer, among
others. For classical aspects of Mahler’s theory, we refer the reader to the
monograph of Ku. Nishioka [35] and the reference therein. However, a major
deficiency of Mahler’s method is that, contrary to Siegel E- and G-functions,
there is not a single classical transcendental constant that is known to be the
value at an algebraic point of an analytic function solution to a Mahler-type
functional equation1. This may explain why it was somewhat neglected for
almost fifty years.

At the beginning of the Eighties, Mahler’s method really took on a new
significance after Mendès France popularized the fact that some Mahler-type
systems of functional equations naturally arise in the study of automata
theory (see for instance [31]). Though already noticed in 1968 by Cobham
[11], this connection remained relatively unknown at that time, probably
because Cobham’s work was never published in an academic journal. Cob-
ham claimed that Mahler’s method has the following nice consequence for
the Hartmanis–Stearns problem about the computational complexity of al-
gebraic irrational real numbers [21]: the expansion of an algebraic irrational
number in an integer base cannot be generated by a finite automaton. His
idea was to derive this result by applying Mahler’s method to systems of
functional equations of the form

(1.2)




F1(z
k)

...
Fn(z

k)


 = A(z)




F1(z)
...

Fn(z)


+B(z) ,

where A(z) is an n × n matrix and B(z) is an n-dimensional vector, both
having entries that are rational functions with algebraic coefficients. Though
Cobham’s conjecture is now proved in [1] by mean of a completely different
approach, it still remains a challenging problem to complete the proof he
envisaged. In this direction, a great deal of work has been done by Loxton
and van der Poorten [25, 26] and a particular attention was then paid to

1A remarkable discovery of Denis (see [13]), which deserves to be better understood,
is that Mahler’s method can be also applied to prove transcendence and algebraic inde-
pendence results involving periods of t-modules which are variants of the more classical
periods of abelian varieties, in the framework of the arithmetic of function fields of positive
characteristic. For a detailed discussion on this topic, we refer the reader to the recent
survey by Pellarin [37], see also [36].
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systems of functional equations as in (1.2) (see for instance [4, 38, 32, 33,
35, 9]).

Let K be a field. We observe that a power series F (z) ∈ K[[z]] is a
component of a vector satisfying a system of functional equations of the
form (1.2)2 if and only if the family

1, F (z), F (zk), F (zk
2
), . . .

is linearly dependent over the field K(z), that is, if there exist a natural
number n and polynomials Q(z), P0(z), . . . , Pn(z) ∈ K[z], not all of which
are zero, such that

(1.3) Q(z) +

n∑

i=0

Pi(z)F (zk
i

) = 0.

Following Loxton and van der Poorten [26], we use the following definition.

Definition 1.1. Let K be a field and k ≥ 2 be an integer. A power series
F (z) ∈ K[[z]] is a k-Mahler function, or for short is k-Mahler, if it satisfies
a functional equation of the form (1.3).

Beyond transcendence, Mahler’s method and automata theory, it is worth
mentioning that Mahler functions naturally occur as generating functions in
various other topics such as combinatorics of partitions, numeration and the
analysis of algorithms (see [15] and the references therein and also dozens of
examples in [7, 8] and [19, Chapter 14]). A specially intriguing appearance
of Mahler functions is related to the study of Siegel G-functions and in
particular of diagonals of rational functions3. Though no general result
confirms this claim, one observes that many generating series associated
with the p-adic valuation of the coefficients of G-functions with rational
coefficients turn out to be p-Mahler functions.

As a simple illustration, we give the following example. Let us consider
the algebraic function

f(z) :=
1

(1− z)
√
1− 4z

=

∞∑

n=0

n∑

k=0

(
2k

k

)
zn .

Note that f is a G-function which satisfies the following minimal differential
equation:

f′(z) =
(3− 6z)

(1− z)(1 − 4z)
f(z) .

Let us define the sequence

a(n) := ν3

(
n∑

k=0

(
2k

k

))
,

where ν3 denotes the 3-adic valuation. We claim that the function

f1(z) :=
∑

n≥0

a(n)zn ∈ Q[[z]]

2We assume here that the entries of A(z) and B(z) are in K(z).
3See for instance [3] for a discussion of the links between diagonals of rational functions

with algebraic coefficients and G-functions.
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is a 3-Mahler function4. This actually comes from the following nice equality

(1.4) ν3

(
n∑

k=0

(
2k

k

))
= ν3

(
n2

(
2n

n

))
,

independently proved by Allouche and Shallit in 1989 (unpublished) and by
Zagier [45]. Indeed, setting f2(z) :=

∑
n≥0 a(3n)z

n and f3(z) :=
∑

n≥0 a(3n+

1)zn, we infer from Equality (1.4) that



f1(z
3)

f2(z
3)

f3(z
3)




= A(z)




f1(z)

f2(z)

f3(z)




+B(z) ,

with

A(z) :=
1

z3(1 + z + z2)




z(1 + z + z2) −z2 −z

0 z2(1 + z) −z4

0 −z2 z2(1 + z)




and

B(z) :=
1

z3(1 + z + z2)




z(2z2 − 1)

z − 1

− z4

z − 1

z2(1 + z)

z − 1




.

A simple computation then gives the relation

a0(z) + a1(z)f1(z) + a2(z)f1(z
3) + a3(z)f1(z

9) + a4(z)f1(z
27) = 0 ,

where

a0(z) := z + 2z2 − z3 + z4 + 3z5 − z7 + 3z8 + z9 − z11 + 3z12 − 2z14

−z15 + 2z16 − 2z17 − 2z18 + 2z21,
a1(z) := −1− z4 − z8 + z9 + z13 + z17,
a2(z) := 1 + z + z2 + z3 + z4 + z5 + z6 + z7 + z8 − z13 − z14 − z15 − z16

−z17 − z18 − z19 − z20 − z21,
a3(z) := −z3 − z6 − z7 − z9 − z10 − z11 − z13 − z14 + z16 − z17 + z19

+z20 + z22 + z23 + z24 + z26 + z27 + z30,
a4(z) := z21 − z48 .

Of course, one could produce similar examples associated with transcenden-
tal G-functions by considering the Hadamard product (denoted by ⊙ below)
of several well-chosen algebraic functions. For instance, the elliptic integral

g(z) :=
2

π

∫ π/2

0

dθ√
1− 16z sin2 θ

=
1√

1− 4z
⊙ 1√

1− 4z
=

∞∑

n=0

(
2n

n

)2

zn

4It would be interesting to know the set of primes p for which
∑

n≥0 νp
(
∑n

k=0

(

2k
k

))

zn

is a p-Mahler function.
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is a transcendental G-function which satisfies the following minimal differ-
ential equation

(z2 − 16z3)g′′(z) + (z − 32z2)g′(z)− 4zg(z) = 0 ,

and it is not hard to see that, for every prime p,

gp(z) :=
∞∑

n=0

νp

((
2n

n

)2
)
zn

is a p-Mahler function. More precisely, one can show that gp satisfies a
relation of the form

a0(z) + a1(z)gp(z) + a2(z)gp(z
p) + a3(z)gp(z

p2) + a4(z)gp(z
p3) = 0 ,

where the ai(z) are polynomials of degree O(p3) having a too heavy form to
be reproduced here.

Regarding (1.1), (1.2) or (1.3), it is tempting to ask about the signifi-
cance of the integer parameter k. Already in 1976, van der Poorten [40]
suggested that two solutions of Mahler-type functional equations associated
with essentially distinct parameters should be completely different. For in-
stance, one may naturally expect [40] (and it is now proved [34]) that the
two functions

∞∑

n=0

z2
n

and
∞∑

n=0

z3
n

are algebraically independent over C(z). This idea was later formalized by
Loxton and van der Poorten who made a general conjecture whose one-
dimensional version can be stated as follows5.

Conjecture 1.2 (Loxton and van der Poorten). Let k and l be two mul-
tiplicatively independent positive integers and L be a number field. Let
F (z) ∈ L[[z]] be a locally analytic function that is both k- and ℓ-Mahler.
Then F (z) is a rational function.

We recall that two integers k and l larger than 1 are multiplicatively
independent if there is no pair of positive integers (n,m) such that kn = ℓm,
or equivalently, if log(k)/ log(ℓ) 6∈ Q. Conjecture 1.2 first appeared in print
in 1987 in a paper of van der Poorten [41]. Since then it was explicitly studied
in a number of different contexts including in some papers of Loxton [24],
Becker [9], Randé [42], Bell [10] and the monograph of Everest et al. [19].
Independently, Zannier also considered a similar question in [46].

In this paper, our aim is to prove the following result, which has been
proven independently by Schäfke and Singer [39].

Theorem 1.3. Let K be a field of characteristic zero and let k and l be two
multiplicatively independent positive integers. Then a power series F (z) ∈
K[[z]] is both k- and ℓ-Mahler if and only if it is a rational function.

5Note that in fact this conjecture does not imply any statement concerning algebraic
independence. It does, however, cover linear independence. Indeed, say that F (z) and
G(z) are irrational power series such that F is 2-Mahler and G is 3-Mahler, then 1, F and
G are linearly independent over C(z) (otherwise F is at once 2- and 3-Mahler, and thus
rational).
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Let us make few comments.

• Taking K to be a number field in Theorem 1.3 gives Conjecture 1.2.

• If k and ℓ denote two multiplicatively dependent natural numbers,
then it is easy to see that a power series is k-Mahler if and only if it
is also ℓ-Mahler (see Remark 8.2).

• As explained in more details in Section 2, one motivation for proving
Theorem 1.3 is that it provides a far-reaching generalization of one
fundamental result in the theory of sets of integers recognizable by
finite automata: Cobham’s theorem. Loxton and van der Poorten
[24, 41] actually guessed that Conjecture 1.2 should be a consequence
of some algebraic independence results for Mahler functions of sev-
eral variables. In particular, they hoped to obtain a totally new
proof of Cobham’s theorem by using Mahler’s method. Note, how-
ever, that our proof of Theorem 1.3 follows a totally different way
and ultimately relies on Cobham’s theorem, so we do not obtain an
independent derivation of that result.

• Another important motivation for establishing Theorem 1.3 comes
from the fact that these kinds of statements, though highly nat-
ural and somewhat ubiquitous, are usually very difficult to prove.
In particular, similar independence phenomena, involving two mul-
tiplicatively independent integers, are expected in various contexts
but only very few results have been obtained up to now. As an il-
lustration, we cite below three interesting open problems that rest
on such a principle, all of them being widely open6. A long-standing
question in dynamical systems is the so-called × 2 × 3 problem ad-
dressed by Furstenberg [20]: prove that the only Borel measures on
[0, 1] that are simultaneously ergodic for T2(x) = 2x (mod 1) and
T3(x) = 3x (mod 1) are the Lebesgue measure and measures sup-
ported by those orbits that are periodic for both actions T2 and
T3. The following problem, sometimes attributed to Mahler, was
suggested by Mendès France in [31] (see also [2]): given a binary
sequence (an)n≥0 ∈ {0, 1}N, prove that

∞∑

n=0

an
2n

and

∞∑

n=0

an
3n

are both algebraic numbers only if both are rational numbers. The
third problem we mention appeared implicitly in work of Ramanu-
jan (see [44]): prove that both 2x and 3x are integers only if x is a
natural number. This is a particular instance of the four exponen-
tials conjecture, a famous open problem in transcendence theory [43,
Chapter 1, p. 15].

The outline of the paper is as follows. In Section 2, we briefly discuss
the connection between Theorem 1.3 and Cobham’s theorem. In Section
3, we describe our strategy for proving Theorem 1.3. Then the remaining

6In all of these problems, the integers 2 and 3 may of course be replaced by any two
multiplicatively independent integers larger than 1.
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Sections 4–11 are devoted to the different steps of the proof of Theorem 1.3.
Throughout this paper, k and l will denote integers larger than or equal to
2.

2. Connection with finite automata and Cobham’s theorem

One motivation for proving Theorem 1.3 is that it provides a far-reaching
generalization of one fundamental result in the theory of sets of integers
recognizable by finite automata. The aim of this section is to briefly describe
this connection. For more details and formal definitions on automatic sets
and automatic sequences, we refer the reader to the book of Allouche and
Shallit [6].

Let k ≥ 2 be a natural number. A set N ⊂ N is said to be k-automatic
if there is a finite automaton (more formally a k-deterministic finite au-
tomaton) that accepts as input the expansion of n in base k and outputs
1 if n ∈ N and 0 otherwise. For example, the set of Thue–Morse integers
1, 2, 4, 7, 8, 11, 13, . . ., formed by the integers whose sum of binary digits is
odd, is 2-automatic. The associated automaton is given in Figure 1 below.
It has two states. This automaton successively reads the binary digits of n
(starting, say, from the most significant digit and the initial state q0) and
thus ends the reading either in state q0 or in state q1. The initial state q0
gives the output 0, while q1 gives the output 1.

q0/0 q1/1

0 0
1

1

Figure 1. The finite-state automaton recognizing the set of
Thue–Morse integers.

Another typical 2-automatic set of integers is given by the powers of 2:
1, 2, 4, 8, 16, . . .. Though these integers have very simple expansions in base
2, one can observe that this is not the case when writing them in base 3. One
of the most important results in the theory of automatic sets formalizes this
idea. It says that only very well-behaved sets of integers can be automatic
with respect to two multiplicatively independent numbers. Indeed, in 1969
Cobham [12] proved the following result.

Theorem 2.1 (Cobham). Let k and ℓ be two multiplicatively independent
integers. Then a set N ⊆ N is both k- and ℓ-automatic if and only if it is
the union of a finite set and a finite number of arithmetic progressions.

The proof given by Cobham of his theorem is elementary but notori-
ously difficult and it remains a challenging problem to find a more nat-
ural/conceptual proof (see for instance the comment in Eilenberg [17, p.
118]). There are many interesting generalizations of this result. A very re-
cent one is due to Durand [16] and we refer the reader to the introduction
of [16] for a brief but complete discussion about such generalizations.

To end this section, let us briefly explain why Cobham’s Theorem is a
consequence of Theorem 1.3. Let us assume that N ⊆ N is k-automatic. Set
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F (x) :=
∑

n∈N xn ∈ Z[[x]]. Then it is known that F (x) is k-Mahler (see for
instance [19, p. 232]). In addition, let us assume that N is also ℓ-automatic
where k and ℓ are multiplicatively independent. Then by Theorem 1.3, it
follows that F (x) is a rational function and thus the sequence of coefficients
of F (x) satisfies a linear recurrence. Since the coefficients of F (x) take only
two distinct values (0 and 1), we see that this linear recurrence is ultimately
periodic. This exactly means that N is the union of a finite set and a finite
number of arithmetic progressions, as claimed by Cobham’s theorem.

3. Sketch of proof of Theorem 1.3

In this section, we describe the main steps of the proof of Theorem 1.3.
Let R be a ring and P be an ideal of R. If F (x) =

∑∞
n=0 f(n)x

n ∈ R[[x]],
then we denote by FP(x) the reduction of F (x) modulo P, that is

FP(x) =

∞∑

n=0

(f(n) mod P)xn ∈ (R/P)[[x]] .

Let K be a field of characteristic zero and F (x) ∈ K[[x]] be both k- and
ℓ-Mahler.

Step 0. This is a preliminary step. In the introduction, we defined Mahler
functions as those satisfying Equation (1.3) but it is not always convenient
to work with this general form of equations. In Sections 4 and 6 we show
that there is no loss of generality to work with some more restricted types
of functional equations. Also in Section 8, we prove that one can assume
without loss of generality some additional assumptions on k and ℓ; namely
that there are primes p and q such that p divides k but does not divide ℓ
and q divides ℓ but does not divide k.

Step 1. A first observation, proved in Section 5, is that the coefficients
of the formal power series F (x) only belong to some finitely generated Z-
algebra R ⊆ K. Then we prove the following useful local–global principle:
F (x) is a rational function if it has rational reduction modulo a sufficiently
large set of maximal ideals of R. Using classical results of commutative
algebra about Jacobson rings, we derive from our local–global principle that
there is no loss of generality to assume that K is a number field and that R
is a localization of the ring of integers of K formed by inverting a positive
integer (that is, R is of the form OK [1/N ] for some positive integer N).

Comment. Our strategy consists now in applying again our local–global
principle. Indeed, since R is of the form OK [1/N ], we have that the quotient
ring R/P is a finite field for every prime ideal P of R. Our plan is thus to
take advantage of the fact that FP(x) has coefficients in the finite set R/P to
prove that FP(x) is both a k- and an ℓ-automatic power series (see Section 7
for a definition), for some prime ideals P. If this is the case, then Cobham’s
theorem applies and we get that FP(x) is a rational function. The local–
global principle actually implies that it is enough to prove that FP(x) is
both k- and ℓ-automatic for infinitely many prime ideals P of R.

Step 2. In Section 7, we underline the relation between k-Mahler, k-regular,
and k-automatic power series. The latter two notions are defined in that
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section. In particular, we will use a result of Dumas [14] showing that every
k-Mahler power series can be decomposed as

F (x) = G(x) ·Π(x) ,
where G(x) ∈ R[[x]] is a k-regular power series and Π(x) ∈ R[[x]] is the
inverse of an infinite product of polynomials. Since F (x) is also ℓ-Mahler,
we also have a similar decomposition

F (x) = H(x) ·Π′(x) ,

where H(x) ∈ R[[x]] is a ℓ-regular power series and Π′(x) ∈ R[[x]] is the
inverse of an infinite product of polynomials. Furthermore, the theory of
regular power series implies that GP(x) is k-automatic and that HP(x) is
ℓ-automatic for every prime ideal P of R.

In Section 13 we will split both infinite products Π(x) and Π′(x) and get
an expression of the form

F (x) = G(x) · Π1(x) · Π2(x) = H(x) ·Π′
1(x) ·Π′

2(x)

where Π1(x),Π2(x),Π
′
1(x),Π

′
2(x) ∈ R[[x]] are inverses of some other infinite

products of polynomials.

Step 3. After proving preliminary results in Sections 9 and 10, we look at
the singularities of Mahler functions at roots of unity in Section 11. We use
asymptotic techniques to show that one can reduce to the case of considering
Mahler equations whose singularities at roots of unity have a restricted form.
This ensures, using some results of Section 7, that Π1(x) is k-automatic and
that Π′

1(x) is ℓ-automatic when reduced modulo every prime ideal P of R.

Step 4. In our last step, we use Chebotarev’s density theorem in order to
ensure the existence of an infinite set S of prime ideals of R such that Π2(x)
is k-automatic and Π′

2(x) is ℓ-automatic when reduced modulo every ideal
P ∈ S.
Conclusion. Since the product of k-automatic power series is k-automatic,
we infer from Steps 2, 3 and 4 that for every prime ideals P ∈ S the power
series FP(x) is both k- and ℓ-automatic. By Cobham’s theorem, FP(x) is
rational for every such prime ideal. Then the local–global principle ensures
that F (x) is rational, as desired.

4. Preliminary reduction for the form of Mahler equations

In the introduction, we define k-Mahler functions as power series satisfying
a functional equation of the form given in (1.3). In the literature, they
are sometimes defined as solutions of a more restricted type of functional
equations. We recall here that these apparently stronger conditions on the
functional equations actually lead to the same class of functions. In the
sequel, it will thus be possible to work without loss of generality with these
more restricted type of equations.

Lemma 4.1. Let us assume that F (x) satisfies a k-Mahler equation as
in (1.3). Then there exist polynomials P0(x), . . . , Pn(x) in K[x], with
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gcd(P0(x), . . . , Pn(x)) = 1 and P0(x)Pn(x) 6= 0, and such that

(4.5)

n∑

i=0

Pi(x)F (xk
i

) = 0 .

Proof. Let us assume that F (x) satisfies a k-Mahler equation as in
(1.3). There thus exist some nonnegative integer n and polynomials
A(x), A0(x), . . . , An(x) in K[x], with An(x) nonzero, such that

n∑

i=0

Ai(x)F (xk
i

) = A(x) .

We first show that we can assume that A(x) = 0. Indeed, let us assume
that A(x) 6= 0. Applying the operator x 7→ xk to this equation, we get that

n∑

i=0

Ai(x
k)F (xk

i+1
) = A(xk) .

Multiplying the first equation by A(xk) and the second by A(x) and sub-
tracting, we obtain the new equation

n+1∑

i=0

Bi(x)F (xk
i

) = 0 ,

where Bi(x) := Ai(x)A(x
k)−Ai(x

k)A(x) for every integer i, 1 ≤ i ≤ n and
where Bn+1(x) := An(x

k)A(x) 6= 0. We can thus assume without loss of
generality that A(x) = 0.

Now among all such nontrivial relations of the form

(4.6)

n∑

i=0

Pi(x)F (xk
i

) = 0 ,

we choose one with n minimal. Thus Pn(x) is nonzero. We claim P0(x)
is nonzero. Let us assume this is not the case. Pick the smallest integer
j such that Pj(x) is nonzero. By assumption, j > 0. Then there is some
nonnegative integer a such that the coefficient of xa in Pj(x) is nonzero. Let
b be the unique integer such that a ≡ b mod k and 0 ≤ b < k. Let us define
the operator Λb from K[[x]] into itself by

Λb

(
∞∑

i=0

f(i)xi

)
:=

∞∑

i=0

f(ki+ b)xi .

These types of operators are classically used for studying algebraic power
series over fields of characteristic p > 0, where one takes k = p (see for
instance Chapter 12 of [6] and the references therein). In this context, these
operators are often referred to as Cartier operators. With this definition,
every F (x) ∈ K[[x]] has a unique decomposition as

F (x) =
k−1∑

b=0

xbΛb(F )(xk) ,

which implies that

Λb

(
F (x)G(xk)

)
= Λb (F (x))G(x)
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for every pair of power series F (x), G(x) ∈ K[[x]]. Applying Λb to Equation
(4.6), we thus get that

0 = Λb




n∑

i=j

Pi(x)F (xk
i

)


 =

n−1∑

i=j−1

Λb (Pi+1(x))F (xk
i

) .

By construction, Λb(Pj(x)) is nonzero, which shows that this relation is
nontrivial. This contradicts the minimality of n. It follows that P0(x) is
nonzero.

Furthermore, if gcd(P0(x), . . . , Pn(x)) = D(x) 6= 0, it suffices to divide
(4.6) by D(x) to obtain an equation with the desired properties. This ends
the proof. �

5. Reduction to the number field case

In this section, we show that we may restrict our attention to the case
where the base field K is replaced by a number field and more precisely by a
localization of the ring of integers of that number field formed by inverting
a single integer. This means a ring of the form OK [1/N ], where K denotes
a number field, OK the ring of integers of K, and N a positive integer.

Theorem 5.1. Let us assume that the conclusion of Theorem 1.3 holds
whenever the field K is replaced by a localization of the ring of integers of a
number field of the form OK [1/N ]. Then Theorem 1.3 is true.

We first observe that the coefficients of a Mahler function in K[[x]] actu-
ally belong to some finitely generated Z-algebra R ⊆ K.

Lemma 5.2. Let K be a field of characteristic zero, let k ≥ 2 be an integer,
and let F (x) ∈ K[[x]] be a k-Mahler power series. Then there exists a finitely
generated Z-algebra R ⊆ K such that F (x) ∈ R[[x]].

Proof. Let F (x) :=
∑∞

n=0 f(n)x
n ∈ K[[x]] be a k-Mahler power series. We

first infer from Lemma 4.1 that there exist a natural number n and polyno-
mials P0(x), . . . , Pn(x) ∈ K[x] with P0(x)Pn(x) 6= 0 such that

n∑

i=0

Pi(x)F (xk
i

) = 0 .

Let d be a natural number that is strictly greater than the degrees of the
polynomials P0(x), . . . , Pn(x). Let R denote the smallest Z-algebra contain-
ing:

• the coefficients of P0(x), . . . , Pn(x);

• the coefficients f(0), . . . , f(d);

• the multiplicative inverses of all nonzero coefficients of P0(x) .

By definition, R ⊆ K is a finitely generated Z-algebra. We claim that
F (x) ∈ R[[x]]. To see this, suppose that this is not the case. Let n0 be the
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smallest non-negative integer such that f(n0) 6∈ R. By assumption, n0 > d.
Consider the equation

(5.7) P0(x)F (x) = −
n∑

i=1

Pi(x)F (xk
i

) .

Let j denote the order of P0(x) at x = 0 and let c 6= 0 denote the coefficient
of xj in P0(x). Then if we extract the coefficient of xn0+j in Equation
(5.7), we see that cf(n0) can be expressed as an R-linear combination of
f(0), . . . , f(n0 − 1). Hence cf(n0) belongs to R by the minimality of n0.
Since c−1 ∈ R we see that f(n0) ∈ R, a contradiction. This ends the
proof. �

We now prove that the height of a rational function which satisfies a
Mahler-type equation can be bounded by the maximum of the degrees of
the polynomials defining the underlying equation.

Lemma 5.3. Let K be a field, let n and d be natural numbers, and
let P0(x), . . . , Pn(x) be polynomials in K[x] of degree at most d with
P0(x)Pn(x) 6= 0. Suppose that F (x) ∈ K[[x]] satisfies the Mahler-type equa-
tion

n∑

i=0

Pi(x)F (xk
i

) = 0 .

If F (x) is rational, then there exist polynomials A(x) and B(x) of degree
at most d with B(0) = 1 such that F (x) is the power series expansion of
A(x)/B(x).

Proof. Without any loss of generality we can assume that F (x) is not iden-
tically zero. If F (x) is rational, then there exist two polynomials A(x) and
B(x) in K[x] with gcd 1 and with B(0) = 1 such that F (x) = A(x)/B(x).
Observe that

n∑

i=0

Pi(x)A(x
ki)/B(xk

i

) = 0 .

Multiplying both sides of this equation by the productB(x)B(xk) · · ·B(xk
n

),
we see that B(xk

n

) divides

Pn(x)A(x
kn)B(x) · · ·B(xk

n−1
) .

Since gcd(A(x), B(x)) = 1 and A(x) is nonzero, we actually have that
B(xk

n

) divides

Pn(x)B(x) · · ·B(xk
n−1

) .

Let d0 denote the degree of B(x). Then we have

knd0 ≤ deg(Pn(x)) +

n−1∑

i=0

deg(B(xk
i

))

≤ d+ d0(1 + k + · · · + kn−1)

= d+ d0(k
n − 1)/(k − 1) .
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Thus
d0(k

n+1 − 2kn + 1)/(k − 1) ≤ d ,

which implies d0 ≤ d since (kn+1 − 2kn + 1)/(k − 1) ≥ 1 for every integer
k ≥ 2. A similar argument gives the same upper bound for the degree of
A(x). �

We derive from Lemma 5.3 a useful local–global principle for the ratio-
nality of Mahler functions with coefficients in a finitely generated Z-algebra.

Lemma 5.4. Let K be a field, let k ≥ 2 be an integer, and let R ⊆ K be a
ring. Let us assume that F (x) ∈ R[[x]] has the following properties.

(i) There exist a natural number n and polynomials P0(x), . . . , Pn(x) ∈
R[x] with P0(x)Pn(x) 6= 0 such that

n∑

i=0

Pi(x)F (xk
i

) = 0 .

(ii) There exists a set S of maximal ideals of R such that F (x) mod I is
a rational power series in (R/I)[[x]] for every I ∈ S.

(iii) One has
⋂

I∈S

I = {0} .

Then F (x) is a rational function.

Proof. Let d be a natural number that is greater than the degrees of all
polynomials P0(x), . . . , Pn(x). By (ii), we have that for each maximal ideal
I in S, F (x) mod I is a rational function. Thus by (i) and Lemma 5.3, we see
that for each maximal ideal I in S, there exist two polynomials AI(x) and
BI(x) ∈ (R/I) [x] of degree at most d with BI(0) = 1 and such that F (x) ≡
AI(x)/BI(x) mod I. In particular, if F (x) =

∑
j≥0 f(j)x

j , we see that

the sequences in the set {(f(d+ 1 + i+ j) mod I)j≥0 | i = 0, . . . , d} are
linearly dependent over R/I. Thus the determinant of each (d+1)× (d+1)
submatrix of the infinite matrix

M :=




f(d+ 1) f(d+ 2) f(d+ 3) · · ·
f(d+ 2) f(d+ 3) f(d+ 4) · · ·

...
...

... · · ·
f(2d+ 1) f(2d+ 2) f(2d+ 3) · · ·




lies in the maximal ideal I. Since this holds for every maximal ideal I in S,
we infer from (iii) that every (d+1)×(d+1) minor of M vanishes. It follows
that M has rank at most d and thus the rows of M are linearly dependent
over the field of fractions of R. In particular, there exist c0, . . . , cd ∈ R, not
all zero, such that

d∑

i=0

cif(d+ 1 + i+ j) = 0

for all j ≥ 0. Letting B(x) := cd + cd−1x+ · · ·+ c0x
d, we see that B(x)F (x)

is a polynomial. Hence F (x) is a rational function. This ends the proof. �

We are now ready to prove the main result of this section.
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Proof of Theorem 5.1. Let K be a field of characteristic zero and let
F (x) ∈ K[[x]] be a power series that is both k- and ℓ-Mahler for some
multiplicatively independent natural numbers k and ℓ. By Lemma 4.1,
there are natural numbers n and m and polynomials P0(x), . . . , Pn(x) and
Q0(x), . . . , Qm(x) with P0(x)Pn(x)Q0(x)Qm(x) 6= 0 and such that

(5.8)

n∑

i=0

Pi(x)F (xk
i

) =

m∑

j=0

Qj(x)F (xℓ
j

) = 0 .

Then by Lemma 5.2, there is a finitely generated Z-algebra R ⊆ K such that
F (x) ∈ R[[x]]. By adjoining all the coefficients of P0(x), . . . , Pn(x) and of
Q0(x), . . . , Qm(x) to R, we can assume that Pi(x) and Qj(x) are in R[x] for
(i, j) ∈ {1, . . . , n} × {1, . . . ,m}. By localizing at the multiplicatively closed
set consisting of nonzero integers in R, we can assume that R is a finitely
generated Q-algebra.

Let M ⊆ Spec(R) denote the collection of maximal ideals of R. Since R
is a finitely generated Q-algebra, R is a Jacobson ring and R/I is a finite
extension of Q for every I ∈ M (see [18, Theorem 4.19, p. 132]). Thus,
for each maximal ideal I of R, the quotient field R/I is a number field. If
we assume that the conclusion of Theorem 1.3 holds when the base field
is a number field, then we get that F (x) mod I is a rational function in
(R/I)[[x]] for it is clearly both k- and ℓ-Mahler7. Since R is a Jacobson ring
that is also a domain, we have that

⋂
I∈M I = {0} (cf. [18, p. 132]). Then

Lemma 5.4 implies that F (x) is a rational function in R[[x]]. This shows it
is sufficient to prove Theorem 1.3 in the case that K is a number field.

We can thus assume that F (x) ∈ K[[x]] where K is a number field. Now,
if we apply again Lemma 5.2, we see that there is a finitely generated Z-
algebra R ⊆ K such that F (x) ∈ R[[x]]. Furthermore, every finitely gen-
erated Z-subalgebra of a number field K has a generating set of the form
{a1/b, . . . , at/b}, where b is a nonzero (rational) integer and a1, . . . , at are
algebraic integers in K. Thus R is a subalgebra of a localization of the ring
of integers of a number field formed by inverting a single nonzero integer,
that is R ⊆ OK [1/b], where OK denotes the ring of algebraic integers in K.
Thus to establish Theorem 1.3 it is sufficient to prove the following result:
let k and ℓ be two multiplicatively independent natural numbers, let R be
of the form OK [1/b] where K is a number field, and let F (x) ∈ R[[x]], then
if F (x) is both k- and ℓ-Mahler it is a rational function. This concludes the
proof. �

6. Further reductions for the form of Mahler equations

In this section, we refine the results of Section 4. We show that a power
series satisfying a Mahler equation of the form given in (4.5) is also solution
of a more restricted type of functional equations.

7Note that since P0(0)Q0(0) 6= 0, we may assume that P0(0) = Q0(0) = 1 by multiply-
ing the left side of (5.8) by 1/P0(0) and the right side of (5.8) by 1/Q0(0). This ensures
that, for each functional equation, not all the coefficients vanish when reduced modulo a
maximal ideal I of R. Hence F (x) mod I is both k- and ℓ-Mahler.
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Lemma 6.1. Let K be a field and k ≥ 2 be an integer. Let us assume that
F (x) :=

∑
s≥0 f(s)x

s ∈ K[[x]] satisfies a k-Mahler equation of the form

n∑

i=0

Pi(x)F (xk
i

) = 0 ,

where P0(x), . . . , Pn(x) ∈ K[x], gcd(P0(x), . . . , Pn(x)) = 1 and
P0(x)Pn(x) 6= 0. Then there exists a natural number N such that, for every
integer a > N with f(a) 6= 0, F (x) can be decomposed as

F (x) = Ta(x) + xaF0(x) ,

where Ta(x) ∈ K[x] is the Taylor approximation of F (x) at x = 0 up to
degree a− 1 and F0(x) has nonzero constant term and satisfies a k-Mahler
equation

n+1∑

i=0

Qi(x)F0(x
ki) = 0

for some polynomials Q0, . . . , Qn+1 ∈ K[x] satisfying the following condi-
tions.

(i) One has Q0(0) = 1.

(ii) If α 6= 0 and P0(α) = 0, then Q0(α) = 0.

(iii) If α 6= 0, P0(α) = 0 and αk = α, then Qj(α) 6= 0 for some j ∈
{1, . . . , n+ 1}.

Proof. By assumption, we have that F (x) satisfies a k-Mahler equation

n∑

i=0

Pi(x)F (xk
i

) = 0 ,

where P0(x)Pn(x) is nonzero. Let N denote the order of vanishing of P0(x)
at x = 0. Suppose that a ≥ N and f(a) 6= 0. Then we have that

F (x) = Ta(x) + xaF0(x) ,

where Ta(x) is the Taylor approximation of F (x) up to degree a − 1 and
F0(x) is a power series with nonzero constant term. Then we have

n∑

i=0

Pi(x)(Ta(x
ki) + xk

i·aF0(x
ki)) = 0 ,

which we can write as

(6.9)

n∑

i=0

Pi(x)x
ki·aF0(x

ki) = C(x) ,

where C(x) denotes the polynomial

C(x) := −
n∑

i=0

Pi(x)Ta(x
ki) .
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Set S(x) := P0(x)x
−N . By definition of N , S(x) is a polynomial with

S(0) 6= 0. Then if we divide both sides of Equation (6.9) by xa+N , we
obtain that

(6.10) S(x)F0(x) +

n∑

i=1

Pi(x)x
kia−a−NF0(x

ki) = x−a−NC(x) .

Observe that the left side is a power series with constant term S(0)F0(0) 6= 0
and thus C0(x) := x−a−NC(x) is a polynomial with C0(0) 6= 0. Applying
the operator x 7→ xk, we also obtain that

(6.11) S(xk)F0(x
k) +

n∑

i=1

Pi(x
k)xk

i+1a−ka−kNF0(x
ki+1

) = C0(x
k) .

Multiplying (6.10) by C0(x
k) and (6.11) by C0(x) and then subtracting, we

get that

C0(x
k)S(x)F0(x) +

n∑

i=1

C0(x
k)Pi(x)x

kia−a−NF0(x
ki)

−C0(x)S(x
k)F0(x

k)−
n∑

i=1

C0(x)Pi(x
k)xk

i+1a−ka−kNF0(x
ki+1

) = 0 .

Since C0(0) and S(0) are nonzero, we see that F0(x) satisfies a non-trivial
k-Mahler equation

n+1∑

i=0

Qi(x)F0(x
ki) = 0 ,

where

Q0(x) :=
C0(x

k)S(x)

gcd(C0(x), C0(xk))

and

Q1(x) :=
C0(x

k)P1(x)x
ka−a−N − C0(x)S(x

k)

gcd(C0(x), C0(xk))
,

and, for i ∈ {2, . . . , n+ 1},

Qi(x) :=
xk

ia−ka−N (C0(x
k)x(k−1)aPi(x)− C0(x)Pi−1(x

k))

gcd(C0(x), C0(xk))
,

with the convention that Pn+1(x) := 0. By construction, Q0(0) 6= 0, which
we may assume to be equal to 1 by multiplying our equation by 1/Q0(0).
Since S(x) divides Q0(x), we have that if P0(α) = 0 for some nonzero α then
Q0(α) = 0. Finally, suppose that P0(α) = 0 for some nonzero α such that
αk = α. We claim that Qi(α) is nonzero for some i ∈ {1, . . . , n + 1}. Note
that since gcd(P0(x), . . . , Pn(x)) = 1, there is some smallest positive integer
j such that Pj(α) is nonzero. We claim that Qj(α) 6= 0. Indeed, otherwise

α would be a root of C0(x)/ gcd(C0(x), C0(x
k)), but this is impossible since

αk = α. This ends the proof. �

Corollary 6.2. Let K be a field and let k and ℓ be multiplicatively indepen-
dent natural numbers. Let F (x) :=

∑
s≥0 f(s)x

s ∈ K[[x]] be a power series
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that is both k- and ℓ-Mahler and that is not a polynomial. Then there is a
natural number a such that F (x) can be decomposed as

F (x) = Ta(x) + xaF0(x) ,

where Ta(x) is the Taylor approximation of F (x) up to degree a− 1, F0(x)
satisfies a k-Mahler equation as in Lemma 6.1, and F0(x) also satisfies an
ℓ-Mahler equation of the form

r∑

i=0

Ri(x)F0(x
ℓi) = 0

with R0(x), . . . , Rr(x) ∈ K[x] and R0(0) = 1.

Proof. Applying Lemma 6.1 to F (x), viewed as a k-Mahler function, we
obtain the existence of a positive integer N1 (which corresponds to N in
Lemma 6.1) for which the conclusion of this lemma holds. Similarly, ap-
plying Lemma 6.1 to F (x), viewed as a ℓ-Mahler function, we obtain the
existence of a positive integer N2. Now, we can choose N3 := max(N1, N2)
and pick a > N3 such that f(a) 6= 0 to obtain the desired conclusion. �

7. Links with automatic and regular power series

The aim of this section is to underline the relation between k-Mahler,
k-regular, and k-automatic power series. We gather some useful facts about
automatic and regular power series that will turn out to be useful for proving
Theorem 1.3. We also recall a result of Dumas [14] showing that every k-
Mahler power series can be decomposed as the product of a k-regular power
series of a special type and the inverse of an infinite product of polynomials.
Such a decomposition will play a key role in the proof of Theorem 1.3.

7.1. Automatic and regular power series. We recall here basic facts
about regular power series, which were introduced by Allouche and Shallit
[7] (see also [8] and [6, Chapter 16]). They form a distinguished class of k-
Mahler power series as well as a natural generalization of k-automatic power
series.

A useful way to characterize k-automatic sequences, due to Eilenberg [17],
is given in terms of the so-called k-kernel.

Definition 7.1. Let k ≥ 2 be an integer and let f = (f(n))n≥0 be a sequence
with values in a set E. The k-kernel of f is defined as the set

{(f(kan+ b))n≥0 | a ≥ 0, b ∈ {0, . . . , ka − 1}} .

Theorem 7.2 (Eilenberg). A sequence is k-automatic if and only if its k-
kernel is finite.

This characterization gives rise to the following natural generalization of
automatic sequences introduced by Allouche and Shallit [7].

Definition 7.3. Let R be a commutative Noetherian ring and let f =
(f(n))n≥0 be a R-valued sequence. Then f is said to be k-regular if the
dimension of the R-module spanned by its k-kernel is finite.
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In the sequel, we will say that a power series F (x) ∈ R[[x]] is k-regular
(respectively k-automatic) if its sequence of coefficients is k-regular (respec-
tively k-automatic). Of course, with a subset E of N, we can associate its
characteristic sequence χ(n), taking values in {0, 1}, and thus a power series
FE (x) :=

∑
χ(n)xn ∈ Z[[x]]. When the set E is k-automatic, FE (x) is a

k-automatic power series. More generally, a power series F (x) =
∑

f(n)xn

with coefficients in a finite set S is k-automatic if and only if for every s ∈ S
the set {n ∈ N | f(n) = s} is k-automatic. In the following proposition, we
collect some useful general facts about k-regular power series.

Proposition 7.4. Let R be a commutative ring and k ≥ 2 be an integer.
Then the following properties hold.

(i) If F (x) ∈ R[[x]] is k-regular and I is an ideal of R, then F (x) mod
I ∈ (R/I)[[x]] is k-regular.

(ii) If F (x) ∈ R[[x]] is k-regular, then the coefficients of F (x) take only
finitely many distinct values if and only if F (x) is k-automatic.

(iii) If F (x) =
∑

i≥0 f(i)x
i and G(x) =

∑
i≥0 g(i)x

i are two k-regular

power series in R[[x]], then the Cauchy product

F (x)G(x) :=
∞∑

i=0




i∑

j=0

(
i

j

)
f(j)g(i − j)


xi

is k-regular.

Proof. The property (i) follows directly from the definition of a k-regular
sequence, while (ii) and (iii) correspond respectively to Theorem 16.1.5 and
Corollary 16.4.2 in [6]. �

In Section 11, we will need to use that k-regular sequences with complex
values do have strict restrictions on the growth of their absolute values, a
fact evidenced by the following result.

Proposition 7.5. Let k ≥ 2 be a natural number and let F (x) ∈ C[[x]] be
a k-regular power series. Then F (x) is analytic in the open unit disk and
there exist two positive real numbers C and m such that

|F (x)| < C(1− |x|)−m ,

for all x ∈ B(0, 1).

Proof. Let F (x) =

∞∑

i=0

f(i)xi ∈ C[[x]] be a k-regular power series. Then

there is some positive constant A and some integer d > 0 such that

|f(i)| ≤ A(i+ 1)d ,

for every nonnegative integer i (see [6, Theorem 16.3.1]). This immediately
gives that F (x) is analytic in the open unit disk. Moreover, for x ∈ B(0, 1),

|F (x)| ≤
∞∑

i=0

A(i+ 1)d|x|i ≤
∞∑

i=0

Ad!

(
i+ d

d

)
|x|i = Ad!(1 − |x|)−d−1 .

The result follows. �
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7.2. Becker power series. Becker [9, Theorem 1] showed that a k-regular
power series is necessarily k-Mahler. In addition to this, he proved [9, The-
orem 2] the following partial converse (see Theorem 7.6 below). The general
converse does not hold. For example, the power series in Q[[x]] defined by
the k-Mahler equation

(1− x)F (x) = F (xk)

and satisfying F (0) = 1 is not k-regular. This can easily be shown using
Proposition 7.5.

Theorem 7.6 (Becker). Let K be a field, let k be a natural number ≥ 2,
and let F (x) ∈ K[[x]] be a power series that satisfies a k-Mahler equation of
the form

(7.12) F (x) =

n∑

i=1

Pi(x)F (xk
i

)

for some polynomials P1(x), . . . , Pn(x) ∈ K[x]. Then F (x) is a k-regular
power series.

Definition 7.7. In honour of Becker’s result, a power series F (x) ∈ K[[x]]
that satisfies an equation of the form given in Equation (7.12) will be called
a k-Becker power series.

Theorem 7.6 shows that the set of k-Becker power series is contained in
the set of k-regular power series. However, the converse is not true. As an
example, we provide the following result that will also be used in Section 13.

Proposition 7.8. Let k be a natural number, and let ω ∈ C be a root of

unity with the property that if j ≥ 1 then ωkj 6= ω. Then



∞∏

j=0

(1− ωxk
j

)




−1

is k-regular but is not k-Becker.

Proof. Since ω is a root of unity, the sequence ω, ωk, ωk2 , . . . is eventually
periodic and there is some smallest natural number N such that

ωk2N = ωkN .

Set β := ωkN and let us consider the polynomial

Q(x) = (1− βx)(1− βxk) · · · (1− βxk
N−1

) .

Then
Q(xk)

Q(x)
=

1− βxk
N

1− βx
·

Since

1− βxk
N

= 1− (βx)k
N

,

we see that Q(xk)/Q(x) is a polynomial.
Since

1− (βx)k
N

=
Q(xk)

Q(x)
· (1− βx) ,
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we get that (1− ωx) divides the polynomial Q(xk)(1− βx)/Q(x). Further-
more, (1 − ωx) cannot divide (1 − βx) since by assumption ω 6= β. By
Euclid’s lemma, we thus obtain that

Q(xk)

Q(x)
= (1− ωx)S(x)

for some polynomial S(x).
Set

F (x) :=




∞∏

j=0

(1− ωxk
j

)




−1

and G(x) := Q(x)−1F (x). Since F (x) satisfies the k-Mahler recurrence

F (xk) = (1− ωx)F (x) ,

we see that

G(xk) = Q(xk)−1(1− ωx)Q(x)G(x),

or equivalently,

G(x) = S(x)G(xk) .

Thus G(x) is a k-Becker power series. By Proposition 7.4, F (x) is k-regular
as it is a product of a polynomial (which is k-regular) and a k-regular power
series.

On the other hand, F (x) cannot be a k-Becker power series. To see this,
suppose that F (x) satisfies an equation of the form

F (x) =

d∑

i=1

Pi(x)F (xk
i

) .

Now, dividing both sides by F (xk), the right side becomes a polynomial in
x, while the left side is (1− ωx)−1, a contradiction. The result follows. �

In Section 11, we will need the following basic result about k-Becker power
series.

Lemma 7.9. Let k ≥ 2 and let us assume that F (x) ∈ K[[x]] satisfies a
k-Mahler equation of the form

F (x) =
n∑

i=1

aiF (xk
i

)

for some constants a1, . . . , an ∈ K. Then F (x) is constant.

Proof. Let us denote by F (x) =
∑

i≥0 f(i)x
i the power series expansion of

F (x). If F (x) were non-constant, there would be some smallest positive
integer i0 such that f(i0) 6= 0. Thus F (x) = λ + xi0F0(x) for some λ in K
and some F0(x) ∈ K[[x]]. But taking the coefficient of xi0 in the right side
of the equation

F (x) =
n∑

i=1

aiF (xk
i

) ,

we see that f(i0) = 0, a contradiction. The result follows. �



21

Though there are some Mahler functions that are not Becker functions,
the following result shows that every k-Mahler power series can be decom-
posed as the product of a k-Becker power series and the inverse of an infinite
product of polynomials. This decomposition will turn out to be very useful
to prove Theorem 1.3. This result appears as Theorem 31 in the Thèse de
Doctorat of Dumas [14].

Proposition 7.10. Let k be a natural number, let K be a field, and let
F (x) ∈ K[[x]] be a k-Mahler power series satisfying an equation of the form

n∑

i=0

Pi(x)F (xk
i

) = 0 ,

where P0(x), . . . , Pn(x) ∈ K[x] and P0(0) = 1. Then there is a k-Becker
power series G(x) such that

F (x) =

(
∞∏

i=0

P0(x
ki)

)−1

G(x) .

8. Conditions on k and ℓ

In this section, K will denote an arbitrary field. We consider power series
in K[[x]] that are both k- and ℓ-Mahler with respect to two multiplicatively
independent natural numbers k and ℓ. More specifically, we look at the set
of natural numbers m for which such a power series is necessarily m-Mahler.

Proposition 8.1. Let k and ℓ be two integers ≥ 2 and let F (x) ∈ K[[x]] be
a power series that is both k- and ℓ-Mahler. Let us assume that a and b are
integers with the property that m := kaℓb is an integer and m > 1. Then
F (x) is also m-Mahler.

Proof. Let V denote the K(x)-vector space spanned by all the power series

that belong to the set
{
F (xk

aℓb) | a, b ∈ N

}
. Recall that by Lemma 4.1, we

can assume that the corresponding Mahler equations are both homogeneous.
Hence there exists some natural numberN such that for every integer n ≥ N

we have F (xk
n

) =
∑N−1

i=0 Pi,n(x)F (xk
i

) and F (xℓ
n

) =
∑N−1

i=0 Qi,n(x)F (xℓ
i

)
for some rational functions P0,n(x), . . . , PN−1,n(x), Q0,n(x), . . . , Qn,N−1(x).
Thus V is a K(x)-vector space of dimension at most N2.

Suppose that a and b are integers such that m := kaℓb is an integer and

m > 1. If a and b are nonnegative, then F (xm
j

) ∈ V for every integer j ≥ 0
and since the dimension of V is finite, we see that F (x) is m-Mahler. Thus
we may assume that at least one of a or b is negative. Since m ≥ 1, at least
one of a or b must also be positive. Without loss of generality, we may thus
assume that a > 0 and b < 0.

We are now going to show that F (xm
j

) ∈ V for every nonnegative integer
j. To see this, we fix a nonnegative integer j. Then we observe thatmjℓ−bj =

kja and thus F (xm
j li) belongs to V for every integer i ≥ −bj. Since −bj ≥ 0,

there exists a smallest nonnegative integer i0 such that F (xm
jℓi) ∈ V for

every integer i ≥ i0. If i0 is zero, then we are done. We assume that i0
is positive and look for a contradiction. By definition of i0, we note that
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F (xm
jℓi0−1

) 6∈ V . By assumption, F (x) satisfies a ℓ-Mahler equation of the
form

N∑

i=0

Pi(x)F (xℓ
i

) = 0 ,

with P0(x), . . . , PN (x) ∈ K[x] and P0(x) 6= 0. Applying the operator x 7→
xm

jℓi0−1
, we get that

P0(x
mjℓi0−1

)F (xm
jℓi0−1

) = −
N∑

i=1

Pi(x
mjℓi0−1

)F (xm
jℓi0−1+i

) .

By definition of i0, the right side of this equation is in V , and so

F (xm
jℓi0−1

) ∈ V since P0(x) is nonzero. This is a contradiction. It fol-

lows that F (xm
j

) ∈ V for every nonnegative integer j.
Since V is a K(x)-vector space of dimension at most N2, we see that

F (x), F (xm), . . . , F (xm
N2

) are linearly dependent over K(x), which implies
that F (x) is m-Mahler. This ends the proof. �

Remark 8.2. Taking k = ℓ and b = 0 in Proposition 8.1, we see that if a
power series F (x) is k-Mahler then it is also ka-Mahler for every a ≥ 1. The
converse is obvious. Consequently, if k and ℓ are multiplicatively dependent
natural numbers, then F (x) is k-Mahler if and only if it is ℓ-Mahler.

Corollary 8.3. Let k and ℓ be two multiplicatively independent natural num-
bers and let F (x) ∈ K[[x]] be a power series that is both k- and ℓ-Mahler.
Then there exist two multiplicatively independent positive integers k′ and ℓ′

such that the following conditions hold.

(i) There is a prime number p that divides k′ and does not divide ℓ′.

(ii) There is a prime number q that divides ℓ′ and does not divide k′.

(iii) F (x) is both k′- and ℓ′-Mahler.

Proof. There exist prime numbers p1, . . . , pm and nonnegative integers
a1, . . . , am, b1, . . . , bm such that

k =
m∏

i=1

paii and ℓ =
m∏

i=1

pbii .

Moreover, we can assume that, for each i, at least one of ai or bi is positive.
Note that if there are i and j such that ai = 0 and bj = 0, then we

can take k′ := k and ℓ′ := ℓ and set p := pj and q := pi to obtain the
desired result. Thus we can assume without loss of generality that bi > 0 for
i ∈ {1, . . . ,m}. Then there is some i0 ∈ {1, . . . ,m} such that ai0/bi0 ≤ aj/bj
for all j ∈ {1, . . . ,m}. In particular, cj := ajbi0 − bjai0 is a nonnegative
integer for all j ∈ {1, . . . ,m}. Hence

k′ := kbi0 ℓ−ai0 =

m∏

j=1

p
cj
j ∈ N .

Furthermore, pi0 does not divide k′ and since k and ℓ are multiplicatively
independent, the ci’s are not all equal to zero.
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Now we pick i1 ∈ {1, . . . ,m} such that ci1/bi1 ≥ cj/bj for all j ∈
{1, . . . ,m}. Note that ci1 > 0 since the ci’s are not all equal to zero. Set

ℓ′ := ℓci1 (k′)−bi1 =

m∏

j=1

p
bjci1−bi1cj
j ∈ N .

Since ci0 = 0, ci1 > 0 and the bi’s are positive, we get that pi0 divides ℓ′.
Moreover, pi1 does not divide ℓ′ while pi1 divides k′ for ci1 is positive. In
particular, k′ and ℓ′ are multiplicatively independent. Furthermore, Propo-
sition 8.1 implies that F (x) is both k′- and ℓ′-Mahler. Setting q := pi0
and p = pi1 , we obtain that k′ and ℓ′ have all the desired properties. This
concludes the proof. �

9. Asymptotic estimates for some infinite products

In this section, we study the behaviour around the unit circle of infinite
products of the form (

∞∏

i=0

P (xk
i

)

)−1

,

where P (x) ∈ C[x] and P (0) = 1. We obtain some asymptotic estimates
that will be necessary in Section 11.

We will prove that when α is a root of unity satisfying αk = α that is not
a root of P , then this product is rather well-behaved when approaching α
through certain well-chosen sets of points. Throughout Sections 9, 10, and
11, we make use of certain subsets of the unit circle having 1 as a limit point.
We define these sets now.

Definition 9.1. Let ε ∈ (0, 1) and let θ ∈ [−1, 1]. Then we define

(9.13) Xθ,ε := {exp((−1 + iθ)s) | s ∈ (0, ε)}.
We take Xθ to be the set {0} ∪ {exp((−1 + iθ)s | s ≥ 0}.

We note that each Xθ is a compact subset of the closed unit disk. In fact,
Xθ is homeomorphic to R≥0 ∪ {+∞}.

−0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8



24 BORIS ADAMCZEWSKI AND JASON P. BELL

This picture of the full set Xθ, with θ = 5, shows the spiral-like structure
of the curve.
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This picture shows the set Xθ,ε, where we take θ = 5 and ǫ = 1.5.

Moreover, if θ 6= θ′, two sets of the formXθ,ε andXθ′,ε′ are always disjoint.
This can be seen by noting that if exp((−1 + iθ)s) = exp((−1 + iθ′)s′),
with θ, θ′ ∈ [0, 1], then they have the same modulus and hence s = s′;
next we must have that exp(iθs) = exp(iθ′s) and so (θ − θ′)s must be an
integer multiple of 2π, which can only occur if θ = θ′ since |θ − θ′| ≤ 2 and
0 < s < 1. Finally, we remark that a set of the form Xθ,ε has the property
that if y ∈ Xθ,ε and k is a positive integer then there is a unique point

z ∈ Xθ,ε such that zk = y.

Proposition 9.2. Let k ≥ 2 be a natural number, let α be root of unity
that satisfies αk = α, and let P (x) be a nonzero polynomial with P (0) = 1
and P (α) 6= 0. Then for all but countably many θ ∈ [−1, 1], there exist two
positive real numbers A and ε ∈ (0, 1), depending upon θ, such that

|1− t|A <

∣∣∣∣∣∣




∞∏

j=0

P ((tα)k
j

))




−1∣∣∣∣∣∣
< |1− t|−A

whenever t ∈ Xθ,ǫ.

In contrast, the following result shows that such infinite products behave
differently when α is a root of P . In the case where k = 2, we point out that
a different proof can be found in [5, Théorème 3]. Precise asymptotics for
the coefficients of the power series expansion of this infinite product has also
been studied by Mahler, de Bruijn, and Dumas and Flajolet (see [15] and the
references therein). We give the following proof for the sake of completeness.

Lemma 9.3. Let k ≥ 2 be a natural number. Then if {tn} is a sequence of
complex numbers with |tn| < 1 for every n such that tn → 1 as n → ∞ then

lim
n→∞

∣∣∣∣∣∣

∞∏

j=0

1

1− tkjn

∣∣∣∣∣∣
· |1− tn|A = ∞ ,
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for every positive real number A.

Proof. By ignoring some initial terms of our sequence, we may assume that
|1 − tn| ∈ (0, 1/k9) for every n. Now let t ∈ B(0, 1) be such that |1 − t| ∈
(0, 1/k9). Let N ≥ 2 be the largest natural number such that |1 − t| ∈
(0, k−(N+1)2). Then

∣∣∣∣∣∣

∞∏

j=0

(1− tk
j

)−1

∣∣∣∣∣∣
≥

∣∣∣∣∣∣

N∏

j=0

(1− tk
j

)−1

∣∣∣∣∣∣

=
∣∣∣(1− t)−(N+1)

∣∣∣

∣∣∣∣∣∣

N∏

j=0

(1 + t+ · · ·+ tk
j−1)−1

∣∣∣∣∣∣

≥
∣∣∣(1− t)−(N+1)

∣∣∣
N∏

j=0

k−j

≥ |1− t|−(N+1)k−(N+1)2

> |1− t|−N .

By definition of N , we obtain that |1 − t| > k−(N+2)2 , which easily gives
that

N >

√
− log |1− t|

4 log k
·

This ends the proof for the right side tends to infinity when t tends to 1. �

We are now going to prove Proposition 9.2. We will need the following
two auxiliary results.

Lemma 9.4. Let k ≥ 2 be a natural number. Then for t ∈ (0, 1), we have
∞∑

i=1

ti/i ≥ (1− 1/k)

∞∑

i=0

tk
i

.

Proof. We have

∞∑

i=1

ti/i = t+
∞∑

i=0

ki+1∑

j=ki+1

tj/j

≥ t+

∞∑

i=0

ki+1∑

j=ki+1

tk
i+1

/ki+1

= t+
∞∑

i=0

tk
i+1

(ki+1 − ki)/ki+1

= t+ (1− 1/k)
∞∑

i=0

tk
i+1

≥ (1− 1/k)

∞∑

i=0

tk
i

,

which ends the proof. �
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Lemma 9.5. Let k ≥ 2 be a natural number and let λ 6= 1 be a complex
number. Then for all but countably many θ ∈ [−1, 1], there exist two positive
real numbers A and ε ∈ (0, 1), depending upon θ, such that

|1− t|A <

∣∣∣∣∣∣

∞∏

j=0

1

1− λtkj

∣∣∣∣∣∣
< |1− t|−A

whenever t ∈ Xθ,ε.

Proof. We first prove the inequality on the right side.
We note that for each j ≥ 0 there are only finitely many complex solutions

to the equation 1 − λtk
j

= 0, and thus there are at most countably many
solutions as j ranges over all nonnegative integers. As already observed, for
θ 6= θ′ with θ, θ′ ∈ [−1, 1] and for ε, ε′ ∈ (0, 1), one has Xθ,ε ∩Xθ′,ε′ = ∅. It
follows that for all but countably many values of θ ∈ [−1, 1] the equation

1 − λtk
j

= 0 has no solution on Xθ,ε whenever ε ∈ (0, 1). Moreover, since
λ 6= 1, t = 1 and t = 0 are never a solution, this equation has no solution
in Xθ. For the remainder of the proof we assume that θ ∈ [−1, 1] has this
property.

Observe that Xθ is a compact set that is closed under the map t 7→ tk

and we have that 1−λt is nonzero for t ∈ Xθ. By compactness, we see that
there exist two positive real numbers ε0 and c0, c0 < 1 and depending upon
θ, such that

(9.14) inf
{∣∣∣1− λtk

j
∣∣∣ : t ∈ Xθ,ε0 , j ≥ 0

}
> c0 .

We fix t ∈ Xθ,ε0 and we let N = N(t) to be the largest nonnegative integer

such that |tkN | ≥ 1/2. Then for j ≥ 1 we have
∣∣∣tkN+j

∣∣∣ =
∣∣∣(tkN+1

)k
j−1
∣∣∣ <

(1/2)k
j−1

. Hence
∣∣∣1− λtk

N+j
∣∣∣ ≥ 1− |λ|(1/2)kj−1

.

Since the series
∑

j≥0(1/2)
kj−1

converges, we get that the infinite product

∞∏

j=N(t)+1

∣∣∣∣
1

1− λtkj

∣∣∣∣

is uniformly bounded over Xθ,ε0 by some constant c1. (We note that λ 6= 1
is fixed, N = N(t) depends upon t, t ∈ Xθ,ε0 , and it is necessary to begin
the product at N + 1 in order to achieve uniformity in our bound.) Then

∣∣∣∣∣∣

∞∏

j=0

(1− λtk
j

)−1

∣∣∣∣∣∣
=

N∏

j=0

∣∣∣1− λtk
j
∣∣∣
−1

∞∏

j=1

∣∣∣1− λtk
N+j
∣∣∣
−1

≤ (1/c0)
N+1c1

= (kN+1)− log c0/ log kc1 .
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Furthermore, we have by assumption that
∣∣∣tkN+1

∣∣∣ < 1/2 and thus kN+1 <

− log 2/ log |t|. This implies that
∣∣∣∣∣∣

∞∏

j=0

(1− λtk
j

)−1

∣∣∣∣∣∣
≤ c1 (− log 2/ log |t|)− log c0/ log k .

Now we let t tend to 1 along Xθ,ε0 , that is we write t = exp((−1 + iθ)s)
with s ∈ (0, ε0) and we let s tend to 0. Then we have |t| = exp(−s) and so
log |t| = −s. Then when t → 1 along the arc Xθ,ε0 we have that |1−t|/ log |t|
tends to

lim
s→0

|1− exp((−1 + iθ)s)|
−s

= −| − 1 + iθ| ≥ −
√
2

and hence there exists some positive real numbers ε < ε0 and c2 such that

c1 (− log 2/ log |t|)− log c0/ log k < c2|1− t|log c0/ log k ,
whenever t ∈ Xθ,ε. Since c0 < 1, we obtain that there exists a positive real
number A1 such that

∣∣∣∣∣∣

∞∏

j=0

(1− λtk
j

)−1

∣∣∣∣∣∣
< |1− t|−A1 ,

for all t ∈ Xθ,ε. This gives the right side bound in the statement of the
lemma.

To get the left side, note that for all t ∈ Xθ,∣∣∣∣∣∣

∞∏

j=0

1

1− λtkj

∣∣∣∣∣∣
≥

∞∏

j=0

∣∣∣1 + |λ||t|kj
∣∣∣
−1

≥
∞∏

j=0

exp(−|λ| · |t|kj) .

By Lemma 9.4, we have

∞∏

j=0

exp(−|λ| · |t|kj ) ≥ exp

(
−|λ|(1 − 1/k)−1

∞∑

i=1

|t|i/i
)

= (1− |t|)|λ|k/(k−1) .

We thus obtain that, for all t ∈ Xθ,∣∣∣∣∣∣

∞∏

j=0

1

1− λtkj

∣∣∣∣∣∣
≥ (1− |t|)A2 ,

where A2 := ⌊|λ|k/(k−1)⌋+1. Now we note that, when t → 1 along the arc
Xθ,ε0 , we have |1− t|/(1−|t|) tends to |−1+ iθ| ∈ [1,

√
2], which can be seen

by writing t = exp((−1 + iθ)s) and letting s → 0 and taking limits. Since
ε < 1, it follows that there is some positive constant A3 > A2 for which we
have ∣∣∣∣∣∣

∞∏

j=0

1

1− λtkj

∣∣∣∣∣∣
> |1− t|A3 ,

whenever t ∈ Xθ,ε.
Taking A to be equal to the maximum of A1 and A3, we get the desired

result. �
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Proof of Proposition 9.2. Let β1, . . . , βs denote the complex roots of P (con-
sidered with mutliplicities) so that we may factor P (x) as P (x) = (1 −
β−1
1 x) · · · (1− β−1

s x). We thus obtain
∣∣∣∣∣∣

∞∏

j=0

1

P ((tα)kj )

∣∣∣∣∣∣
=

s∏

i=1

∣∣∣∣∣∣

∞∏

j=0

1

1− β−1
i αtkj

∣∣∣∣∣∣
,

where β−1
i α 6= 1 for every i ∈ {1, . . . , s}. Then by Lemma 9.5, there are

cocountable8 subsets Yi of [−1, 1] such that for a given i and a given θ ∈ Yi,
there exist a natural number A and a positive real number ε, 0 < ε < 1,
depending upon θ, such that

|1− t|A <

∣∣∣∣∣∣

∞∏

j=0

(1− β−1
i αt)−1

∣∣∣∣∣∣
< |1− t|−A

whenever t ∈ Xθ,ε. Since the finite intersection of cocountable sets is co-
countable, we see that taking Y = Y1∩· · ·∩Ys, that whenever θ ∈ Y we have
there exist natural numbers Ai and positive real numbers εi, 0 < εi < 1,
depending upon θ, such that

|1− t|Ai <

∣∣∣∣∣∣

∞∏

j=0

(1− β−1
i αt)−1

∣∣∣∣∣∣
< |1− t|−Ai

whenever t ∈ Xθ,εi . Taking ε := min(ε1, . . . , εs) and A :=
∑s

i=1Ai, we
obtain the desired result. �

10. Asymptotic estimates for solutions of analytic

Mahler-type systems

In this section, we fix a non-trivial norm ‖ · ‖ on Cd. We let B(x, r)

(respectively B(x, r)) denote the open (respectively closed) ball of radius
r centered at x. Our results will not depend on the choice of this norm.
Throughout this section, we make use of the sets Xθ,ε and Xθ defined in
Definition 9.1.

As defined in Section 7, a Becker function F (x) ∈ C[[x]] is an analytic
function on the open unit disk satisfying a functional equation of the form:

F (x) =

n∑

i=1

Pi(x)F (xk
i

)

for some polynomials P1(x), . . . , Pn(x) ∈ C[x]. Of course, such an equation
leads to a k-Mahler linear system




F (x)
...

F (xk
n−1

)


 = A(x)




F (xk)
...

F (xk
n

)


 ,

where A(x) is an n×n matrix with polynomial entries. In what follows, we
provide an asymptotic lower bound around certain points of the unit circle
for solutions of similar systems but associated with more general matrices.

8This means, of course, that the complement of Yi in [−1, 1] is a countable set.
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Indeed, we consider matrices whose entries are only assumed to be analytic
on B(0, 1) and continuous on B(0, 1). This result will be used in Section 11.

Proposition 10.1. Let d and k be two natural numbers, let α be a root of
unity such that αk = α and let A : B(0, 1) → Md(C) be a continuous matrix-
valued function. Let us assume that w(x) ∈ C[[x]]d satisfies the equation

w(x) = A(x)w(xk)

for all x ∈ B(0, 1). Let us also assume that the following properties hold.

(i) The coordinates of w(x) are analytic in B(0, 1) and continuous on

B(0, 1).

(ii) The matrix A(α) is not nilpotent.

(iii) There exist two positive real numbers ε and M such that
|det(A(x))| > (1− |x|)M for every x with 1− ε < |x| < 1.

(iv) The set {w(x) | x ∈ B(0, 1)} is not contained in a proper vector
subspace of Cd.

If ζ is a root of unity such that ζk
j

= 1 for some natural number j and
θ ∈ [−1, 1], then there exist a positive real number C and a subset S ⊆ Xθ

that has 1 as a limit point such that

||w(tαζ)|| > |1− t|C

for all t ∈ S.

Before proving Proposition 10.1, we will need two auxiliary results.

Lemma 10.2. Let d and k be two natural numbers, let α be a root of unity
such that αk = α, and let A : B(0, 1) → Md(C) be a continuous matrix-
valued function. Let us assume that w(x) ∈ C[[x]]d satisfies the equation

w(x) = A(x)w(xk)

for all x ∈ B(0, 1). Let us also assume that the following properties hold.

(i) The coordinates of w(x) are analytic in B(0, 1) and continuous on

B(0, 1).

(ii) The matrix A(α) is not nilpotent.

(iii) The set {w(x) | x ∈ B(0, 1)} is not contained in a proper vector
subspace of Cd.

Then if θ ∈ [−1, 1], then there exist a positive real number C and a subset
S ⊆ Xθ that has 1 as a limit point such that

||w(tα)|| > |1− t|C

for all t ∈ S.
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Proof. Since A(α) is not nilpotent, there is some natural number e such that
the kernel of A(α)e and the kernel of A(α)e+1 are equal to a same proper
subspace of Cd, say W . Then there is a nonzero vector subspace V such
that A(α)(V ) ⊆ V and V ⊕W = Cd. Moreover, by compactness, there is a
positive real number c0, c0 < 1, such that

(10.15) ||A(α)(w)|| ≥ c0

whenever w ∈ V is a vector of norm 1.
Since every vector x has a unique decomposition of the form v ⊕ w with

v in V and w in W , we see that the map π(x) := v gives a continuous linear
projection map π : Cd → V with the property that u − π(u) ∈ W for all
u ∈ Cd. We infer from Inequality (10.15) that

(10.16) ||π(A(α)(u))|| = ‖A(α)(π(u))‖ ≥ c0||π(u)||

for all u ∈ Cd. Since A is continuous on B(0, 1), Inequality (10.16) implies
the existence of a positive constant ε > 0 such that

||π(A(x)(u))|| > (c0/2)||π(u)|| ,

for all u ∈ Cd and all x ∈ B(α, ε)∩B(0, 1). It follows by a simple induction

that if x1, . . . , xm ∈ B(α, ε) ∩B(0, 1) then

(10.17) ||π(A(x1) · · ·A(xm)(u))| ≥ (c0/2)
m||π(u)|| .

Let θ ∈ [−1, 1]. We claim that there exists a complex number t0 such that
t0 ∈ Xθ ∩ B(1, ε) and w(t0α) 6∈ W . Otherwise, there would be a nonzero
row vector u such that u · w(tα) = 0 for all t ∈ Xθ ∩ B(1, ε). But u · w(x)
is analytic in B(0, 1) for w(x) is and hence it would be identically zero on
B(0, 1) by the identity theorem since Xθ ∩B(1, ε) has accumulation points
inside the open unit disk. This would contradict assumption (iii).

From now on, we fix a complex number t0 with this property. For every
i ≥ 1, we then define ti to be the unique element in Xθ such that tki = ti−1.
Since w(t0α) 6∈ W , there exists a positive real number c1 such that

||π(w(t0α))|| = c1 > 0 .

Furthermore, by construction, the sequence t0, t1, t2, . . . belongs to Xθ ∩
B(1, ε). We thus infer from (10.17) that

||π(w(tnα))|| = ||π(A(tnα)A(tn−1α) · · ·A(t1α)(w(t0α))||

≥ (c0/2)
n||π(w(t0α)||

≥ c1(c0/2)
n ,

for all n ≥ 1. Furthermore, since the projection π is continuous, there is
some positive real number c2 such that ||π(u)|| < c2||u|| for all u ∈ Cd. Thus

||w(tnα)|| ≥ c−1
2 ||π(w(tnα))|| ≥ c−1

2 c1(c0/2)
n

for all n ≥ 1.
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On the other hand, we note that we have a map log : Xθ \ {0} → C given
by log(exp((−1 + iθ)s) = (−1 + iθ)s, and for each positive real number a,
we have an a-th power map Xθ → Xθ given by t 7→ exp(a log(t)). Since

lim
a→0+

ta0 − 1

a
= log(t0) ,

we have that |ta0 − 1|/a|t0 − 1| → | log(t0)|/|t0 − 1|, as a → 0+. Since t0 is
fixed, we let κ denote the quantity | log(t0)|/|t0 − 1|.

Then there exists some ε0 ∈ (0, 1) such that

|ta0 − 1| < 2aκ|1 − t0|
for a ∈ (0, ε0). Thus if n is large enough, say n ≥ n0, then kn > 1/ε0 and we

have |tn− 1| = |(t0)1/kn − 1| < 2κ|1− t0|/kn. Hence kn > 2κ|1− t0|/|1− tn|.
Then for n ≥ n0 we have

||w(tnα)|| > c−1
2 c1(c0/2)

n

= c−1
2 c1k

n logk(c0/2)

≥
(
c−1
2 c1 (2κ|1− t0|)logk(c0/2)

)
|1− tn|− logk(c0/2).

Thus if we take C := −2 logk(c0/2) > 0, the fact that tn tends to 1 as n
tends to infinity implies the existence of a positive integer n1 ≥ n0 such that

||w(tnα)|| > |1− tn|C ,

for all n ≥ n1. Taking S := {tn | n ≥ n1}, we obtain the desired result. �

Lemma 10.3. Let B : B(0, 1) → Md(C) be a continuous matrix-valued
function whose entries are analytic inside the unit disk and continuous on
the closed unit disk. Let us assume that there exist two positive real numbers
ε and M such that |det(B(x))| > (1 − |x|)M for every x such that 1 − ε <
|x| < 1. Then there exists a positive real number C such that for every
column vector u of norm 1, we have

||B(x)(u)|| ≥ (1− |x|)C

for every x such that 1− ε < |x| < 1.

Proof. Our assumption implies that B(x) is invertible for every x such that
1 − ε < |x| < 1. Let ∆(x) denote the determinant of B(x). Using the
classical adjoint formula for the inverse of B(x), we see that B(x)−1 has
entries ci,j(x) that have the property that they are expressible (up to sign)
as the ratio of the determinant of a submatrix of B(x) and ∆(x). Since the

entries of B(x) are continuous on B(0, 1), each determinant of a submatrix

of B(x) is also continuous on B(0, 1). By compactness, we see that there is
a positive real number κ such that

|ci,j(x)| ≤ κ/|∆(x)| ≤ κ(1 − |x|)−M

for every (i, j) ∈ {1, . . . , d}2 and every x such that 1 − ε < |x| < 1. Thus
there exists a positive real number C such that

‖B(x)−1‖ ≤ (1− |x|)−C
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for every x such that 1− ε < |x| < 1. It follows that if u is a vector of norm
1, then

‖B(x)(u)‖ ≥ (1− |x|)C .
for every x such that 1− ε < |x| < 1. The result follows. �

Proof of Proposition 10.1. Let θ ∈ [−1, 1]. Since A(α) is not nilpotent, we
first infer from Lemma 10.2 that there exist a positive real number C0 and
a sequence tn ∈ Xθ, which tends to 1, such that ||w(tnα)|| > |1 − tn|C0 for

every integer n ≥ 1. Let sn ∈ Xθ be such that sk
j

n = tn. Then

w(snαζ) = A(snαζ)A(s
k
nαζ

k) · · ·A(skj−1

n αζk
j−1

)(w(tnα)) .

By assumption there exists a positive real number M such that
|det(A(x))| > (1− |x|)M for every x with 1− ε < |x| < 1. Set

B(x) := A(xαζ)A(xkαζk) · · ·A(xkj−1
αζk

j−1
) .

Then there is a positive real number C1 such that if (1 − ε)1/k
j−1

< |x| < 1
then

det(B(x)) > (1− |x|)M · · · (1− |x|kj−1
)M ≥ (1− |x|)jM .

It follows from Lemma 10.3 that there exists a positive real number C1 such
that for n sufficiently large we have

||w(snαζ)|| = ||B(sn)(w(tnα))|| > (1− |sn|)C1 ||w(tnα)||
> (1− |sn|)C1 |1− tn|C0 .

We have that tn = exp((−1 + iθ)un) where un is a sequence of positive
numbers tending to 0. Taking limits, we then see that |1− tn|/(1− |sn|) →
| − 1 + iθ| · kj and |1− sn|/(1 − |sn|) → | − 1 + iθ| as n → ∞. Hence there
exists a positive real number C such that

||w(snαζ)|| ≥ |1− sn|C

for all n sufficiently large. The result follows. �

11. Elimination of singularities at certain roots of unity

In this section we look at the singularities of k-Mahler functions at roots
of unity of a certain form. Strictly speaking, we do not necessarily eliminate
singularities, and so the section title is perhaps misleading. We do, however,
show that one can reduce to the case of considering Mahler equations whose
singularities at roots of unity have a restricted form.

Assumption–Notation 11.1. Throughout this section we make the fol-
lowing assumptions and use the following notation.

(a) We assume that k and l are integers, k, l ≥ 2, for which: there exists
a prime p such that p|k and p does not divide ℓ, and there exists a
prime q such that q|ℓ and q does not divide k. In particular, k and
ℓ are two multiplicatively independent integers.
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(b) We assume that F (x) is a k-Mahler complex power series that sat-
isfies an equation of the form

a∑

i=0

Ai(x)F (xk
i

) = 0

with A0, . . . , Aa ∈ C[x] and A0(0) 6= 0.

(c) We assume that F (x) is an ℓ-Mahler complex power series that sat-
isfies an equation of the form

b∑

i=0

Bi(x)F (xℓ
i

) = 0

with B0, . . . , Bb ∈ C[x] and B0(0) 6= 0.

In this section, our aim is to prove the following result. It will be a key
result for proving Theorem 1.3.

Theorem 11.2. Let F (x) ∈ C[[x]] be a power series that satisfies
Assumption-Notation 11.1 and that is not a polynomial. Then F (x) sat-
isfies a non-trivial k-Mahler equation of the form

c∑

i=0

Pi(x)F (xk
i

) = 0

with the property that P0(0) = 1 and P0(α) 6= 0 if α is a root of unity

satisfying αkj = α for some positive integer j.

Though this result is of a purely algebraic nature, our proof relies heavily
on analytic methods. One may ask whether a purely algebraic proof exists.

Strategy of proof. Using Assumptions (b) and (c), Proposition 7.10 leads to
two different expressions for F :

F (x) =




∞∏

j=0

A0(x
kj )




−1

H(x) and F (x) =




∞∏

j=0

B0(x
ℓj )




−1

G(x) ,

where H is k-Becker and G is ℓ-Becker. This gives:



∞∏

j=0

A0(x
kj)




−1

=




∞∏

j=0

B0(x
ℓj )




−1

G(x)H(x)−1 .

We want to argue by contradiction assuming that A0 has a root α satisfying

αki0 = α for some positive integer i0. The main idea is to use the asymptotics
of Sections 7, 9, and 10 in order to show that the absolute values of the
left-hand side and the right-hand side of the above Equality behave really
differently in some neighbourhood of α, providing a contradiction. However,
there are several technical difficulties and the proof will be divided into seven
steps, as briefly described below.
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In Step 1, we will first replace, for technical reasons, F by some function
F0 and the Equality above will be consequently replaced by

(11.18)




∞∏

j=0

Q̃0(x
ki0j )




−1

=




∞∏

j=0

R0(x
ℓj )




−1

G(x)H(x)−1 ,

where Q̃0 is a polynomial satisfying Q̃0(α) = 0 and αki0 = α. Again for
technical reasons, we will also have to replace the point α by αζ0, where ζ0
is some well-chosen pn-th root of unity (the choice of ζ0 is made in Step 3).
Here, p denotes the prime from Assumption (a).

At this point, one could use the results of Sections 7 and 9 to derive upper

bounds showing that both

∣∣∣∣
(∏∞

j=0R0(x
ℓj )
)−1

∣∣∣∣ and |G(x)| do not grow too

fast in some neighbourhood of the point αζ0. In contrast, it follows from

Lemma 9.3 and Proposition 9.2 that

∣∣∣∣
(∏∞

j=0 Q̃0(x
ki0j )

)−1
∣∣∣∣ becomes much

bigger at certain well-chosen points near this point since Q̃0(α) = 0 and

αki0 = α. This would be enough to derive a contradiction if we were able to
obtain a lower bound for |H(x)| around αζ0. Since H is a k-Becker function,
it is easy to obtain a general upper bound (as we will do for G in Step 5),
but we cannot obtain a suitable lower bound because the matrix associated
with the underlying linear system of functional equations could be nilpotent.

In order to overcome this difficulty, we will replace H by the function

L(x) := H(x)
(∏∞

j=0(1− α−1xk
i0j)r

)
, for some well-chosen rational param-

eter r. The choice of the parameter r will be given at Step 2. Once this last
modification is made, one obtains, instead of Equality (11.18), an equality
of the form:
∣∣∣∣∣∣

∞∏

j=0

(1− α−1xk
i0j

)−b

∣∣∣∣∣∣
=

∣∣∣∣∣∣




∞∏

j=0

R0(x
ℓj )




−1

G(x)




∞∏

j=0

S0(x
ki0j)


 L(x)−1

∣∣∣∣∣∣
,

where S0 is some polynomial and b is positive. It corresponds to Equality
(11.25) in the proof.

In step 3, we will show that our choice of r allows to derive a suitable
lower bound for |L(x)| around αζ0 by applying Proposition 10.1. On the
other hand, in Steps 4, 5, and 6, we will use the results of Sections 7 and 9

in order to provide suitable upper bounds for

∣∣∣∣
(∏∞

j=0R0(x
ℓj )
)−1

∣∣∣∣, |G(x)|,

and
∣∣∣
∏∞

j=0 S0(x
ki0j )

∣∣∣ around αζ0.

In step 7, we will finally gather all the bounds obtained in Steps 3, 4, 5, and
6 in order to deduce that, around αζ0, the right-hand side of Equality (11.25)
is much smaller than the left-hand side should be according to Lemma 9.3.
This will provide the desired contradiction.

With the preliminary results of Sections 6, 7, 9, and 10, we are now almost
ready to prove Theorem 11.2. Before doing this, we give the following simple
lemma. We recall that the Kronecker symbol δi,j is defined, as usual, by
δi,j = 1 if i = j and δi,j = 0 otherwise.
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Lemma 11.3. Let d be a natural number and let A be a d × d complex
matrix whose (i, j)-entry is δi,j+1 if i ≥ 2. If there is an integer r such that
the (1, r)-entry of of A is nonzero, then A is not nilpotent.

Proof. Let (a1, . . . , ad) denote the first row of A. Then by the theory of
companion matrices, A has characteristic polynomial xd−a1x

d−1−a2x
d−2−

· · · − ad. But if A is nilpotent, its characteristic polynomial must be xd and
hence the first row of A must be zero. �

Proof of Theorem 11.2. Consider the set I of all polynomials P (x) ∈ C[x]
for which there exist positive integers a and b with 0 < a < b such that

P (x)F (x) ∈
b∑

j=a

C[x]F (xk
j

) .

We note that I is an ideal of C[x]. Let P0(x) be a generator for I. It follows
from assumption (b) that P0(0) 6= 0 and we can assume without loss of
generality that P0(0) = 1. Let us assume that α is a root of P0(x) with

the property that αki0 = α for some positive integer i0. We will obtain a
contradiction from this assumption, which will prove the theorem.

Step 1 (preliminaries). Since F (x) is k-Mahler, it is also ki0-Mahler and
hence F (x) satisfies a non-trivial polynomial equation of the form

d∑

j=0

Qj(x)F (xk
i0j

) = 0

with Q0, . . . , Qd polynomials and Q0(x)Qd(x) 6= 0. We pick such a nontrivial
relation with Q0 nonzero and the degree of Q0 minimal. By assumption P0

divides Q0 and so α is a root is of Q0(x). The minimality of the degree
of Q0 also implies that gcd(Q0(x), . . . , Qd(x)) = 1. By Lemma 6.1, there
exists some natural number N such that F (x) can be decomposed as F (x) =
T (x) + xNF0(x), where T (x) is a polynomial of degree N − 1 and F0(x) is
a power series with nonzero constant term such that F0(x) satisfies a ki0-
Mahler equation of the form

(11.19)
e∑

j=0

Q̃j(x)F0(x
ki0j) = 0

with Q̃0(0) = 1, Q̃0(α) = 0 and Q̃j0(α) 6= 0 for some integer j0, 0 < j0 ≤ e.
Moreover, by pickingN sufficiently large, we may assume that F0(x) satisfies
a nontrivial ℓ-Mahler equation

f∑

j=0

Rj(x)F0(x
ℓj ) = 0

for some polynomials Rj(x) with R0(0) = 1. Now, we infer from Proposition
7.10 that there is some ℓ-Becker power series G(x) such that

(11.20) F0(x) =




∞∏

j=0

R0(x
ℓj )




−1

G(x)



36 BORIS ADAMCZEWSKI AND JASON P. BELL

and that there is some k-Becker power series H(x) such that

(11.21) F0(x) =




∞∏

j=0

Q̃0(x
ki0j )




−1

H(x) .

Step 2 (Choice of the parameter r). For j = 0, . . . , e, we let cj denote the

order of vanishing of Q̃j(x) at α, with the convention that cj = ∞ if Q̃j(x) =
0. We note that by assumption 0 < c0 < ∞ and cj0 = 0 < c0. Let

(11.22) b := max

{
c0 − cj

j
| j = 1, . . . , e

}
.

Since at least one of c1, . . . , cd is strictly less than c0, we have that b is
positive. Moreover, by definition there is some j1 ∈ {1, . . . , e} such that
cj1 + bj1 − c0 = 0. Then, for j ∈ {0, . . . , e}, we set

(11.23) Sj(x) := Q̃j(x)

(
j−1∏

n=0

(1− α−1xk
i0n

)b

)
(1− α−1x)−c0 .

Note that (11.22) implies that S0(x) is a polynomial in C[x] such that
S0(0) = 1 and S0(α) 6= 0.

Now, we set

(11.24) L(x) := H(x)




∞∏

j=0

(1− α−1xk
i0j

)b−c0


 .

In other words, we choose r := b−c0. Then we infer from Equalities (11.20),
(11.21), (11.23), and (11.24) that
(11.25)

∞∏

j=0

(1− α−1xk
i0j

)−b =




∞∏

j=0

R0(x
ℓj )




−1

G(x)




∞∏

j=0

S0(x
ki0j)


 L(x)−1 .

Step 3 (Upper bound for |L(x)|−1). We first infer from (11.19) and (11.24)
that the function L satisfies the following relation:

e∑

n=0

Q̃n(x)




∞∏

j=n

S0(x
ki0j )−1






∞∏

j=n

(1− α−1xk
i0j

)−b


L(xk

i0n
) = 0 ,

which gives by (11.23) that

L(x) = −
e∑

n=1


Q̃n(x)Q̃0(x)

−1
n−1∏

j=0

S0(x
ki0j )

n−1∏

j=0

(1− α−1xk
i0j

)b


L(xk

i0n
)

= −
e∑

n=1


Sn(x)

n−1∏

j=1

S0(x
ki0j )


L(xk

i0n
) .
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Let A(x) denote the e × e matrix whose (i, j)-entry is δi,j+1 if i ≥ 2 and
whose (1, j)-entry is

Cj(x) := −Sn(x)
n−1∏

j=1

S0(x
ki0j )

for j = 1, . . . , e. Then the previous computation gives us the following
functional equation:

(11.26) [L(x), L(xk
i0
), . . . , L(xk

i0(e−1)
)]T = A(x)[L(xk

i0
), . . . , L(xk

i0e
)]T ,

where T denotes the transpose.
In order to obtain the desired upper bound (namely, Inequality (11.28)

that will be stated in the sequel), we are going to apply Proposition 10.1.

We thus start by showing that the vector [L(x), L(xk
i0 ), . . . , L(xk

i0(e−1)
)]T

and the matrix A(x) satisfy the assumptions (i), (ii), (iii), and (iv) of this
proposition. We first note that L(x) is not identically zero since F (x) is not a
polynomial. Furthermore, we assume that L is not a nonzero constant since
otherwise the desired upper bound (11.28) would be immediately satisfied.

(i) By definition,

Sn(x) = Q̃n(x)




n−1∏

j=0

(1− α−1xk
i0j

)b


 (1− α−1x)−c0 .

Moreover, a simple computation gives that

n−1∏

j=0

(1− α−1xk
i0j

)b = (1− α−1x)bnPn(x)
b,

for some polynomial Pn(x) that does not vanish at α. By definition
of cn, this shows that

(11.27) Sn(x) = (1− α−1x)cn+bn−c0Pn(x)
bRn(x) ,

where Pn(x) and Rn(x) are two polynomials that do not vanish at
α. By the definition of b in (11.22), we have cn + bn − c0 ≥ 0 for
n ∈ {0, . . . , e}, and thus Sn(x) is analytic in the open unit disk
and continuous on the closed unit disk. Since the finite product∏n−1

j=1 S0(x
ki0j ) is a polynomial, this shows that the entries of the

matrix A(x) are analytic on B(0, 1) and continuous on B(0, 1).

(ii) As already observed, there is some integer j1, 1 ≤ j1 ≤ e, such that
cj1 + bj1 − c0 = 0. Since Pj1(α)Rj1(α) 6= 0, Equation (11.27) implies

that Sj1(α) 6= 0. On the other hand, we have that
∏j1−1

j=0 S0(x
ki0j)

does not vanish at α since S0(α) 6= 0 and αki0 = α. We thus ob-
tain that the (1, j1)-entry of A(α) is nonzero. By Lemma 11.3, this
implies that A(α) is not nilpotent.

(iii) By definition of the matrix A, we get that

detA(x) = (−1)eCe(x) = (−1)e+1Se(x)

e−1∏

n=1

S0(x
ki0n) .
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By (11.27), we have that Se(x) = (1 − α−1x)ce+be−c0Pe(x)
bRe(x),

where Pe(x) and Re(x) are polynomials. It follows that there exist
two positive real numbers δ and M such that

|detA(x)| > (1− |x|)M

for every x such that 1− δ < |x| < 1.

(iv) We claim that
{
[L(x), L(xk

i0
), . . . , L(xk

i0(e−1)
)]T | x ∈ B(0, 1)

}

cannot be contained in a proper subspace of Ce. Indeed, if it were,
then there would exist some nonzero row vector u such that

u[L(x), L(xk
i0
), . . . , L(xk

i0(e−1)
)]T = 0

for all x ∈ B(0, 1). But this would give that L(x), . . . , L(xk
i0(e−1)

)
are linearly dependent over C, and hence by Lemma 7.9, we would
obtain that L(x) is a constant function, a contradiction.

It follows from (i), (ii), (iii) and (iv) that we can apply Proposition 10.1 to

the vector [L(x), L(xk
i0 ), . . . , L(xk

i0(e−1)
)]T . From now on, we fix a positive

integer N0 that will be assume to be large enough in step 4. Let µ be
a primitive pn-th root of unity with n ≥ N0 + i0(e − 1)νp(k). Here, νp(k)
denotes the p-adic valuation of k and p is the prime number from assumption
(a). By Proposition 10.1, for every θ ∈ [−1, 1], there exist a positive integer
M0 and an infinite sequence (tθ(n))n≥0 ∈ Xθ \{1} (denoted by (t(n))n≥0 for
short) which tends to 1 such that

|| [L(t(n)αµ), L(t(n)ki0αµki0 ), . . . , L(t(n)k
i0(e−1)

αµki0(e−1)
)]T || > |1−t(n)|M0 ,

for every nonnegative integer n. By the pigeonhole principle, we can find
an integer n0 ≥ N0, a primitive pn0-th root of unity ζ0, such that for every
θ ∈ [−1, 1] there exist a sequence (sθ(n))n≥0 in Xθ \ {1} which tends to 1,
and a positive integer A1 (depending upon θ) satisfying

(11.28) |L(sθ(n)αζ0)|−1 < |1− sθ(n)|−A1

for every positive integer n.

Remark 11.4. We fix the pn0-th root of unity ζ0 once for all.

Step 4 (Upper bound for

∣∣∣∣
(∏

j≥0R0(x
ℓj )
)−1

∣∣∣∣). From assumption (a), we get

that if N0 is large enough, then R0((αζ0)
ℓj ) 6= 0 for every j ≥ 0. Let n1 and

n2, n1 < n2, be two positive integers such that

(11.29) (αζ0)
ℓn1

= (αζ0)
ℓn2

.

Then for every θ ∈ [−1, 1] and t ∈ Xθ \ {0, 1} we have

∞∏

j=0

R0((tαζ0)
ℓj ) =

n1−1∏

j=0

R0((tαζ0)
ℓj )

n2−1∏

i=n1

∞∏

j=0

R0(((tαζ0)
ℓi)ℓ

j(n2−n1)
) .
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Note that
∏n1−1

j=0 R0(x
ℓj ) is a polynomial that does not vanish at any point

of the finite set
{
(αζ0)

ℓj ) | j ≥ 0
}
. It follows that, for every θ ∈ [−1, 1],

there exist two positive real numbers C1 and ε1 such that
∣∣∣∣∣∣




n1−1∏

j=0

R0(tαζ0)
ℓj)




−1∣∣∣∣∣∣
< C1 ,

for all t ∈ Xθ,ε1 . Furthermore, Equality (11.29) implies that for every integer
i, n1 ≤ i ≤ n2 − 1, we have

((αζ0)
ℓi)ℓ

j(n2−n1)
= ((αζ0)

ℓi) .

Thus, for every integer i, n1 ≤ i ≤ n2 − 1, we can apply Proposition 9.2 to
the infinite product




∞∏

j=0

R0(((tαζ0)
ℓi)ℓ

j(n2−n1)
)




−1

.

This implies the existence of a cocountable subset Y1 of [−1, 1] such that for
each θ ∈ Y1, there is a positive real number ε2 and a positive integer A2,
both of which depend upon θ, such that

(11.30)

∣∣∣∣∣∣




∞∏

j=0

R0((tαζ0)
ℓj )




−1∣∣∣∣∣∣
< |1− t|−A2

for every t ∈ Xθ,ε2 .

Step 5 (Upper bound for |G(x)|). Note first that, since G(x) is a ℓ-Becker
power series, Theorem 7.6 implies that G(x) is ℓ-regular. By Proposition
7.5, there exist two positive real numbers C and m such that

|G(x)| < C(1− |x|)−m ,

for every complex number x in the open unit disk. This implies that there
exist two positive real numbers ε3 and A3 such that

(11.31) |G(x)| < (1− |x|)−A3

for every complex number x with 1− ε3 < 1− |x| < 1.

Step 6 (Upper bound for
∣∣∣
∏

j≥0 S0(x
ki0j)

∣∣∣). First note that since αki0 = α,

S0(0) = 1 and α is not a root of S0, we can apply Proposition 9.2. We thus
obtain the existence of a cocountable subset Y2 ⊆ [−1, 1] such that for each
θ ∈ Y2, there is some positive real numbers δ0 and a positive integer M0

such that

(11.32)

∣∣∣∣∣∣

∞∏

j=0

S0((tα)
ki0j )

∣∣∣∣∣∣
< |1− t|M0

for every t ∈ Xθ,δ0 . Henceforth, we assume that we have selected θ ∈ Y1∩Y2

and we assume that Equations (11.30) and (11.32) hold—this holds precisely
when t ∈ Xθ,ε2 ∩Xθ,δ0 = Xθ,min(ǫ2,δ0).
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We also note that (αζ0)
ki0j = α for all j ≥ n0. This implies that

(11.33)
∞∏

j=0

S0((tαζ0)
ki0j ) = R(t)

∞∏

j=0

S0((tα)
ki0j ) ,

where

R(t) =




n0−1∏

j=0

S0((tαζ0)
ki0j )






n0−1∏

j=0

S0((tα)
ki0j )




−1

.

Since αki0j = α and S0(α) 6= 0, then, for every θ ∈ Y2, there are two positive
real numbers δ1 and C2 such that

(11.34) |R(t)| < C2

for every t ∈ Xθ,δ1 .
We thus infer from (11.32), (11.33), and (11.34) that for every θ ∈ Y2

there exist a positive real number ε4 and a positive integer A4, both of
which depend upon θ, such that

(11.35)

∣∣∣∣∣∣

∞∏

j=0

S0((tαζ0)
ℓj )

∣∣∣∣∣∣
< |1− t|−A4

for t ∈ Xθ,ε4 .

Step 7 (Conclusion). Set

Π(x) :=




∞∏

j=0

R0(x
ℓj )




−1

G(x)




∞∏

j=0

S0(x
ki0j)


 L(x)−1 .

Let us fix a real number θ ∈ Y1 ∩ Y2. Collecting all the upper bounds
obtained in (11.31), (11.30), (11.35), and (11.28), we obtain that

|Π(sθ(n))αζ0)| < |1− sθ(n))|−(A1+A2+A3+A4)

for every integer n large enough. We thus infer from Equality (11.25) that
∣∣∣∣∣∣

∞∏

j=0

(1− (sθ(n)ζ0)
ki0j)−b

∣∣∣∣∣∣
= |Π(sθ(n)αζ0)| < |1− sθ(n)|−(A1+A2+A3+A4)

for every integer n large enough. But this contradicts Lemma 9.3, since

ζk
j

0 = 1 for all sufficiently large j. This concludes the proof. �

12. Existence of good prime ideals

In this section we prove the following result.

Theorem 12.1. Let R be a ring of the form OK [1/M ], where K denotes
a number field and M denotes a positive integer. Let P (x), Q(x) ∈ R[x] be
two polynomials with P (0) = Q(0) = 1 and such that none of the zeros of
P (x)Q(x) are roots of unity. Let k and l be two integers, k, l ≥ 2, for which:
there exists prime p such that p|k and p does not divide ℓ, and there exists
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a prime q such that q|ℓ and q does not divide k. Then there are infinitely
many prime ideals P in R such that

(
∞∏

i=0

P (xk
i

)

)−1

mod P and

(
∞∏

i=0

Q(xℓ
i

)

)−1

mod P

are respectively k- and ℓ-automatic power series in (R/P)[[x]].

We do not know whether or not the conclusion to the statement of Theo-
rem 12.1 holds if we allow P or Q to vanish at roots of unity, but we suspect
that the statement is false in this setting.

Our proof is based on Chebotarev’s density theorem for which we refer
the reader for example to [22] and to the informative survey [23]. We first
prove three auxiliary results.

Lemma 12.2. Let K be a number field and let α be a nonzero element in
K that is not a root of unity. Then for all sufficiently large natural numbers
n the equation βn = α has no solution β ∈ K.

Proof. Let OK be the ring of integers of K. Each nonzero prime ideal π of
OK gives rise to a rank one discrete valuation νπ of the field K. Notice that
if βn = α then νπ(α) = nνπ(β). In particular, if there exists some prime π
for which νπ(α) is nonzero then we see that, in the equation βn = α, n must
divide νπ(α) and we get the result. We may write α = a/b with a, b ∈ OK ,
nonzero. Notice that since OK is a Dedekind domain, the ideals (a) and (b)
must factor into prime ideals. Now if (a) or (b) are different ideals, then there
must be some nonzero prime ideal π of R for which the induced valuation
of α = a/b is nonzero. The previous remark thus shows that we must have
(α) = αOK = OK . We thus may assume without loss of generality that α
is a unit in R. But if βn = α then, since OK is integrally closed, we must
have β ∈ OK and β must be a unit. By Dirichlet’s unit theorem, the group
of units of OK is a finitely generated abelian group. Hence if βn = α for
infinitely many n, then α must be a torsion element of the units group. That
is, α must be a root of unity, which ends the proof. �

Lemma 12.3. Let m be a natural number and let d1, . . . , dm be positive
integers. Suppose that H is a subgroup of

∏m
i=1 (Z/diZ) with the property

that there exist natural numbers r1, . . . , rm with

1/r1 + · · · + 1/rm < 1

such that for each i ∈ {1, . . . ,m}, there is an element hi ∈ H whose i-
th coordinate has order ri. Then there is an element h ∈ H such that no
coordinate of h is equal to zero.

Proof. For each i ∈ {1, . . . ,m}, we let

πi :

m∏

i=1

(Z/diZ) → Z/diZ

denote the projection onto the i-th coordinate. Given (x1, . . . , xm) ∈ Zm we
have that x1h1 + · · · + xmhm ∈ H. Observe that the density of integers y
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for which

πi



∑

j 6=i

xjhj + yhi


 = 0

is equal to 1/ri. Since this holds for all (x1, x2, . . . , xi−1, xi+1, . . . , xm) ∈
Zm−1, we see that the density of (x1, . . . , xm) ∈ Zm for which

πi




m∑

j=1

xjhj


 = 0

is equal to 1/ri. Thus the density of (x1, . . . , xm) ∈ Zm for which

πi




m∑

j=1

xjhj


 = 0

holds for some i ∈ {1, . . . ,m} is at most

1/r1 + · · ·+ 1/rm < 1 .

In particular, we see that there is some (x1, . . . , xm) ∈ Zm such that the
element h := x1h1 + · · ·+ xmhm ∈ H has no coordinate equal to zero. �

Lemma 12.4. Let k ≥ 2 be an integer, let R be a ring of the form OK [1/M ],
where K denotes a number field and M denotes a positive integer, let P be
a nonzero prime ideal of R, and let a be an element of R. Suppose that
for some natural number n, the polynomial 1− axk

n

mod P has no roots in
R/P. Then the infinite product




∞∏

j=0

(1− axk
j

)




−1

mod P

is a k-automatic power series in (R/P)[[x]].

Proof. Set F (x) :=

∞∏

j=0

(1 − axk
j

)−1 mod P. Without loss of generality we

can assume that a does not belong to P. Let us first note that the sequence

a, ak, ak
2
, . . . is necessarily eventually periodic moduloP. However, it cannot

be periodic, as otherwise the polynomial 1−axk
n

would have a root for every
natural number n. Thus there exists a positive integer N such that

a 6≡ ak
N ≡ ak

2N
mod P .

Set b := ak
N

and let us consider the polynomial

Q(x) := (1− bx)(1 − bxk) · · · (1− bxk
N−1

) .

Now arguing exactly as in the proof of Proposition 7.8, we see that there
exists a polynomial S(x) ∈ R[x] such that G(x) := Q(x)−1F (x) satisfies the
equation

G(x) ≡ S(x)G(xk) mod P .

Thus Theorem 7.6 implies that G(x) mod P is a k-regular power series in
(R/P)[[x]]. By Proposition 7.4, we see that F (x) mod P is a k-regular
power series since it is a product of a polynomial (which is k-regular) and
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a k-regular power series. Since the base field is finite, Proposition 7.4 gives
that F (x) mod P is actually a k-automatic power series. This ends the
proof. �

Proof of Theorem 12.1. By assumption R is of the form OK [1/M ], where
K denotes a number field and M denotes a positive integer. Let L be the
Galois extension of K generated by all complex roots of the polynomial
P (x)Q(x). Thus there are α1, . . . , αd, β1, . . . , βe ∈ L such that P (x) =
(1 − α1x) · · · (1 − αdx) and Q(x) = (1 − β1x) · · · (1 − βex). By assumption
there is a prime p that divides k but does not divide ℓ and a prime q that
divides ℓ but does not divide k. Let s be a natural number such that ps

and qs are both larger than d + e. Since by assumption none of the roots
of P (x)Q(x) is a root of unity, Lemma 12.2 implies that, for 1 ≤ i ≤ d
and 1 ≤ j ≤ e, there are largest nonnegative integers ni and mj with the

property that we can write αi = γp
ni

i ui and βj = δq
mj

j vj for some elements

γi, δj ∈ L(e2πi/(p
sqs)) and ui, vj roots of unity in L(e2πi/(p

sqs)).
Next let n denote a natural number that is strictly larger than the maxi-

mum of the ni and the mj for i and j such that 1 ≤ i ≤ d and 1 ≤ j ≤ e. Set

E := L(e2πi/(p
nqn)) and let F denote the Galois extension of E generated by

all complex roots of the polynomial

d∏

i=1

e∏

j=1

(xp
n − γi)(x

qn − δj) .

For each i, 1 ≤ i ≤ d, we pick a root γi,0 of x
pn−γi, and for each j, 1 ≤ j ≤ e,

we pick a root δj,0 of xq
n − δj .

Claim. We claim that for every integer i, 1 ≤ i ≤ d, there is an automor-
phism σi in Gal(F/E) such that

σi(γi,0) = γi,0u ,

with u a primitive pr-th root of unity for some r greater than or equal to
s. Similarly, for every integer j, 1 ≤ j ≤ e, there is an automorphism τj in
Gal(F/E) that such that

τj(δj,0) = δj,0u
′ ,

for some primitive qr
′
-th root of unity u′ with r′ greater than or equal to s.

Proof of the claim. Note that
{
σ(γi,0)

γi,0
| σ ∈ Gal(F/E)

}

forms a subgroup of the pn-th roots of unity. To prove the claim we just
have to prove that this group cannot be contained in the group of ps−1-
th roots of unity. Let us assume that this is the case. Then the product

of the Galois conjugates of γi,0 must be γ̃i := γp
t

i,0v for some t < s and

some p(s−1)-th root of unity v. Moreover, γ̃i lies in L(e2πi/(p
nqn)). Note

that the Galois group of L(e2πi/(p
nqn)) over L(e2πi/(p

sqs)) has order dividing
φ(pnqn)/φ(psqs) = pn−sqn−s. Since all conjugates of γ̃i are equal to γ̃i times
some root of unity, we see that the relative norm of γ̃i with respect to the
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subfield L(e2πi/(p
sqs)) is of the form γ̃i

dv′ for some divisor d of pn−sqn−s and
some root of unity v′. Moreover,

γ̃i
dv′ ∈ L(e2πi/(p

sqs)) .

Note that the gcd of d and pn−t is equal to pn−s0 for some integer s0 ≥ s.

Since γp
n

i,0 = γ̃i
pn−t

v−pn−t ∈ L(e2πi/(p
sqs)), we see by expressing pn−s0 as an

integer linear combination of d and pn−t that

γ̃i
pn−s0

ω = γp
n−s0+t

i,0 ω′ ∈ L(e2πi/(p
sqs))

for some roots of unity ω and ω′ and some s0 ≥ s. But s0 − t ≥ 1 and so we
see that αi is equal to a root of unity times

(
γp

n−s0+t

i,0 ω′
)ps0−t+ni

,

contradicting the maximality of ni. This confirms the claim. �

For an integer m, we let Um denote the subgroup of C∗ consisting of all
m-th roots of unity. Note that we can define a group homomorhpism Φ from
Gal(F/E) to (Upn)

d × (Uqn)
e by

Φ(σ) := (σ(γ1,0)/γ1,0, . . . , σ(γd,0)/γd,0, σ(δ1,0)/δ1,0, . . . , σ(δe,0)/δe,0) .

We see that Φ is a group homomorphism since each σ ∈ Gal(F/E) fixes the
pn-th and qn-th roots of unity. Set H := Φ(Gal(F/E)). The claim implies
that the i-th coordinate in (Upn)

d of Φ(σi) has order at least equal to ps.
Similarly, it also implies that the j-th coordinate in (Uqn)

e of Φ(τj) has order
at least equal to qs. Since ps and qs are both greater than d+ e, we have

d/ps + e/qs < 1 .

Now, since (Upn)
d × (Uqn)

e ∼= (Z/pnZ)d × (Z/qnZ)e, we infer from Lemma
12.3 that there exists an element h in H such that every coordinate of h is
different from the identity element. In other words, this means that there
exists some element τ of Gal(F/E) that fixes no element in the set

{γi,0 | 1 ≤ i ≤ d} ∪ {δj,0 | 1 ≤ j ≤ e} .
Since by definition τ fixes all pn-th and qn-th roots of unity, we see more
generally that no root of the polynomial

d∏

i=1

e∏

j=1

(xp
n − γi)(x

qn − δj)

is fixed by τ . Since τ belongs to Gal(F/E), we can see τ as an element of
Gal(F/K) that fixes all elements of E. We have thus produce an element τ
of Gal(F/K) that fixes all roots of P (x)Q(x) but that that does not fix any
of the roots of the polynomial

d∏

i=1

e∏

j=1

(xp
n − γi)(x

qn − δj) .

It follows from Chebotarev’s density theorem (see for instance the discussion
in [23]) that there is an infinite set of nonzero prime ideals S ⊆ Spec(R)
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such that if P ∈ S then P (x)Q(x) mod P factors into linear terms while the
minimal polynomial of

d∏

i=1

e∏

j=1

(xp
n − γi)(x

qn − δj)

over K has no root modulo P. In particular, there is a natural num-
ber N larger than n such that for all such prime ideals P, the poly-
nomial P (x)Q(x) mod P splits into linear factors, while the polynomial

P (xp
N

)Q(xq
N

) mod P does not have any roots in R/P.
For such a prime ideal P, there thus exist a1, . . . , ad, b1, . . . , be in the finite

field R/P such that

P (x) ≡ (1− a1x) · · · (1− adx) mod P

and
Q(x) ≡ (1− b1x) · · · (1− bdx) mod P .

Then 


∞∏

j=0

P (xk
j

)




−1

≡
d∏

i=1




∞∏

j=0

(1− aix
kj)




−1

mod P .

By Lemma 12.4 the right side is a product of k-automatic power series and
hence, by Proposition 7.4, is k-automatic. Thus the infinite product




∞∏

j=0

P (xk
j

)




−1

mod P

is a k-automatic power series in R/P[[x]]. Similarly, we get that



∞∏

j=0

Q(xℓ
j

)




−1

≡
e∏

i=1




∞∏

j=0

(1− bix
ℓj )




−1

mod P ,

which implies that the infinite product



∞∏

j=0

Q(xℓ
j

)




−1

mod P

is a ℓ automatic power series in R/P[[x]]. This concludes the proof. �

13. Proof of Theorem 1.3

We are now ready to prove our main result.

Proof of Theorem 1.3. Let K be a field of characteristic zero and let k and
l be two multiplicatively independent positive integers.

We first note that if F (x) ∈ K[[x]] is a rational function, then for every
integer m ≥ 2, it obviously satisfies a functional equation as in (1.3) with
n = 0. Hence, F (x) is m-Mahler, which gives a first implication.

To prove the converse implication, we fix F (x) ∈ K[[x]] that is both k-
and ℓ-Mahler and we aim at proving that F (x) is a rational function. Of
course, if F (x) is a polynomial, there is nothing to prove. From now on,
we thus assume that F (x) is not a polynomial. By Corollary 8.3, we can
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assume that there are primes p and q such that p divides k while p does not
divide ℓ and such that q divides ℓ while q does not divide k. By Theorem
5.1, we can assume that there is a ring R of the form OK [1/M ] (where K
is a number field and M is a positive integer), such that F (x) ∈ R[[x]] and
satisfies the equations

n∑

i=0

Pi(x)F (xk
i

) = 0

with P0, . . . , Pd ∈ R[x] and

m∑

i=0

Qi(x)F (xℓ
i

) = 0

with Q0, . . . , Qe ∈ R[x]. Without loss of generality, we can assume that
all complex roots of P0(x) and Q0(x) belong to R (otherwise we could just
enlarge R by adjoining these numbers). Furthermore, we can assume that
P0(x)Q0(x) 6= 0. By Corollary 6.2, we can also assume that P0(0) = 1
and that Q0(0) = 1, for otherwise we could just replace F (x) by the power
series F0(x) given there. We choose a ring embedding of R in C and for the
moment we regard F (x) as a complex power series. By Theorem 11.2, we

can assume that if α is a root of unity such that αkj = α for some positive
integer j, then P0(α) 6= 0. Similarly, we can assume that if β is a root of

unity such that βℓj = β for some positive integer j, then Q0(β) 6= 0.
By Proposition 7.10, we can write

F (x) =




∞∏

j=0

P0(x
kj)




−1

G(x) ,

for some k-regular power series G(x) ∈ R[[x]]. Furthermore, we can decom-
pose P0(x) as P0(x) = S0(x)S1(x), where S0(x) and S1(x) are two polyno-
mials, the zeros of S0(x) are all roots of unity, none of the zeros of S1(x) is a
root of unity, and S0(0) = S1(0) = 1. Since by assumption all roots of P0(x)
lie in R, we get that both S0(x) and S1(x) belong to R[x]. By assumption

if α is a root of S0(x) then for every positive integer j, one has αkj 6= α.
Then, it follows from Proposition 7.8 that




∞∏

j=0

S0(x
kj)




−1

∈ R[[x]]

is a k-regular power series. Set H(x) :=




∞∏

j=0

S0(x
kj )




−1

G(x). We infer

from part (iii) of Proposition 7.4 that H(x) is a k-regular power series.
Moreover, one has

(13.36) F (x) =




∞∏

j=0

S1(x
kj)




−1

H(x) .
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Similarly, by Proposition 7.10, we can write

F (x) =




∞∏

j=0

Q0(x
kj)




−1

I(x) ,

for some k-regular power series I(x) ∈ R[[x]]. As previously, we can decom-
pose Q0(x) as Q0(x) = T0(x)T1(x), where T0(x) and T1(x) belong to R[x],
the zeros of T0(x) are all roots of unity, none of the zeros of T1(x) are roots of
unity, and T0(0) = T1(0) = 1. By assumption if β is a root of T0(x) then for

every positive integer j, one has βℓj 6= β. Then it follows from Proposition
7.8 that 


∞∏

j=0

T0(x
ℓj )




−1

∈ R[[x]]

is a ℓ-regular power series. Set J :=

∞∏

j=0

T0(x
kj)−1I(x). Again, we see by

Proposition 7.4 that J(x) is ℓ-regular. Moreover, one has

(13.37) F (x) =




∞∏

j=0

T1(x
kj )




−1

J(x) .

By Theorem 12.1, there is an infinite set of nonzero prime ideals S of R
such that, for every prime ideal P in S,




∞∏

j=0

S1(x
kj)




−1

mod P

is a k-automatic power series in (R/P)[[x]] and



∞∏

j=0

T1(x
ℓj )




−1

mod P

is a ℓ-automatic power series in (R/P)[[x]]. Then we infer from Equalities
(13.36) and (13.37) that, for P ∈ S, F (x) mod P is k-regular for it is the
product of two k-regular power series. Similarly, F (x) mod P is a ℓ-regular
power series.

We recall that since R is of the form OK [1/M ], it is a Dedekind domain;
that is, it is a Noetherian normal domain of Krull dimension one. In par-
ticular, all nonzero prime ideals are maximal. Now since R is a finitely
generated Z-algebra and P is a maximal ideal, the quotient ring R/P is a
finite field (see [18, Theorem 4.19, p. 132]). By Proposition 7.4, this implies
that F (x) mod P is actually both k- and ℓ-automatic. By Cobham’s theo-
rem, we obtain that the sequence of coefficients of F (x) mod P is eventually
periodic and hence F (x) mod P is a rational function.

Note that since S is infinite, the intersection of all ideals in S is the zero
ideal (see [18, Lemma 4.16, p. 130]). Moreover, F (x) mod P is rational for
every prime ideal P ∈ S. Applying Lemma 5.4, we obtain that F (x) is a
rational function. This ends the proof. �
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gleichungen, Math. Ann. 101 (1929), 342–367.

[28] K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendente
Funktionen, Math. Z. 32 (1930), 545–585.
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Théorie des Nombres 1975–1976 (Univ. Bordeaux I, Talence), Exp. No. 14, 13 pp.

[41] A. J. van der Poorten, Remarks on automata, functional equations and transcendence,
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