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Abstract. — We introduce the notion of k-self-similarity for compact subsets of R" and show that
it is a natural analogue of the notion of k-automatic subsets of integers. We show that various well-
known fractals such as the triadic Cantor set, the Sierpiniski carpet or the Menger sponge, turn out to
be k-self-similar for some integers k. We then prove an analogue of Cobham’s theorem for compact
sets of R that are self-similar with respect to two multiplicatively independent bases k and ¢; namely,
we show that X is both a k- and a ¢-self-similar compact subset of R if and only if it is a finite union
of closed intervals with rational endpoints.

1. Introduction

The notion of self-similarity is fundamental in the study of fractals. We recall (see Falconer
[12]) that a compact topological space X is self-similar if there is a finite set of non-surjective
homeomorphisms fi,..., f, : X — X such that

X = L_Jlfi(X)-

It can be motivated by looking at the usual triadic Cantor set C', which is the closed subset of
[0, 1] consisting of all numbers whose ternary expansion does not contain any 1s. We note that

1 1 2
o - leu(les?).

The fact that C is a disjoint union of a finite number of images of itself under affine transformations
tells us that it is self-similar.

With this in mind, we define the notion of k-kernel for subsets of [0, 1]¢. The k-kernel essentially
looks at the possible sets one can obtain by taking the intersection of X with certain cubes in
[0,1]¢ with side length 1/k® for some positive integer a and then scaling by a factor of k%.

Definition 1.1. — Given a subset X C [0,1]%, we define the k-kernel to be the collection of
distinct subsets of the form

d
(k%21 — b, ... kg — bg) € [0,1)7 : (21,...,2q) € X N ][ [b;/k, (b; + 1)/k] ¢,
j=1

where a > 0 and 0 < by,...,bg < k% are integers.
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We then define the notion of k-self-similarity in terms of k-kernels.
Definition 1.2. — A compact set X C [0, 1]¢ is said to be k-self-similar if it has a finite k-kernel.

As we will see in Section 2, many famous examples of fractals are in fact k-self-similar sets for
some k. For instance, the Cantor set is a 3-self-similar subset of R, the Sierpinski carpet and
the Reverend Back’s abbey floor are 3-self-similar subsets of R2?, Pascal’s triangle modulo 2 is a
2-self-similar subset of R?, and the Menger sponge is a 3-self-similar subset of R3.

Our definition of self-similar compact subsets of R™ is given in terms of kernels. Actually, there
are famous subsets of integers that can be defined in a similar way: automatic or recognizable sets
of integers. We now briefly describe this analogy. We refer to the book of Allouche and Shallit
[6] for a more formal and complete introduction to this topic.

Let k£ > 2 be a natural number. A set A/ C N is said to be k-automatic if there is a finite-
state machine that accepts as input the expansion of n in base k and outputs 1 if n € N and
0 otherwise. For example, the set of Thue-Morse integers 1,2,4,7,8,11,13,..., formed by the
integers whose sum of binary digits is odd, is 2-automatic. The associated automaton is given
in Figure 1 below. It has two states. This automaton successively reads the binary digits of n
(starting, say, from the most significant digit and the initial state gg) and thus ends the reading
either in state gg or in state ¢;. The initial state gy gives the output 0, while ¢; gives the output
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FI1GURE 1. The finite-state automaton recognizing the set of Thue-Morse integers.

An equivalent formulation of k-automatic sets of integers is given in terms of k-kernels. Given
a set N C N, the k-kernel of N is defined as the collection of distinct sets

{Kep : a>0; 0<b<k}

where
Kop={n>0| E'n+be N}

Then we have the following characterization [6]: a set N' C N is k-automatic if and only if its
k-kernel is finite.

Another typical 2-automatic set of integers is given by the powers of 2: 1,2,4,8 16, .... Though
these integers have very simple expansion in base 2, one can observe that this is not the case
when writing them in base 3. One of the most important results in the theory of automatic sets
formalizes this idea. Recall that two integers k£ and [ larger than 1 are multiplicatively independent
if log(k)/log(l) ¢ Q. Then Cobham’s theorem says that only very well-behaved sets of integers
can be automatic with respect to two multiplicatively independent numbers [9]. In 1969, Cobham
proved the following result.

Theorem 1.3. — (Cobham) Let k and ¢ be two multiplicatively independent integers. Then a
set N C N is both k- and l-automatic if and only if it is the union of a finite set and a finite
number of arithmetic progressions.

Our main result is an analogue of Cobham’s theorem for k-self-similar compact subsets of R.

Theorem 1.4. — Let k and ¢ be two multiplicatively independent matural numbers. Then a
compact set X C [0,1] is both k- and (-self-similar if and only if it is a finite union of closed
intervals with rational endpoints.



Thus the triadic Cantor set cannot be 2- or 7-self-similar. Theorem 1.4 is only concerned with
one-dimensional sets, but we expect a similar picture in every dimension. More precisely, we
suggest the following multidimensional version of Theorem 1.4.

Conjecture 1.5. — Let k and ¢ be two multiplicatively independent natural numbers. Then a
compact set X C [0,1]% is both k- and L-self-similar if and only if it is a finite union of polyhedra
whose vertices have rational coordinates.

Notice that Cobham’s theorem has been generalized to subsets of N¢ by Semenov [23]. Con-
jecture 1.5 can thus be thought of as an analogue of Semenov’s result.

To end this introduction, we mention that similar “independence principles” with respect to
two multiplicatively independent integers are also expected in other contexts. This is a source
of difficult questions arising from various fields. As an illustration, we quote below three famous
open problems that rest on such a principle. A long-standing question in dynamical systems is the
so-called x2 x 3 problem addressed by Furstenberg [13]: given two multiplicatively independent
integers k,l > 2, prove that the only Borel measures on [0, 1] that are simultaneously ergodic for
Ti(z) = kx (mod 1) and Tj(x) = lz (mod 1) are the Lebesgue measure and measures supported
by those orbits that are periodic for both actions T} and 7;. With a number-theoretic flavor, we
recall another problem attributed to Mahler and Mendes France (see, for instance, Adamczewski
and Bugeaud [1]): given a binary sequence (a,)n>0 € {0, 1}, prove that

Z;—Z and Zg—z

n>0 n>0

are both algebraic numbers only if both are rational numbers. The last problem we mention
appeared in work of Ramanujan (see Waldschmidt [26]): prove that there is no irrational real
number z such that both 2% and 3% are integers. This corresponds to a particular instance of the
four exponentials conjecture, a famous open problem in transcendence theory [25, Chapter 1, p.
15).

The outline of this paper is as follows. In Section 2, we show how one can simply associate a
fractal set with a finite automaton. Our approach is inspired by recent work of Kedlaya concerning
an extension of Christol’s theorem to Hahn’s power series [17]. These fractal sets are termed
automatic fractals. We give several examples of famous fractals that turn out to be automatic
and prove that automatic fractals all are self-similar sets. We then prove Theorem 1.4 in Section
3. We note that our proof of Theorem 1.4 does not rely on Cobham’s theorem. In Section 4,
we investigate the link between the Hausdorff dimension of automatic fractals and the entropy of
languages naturally associated with automatic fractals. We remark that some results of Mauldin
and Williams [18] should allow one to compute the Hausdorff dimension of automatic fractals.
We also observe that Hartmanis and Stearns [16] and Barbé and von Haeseler [7] previously
considered similar fractals in the framework of automata.

2. Automatic fractals

Finite automata are devices that accept finite words as input. This can be naturally used to
recognize sets of integers, since numbers correspond to finite words when representing them in an
integer base. In contrast, most real numbers have infinite expansions in integer bases and are thus
related to infinite words. Hence it is unclear how to properly define a notion of subsets of real
numbers recognized by finite automata. In this section, we show how one can simply associate
fractal sets with finite automata, called automatic fractals. We give several examples of famous
automatic fractals and prove that a k-automatic fractal is always a k-self-similar set.



2.1. Automatic sets revisited. — Kedlaya [17] introduced the notion of automaticity for
subsets of k-adic rational numbers, by adding a radix point to the input set for a finite-state
automaton. The key point is that k-adic rationals are exactly those real numbers with a finite
expansion in base k. Such real numbers are represented by finite words and can thus be read by
a finite k-automaton. This is the way in which we will extend the notion of automaticity beyond
subsets of integers.

Let & > 1 be a positive integer and X := {0,1,...,k — 1}. Given a natural number n and a
positive integer k > 2, we let [n]; denote the base-k expansion of n and we let Sy denote the set
of nonnegative k-adic rationals; i.e.,

(1) Se = {a/k® | a,b € Z, a>0}.

Then a k-adic rational number has a finite base-k expansion of the form [n]g ¢[m]x, where , is the
radix point.
We set
o= {0,1,....k—1,}

and we let £(k) denote the language over the alphabet X} consisting of all words over X} with
exactly one occurrence of the letter ‘4’ (the radix point) and whose first and last letters are not
equal to 0. (We note that the fact that we exclude strings whose initial and terminal letters are 0
means we have the awkward looking expression [o |x = 0.) This is a regular language [17, Lemma
2.3.3]. We note that there is a bijection | - | : L(k) — Sk given by

i—1 n
S1v-Si—1eSit1 - Sp € L(k) — Zsjki_l_j + Z sjk:i_j,
j=1 j=i+1
where $1,...,8i-1,Sit+1,--.,5, € {0,1,...,k —1}.
So, for example, we have [110432]y = [204875]19 = 167/8. We now recall the definition of a
k-automatic subset of Sj.

Definition 2.1. — We say that a subset S of Sy is k-automatic if there is a finite-state automa-
ton that takes words over ) as input, and has the property that a word W € L, is accepted by
the automaton if and only if [W]; € S.

More generally, we can define automatic subsets of S,‘j, mimicking the construction of Salon [22].
For a natural number d > 1, we create the alphabet X (d) to be the alphabet (E;C)d consisting
of all d-tuples of elements of 3). Then an element of Sg is simply a d-tuple of elements of Sj.
With this in mind, we construct a regular language £y (d) C (X}.(d))* as follows. Given a k-adic
rational a € S, we can write it uniquely as

e .
a = Z ej(a)k?,
j=—00
in which e;(a) € {0,...,k — 1} and there is some natural number N, depending on a, such that
e;j(a) = 0 whenever |j| > N. Let (ai,...,aq) be a d-tuple of nonnegative k-adic rationals and let

h :=max{j : there exists some i such that e;(a;) # 0} U {—1}.
Similarly, we let
¢:=min{j : there exists some ¢ such that e;(a;) # 0} U {1}.
We can then produce an element
wg(ag, ... aq) = (wy,...,wg) € (Xk(d))*
corresponding to (aq,...,aq) by defining

w; = ep(a;)ep—1(a;) - epla;)ee—1(a;) - esa;).



In other words, we are taking the base k-expansions of aq,...,aq and then “padding” the expan-
sions of each a; at the beginning and the end with 0’s if necessary to ensure that each expansion
has the same length pre-radix and post-radix length. For example, if d = 2 and k£ = 3, then
w3 (14, 3) = (112,,010,) and w3(1/3,1/9) = (10, ¢01). We then take Li(d) to be the collection
of words of the form

?,Uk(al, az, ... ,Cld)
where (a1, az,...,aq) € S&. Then there is an obvious way to extend the map [-]; to a bijection
[k : Lr(d) — Sg; namely,
[wk(al, PN ,ad)]k = (al, PN ,ad).
Definition 2.2. — We say that a subset S of Sff is k-automatic if there is a finite-state automa-

ton that takes words over Lj(d) as input and has the property that a word W € Li(d) is accepted
by the automaton if and only if [W]; € S.

We will also use the notion of a k-automatic function from Sg to a finite set.

Definition 2.3. — Let A be a finite set. We say that a function f : Sg — A is k-automatic if
there is a finite-state automaton that takes words over L;(d) as input and has the property that
reading a word W € Ly(d), the automaton outputs f([W]).

We make the following remark, which is a translation in our context of Theorem 6.6.2 of
Allouche and Shallit [6].

Remark 2.4. — If a subset S of S,‘j is k-automatic, then there are only finitely many distinct
subsets of Sg of the form

{(ml,...,xd) € [0,1]% | (z1/k + b1k, ..., 2 k® + ba/k®) € s},
where a > 0 and 0 < by,...,bg < k%

The set S,f is countable and hence automatic sets of S,‘j are not very interesting in the framework
of fractals. We can actually overcome this deficiency by considering the closure of automatic sets.
As an example, we look at the Cantor set C. Since it can be described as the set of all = € [0, 1]
which have a ternary expansion that does not have any 1s, the set C'N S3 is just the set of 3-adic
rationals in [0, 1] whose ternary expansion does not contain any 1s. We note that this set is a
3-automatic subset of Ss, as it can be described as being all numbers in S3 that begin with a
radix point and do not contain a 1. We also observe that C' N S3 is dense in C' and hence the
Cantor set can be realized as the closure of a 3-automatic subset of S3. This brings us to our
definition of k-automatic fractals.

Definition 2.5. — We say that a compact subset X C R? is a k-automatic fractal if it is the
closure of a k-automatic subset of Sg.

2.2. Examples of famous automatic fractals. — To illustrate the relevance of the notion
of automatic fractals, we give several examples of classical fractals that turn out to be automatic.

Example 2.6. — The Cantor set is a 3-automatic fractal (see Figure 3). It is the closure of the
following 3-automatic set of Ss:

{(e[ning---ngls) | ni #1Vie [1,k]}.

It is associated with the following automaton (see Figure 2).
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FIGURE 2. The finite automaton associated with the triadic Cantor set.

FIGURE 3. The first steps in the construction of the triadic Cantor set.

FIGURE 4. The Sierpinski carpet.

Example 2.7. — The Sierpinski carpet is a 3-automatic fractal of R? (see Figure 4).

It can be defined as the set of pairs of real numbers (x,y) in [0, 1] such that for every positive
integer n, the n-th digit of the ternary expansion of  and of y are not both equal to 1. This set
is thus the closure of the 3-automatic set of S3 defined by:

{(e[n1n2 - - - nkl3,e [Mama - - -my]3) | (ni,mi) # (1,1) Vi € [1, min(k, )]} .

Example 2.8. — The Menger sponge (see Figure 5) is defined as a three-dimensional analogue
of the Sierpiriski carpet (see Addison [3, Section 2.10]). It is a 3-automatic fractal of R?. Tt can
be defined as the set of 3-tuples of real numbers (z,y, z) in [0,1]® such that for every positive
integer n, at most one of the n-th digit of the ternary expansion of x, the n-th digit of the ternary
expansion of ¢, and the n-th digit of the ternary expansion of z is equal to 1.

Example 2.9. — Pascal’s triangle modulo 2 (see Figure 6) is the subset of [0,1]? formed by

taking the closure of
{(-[n]%- [m]2) | <TZ> =1 mod 2} )

We infer that this set is a 2-automatic fractal of R? [6, p. 420].

Example 2.10. — We give the following example of a 5-automatic fractal of R? (see Figure 7).
It is obtained as the closure of the set

{('[nan T nk]57' [mlm? T ml]5) | (ni7 mz) ¢ {(17 2)7 (27 1)7 (27 3)7 (37 2)}7 Vi € [17 min(kv l)]} .



FIGURE 6. Pascal’s triangle modulo 2.

FIGURE 7. An example of a 5-automatic fractal of R2.

The above examples of automatic fractals are all related to simple automata and should only
be considered as basic examples. There is actually a large variety of finite automata, and more
involved ones can be used to construct fractals with a much more complex structure (see, for
instance, Example 2.11). On the other hand, some non-trivial automata give rise to trivial
fractals. For instance, we can use a small variation of the Thue—Morse automaton represented in
Figure 1 to define a finite 2-automaton that recognizes exactly the elements of Sy N[0, 1] whose
binary expansion contains an odd number of 1s. Though this set is not trivial, its closure is the
whole interval [0, 1].



Example 2.11. — Reverend Back’s abbey floor is a 3-automatic fractal of R? (see Wegner [27]
and also Allouche and Shallit [6, page 410] for a definition).
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FI1GURE 8. Reverend Back’s abbey floor.

2.3. Automatic fractals and self-similarity. — The following proposition gives the rela-
tionship between k-automatic fractals and k-self-similar sets.

Proposition 2.12. — If a compact subset X of [0,1]% is a k-automatic fractal, then it is k-self-
similar.

Proof. — Suppose that X C [0, 1]d is a k-automatic fractal. Then there is a k-automatic subset
C of S,f whose closure is X. Then by Remark 2.4, there are only finitely many distinct sets of
the form
{(@1,...,2q) € SEN[0,1) | (x1/E* 4+ b1 /K%, ... xq/k* + bg/k*) € C}

with a > 0 and by, ba, ..., bg € [1,k%]. Let C1, ..., C,, denote these sets and let X; C [0, 1]¢ denote
the closure of Cj.

We claim that X has k-kernel {X1,...,X,,} and thus is k-self-similar. To see this, let us fix
a nonnegative integer a and some integers by, ba,...,bg € [0,k%]. Thus there exists an integer i,
1 <i < m, such that

{(x1,...,2q) € SEN[0,1)% | (x1/E" + b1 /K%, ..., xq/k" + bg/k?) € C} =
It then follows from the definition of X; that

{(z1,...,2q) € S¢N[0,1]4 | (z1/k* 4+ b1 /k?, ..., zq/k* + bg/k*) € C} = C; = X,
which is equivalent to
{(l‘l,...,ﬂj‘d) € [07 1]d | (xl/ka+b1/ka7"'>xd/ka+bd/ka) € X} = X;.
Consequently

d
(k“xl—bl,...,k“wd—bd)e [O,l]d : (xl,...,xd)GXﬂH[bj/ka,(bj—i-l)/k“] = X;.
j=1

This concludes the proof since there are only a finite number of possible choices for 7. O

We note that the converse of Proposition 2.12 does not hold in general. This is not difficult
to see: since there are only countably many finite-state automata with input alphabet X7, there
are only countably many one-dimensional k-automatic fractals. On the other hand, for each
a € (1/2,1], we have the set X, := {a/kE™ | m > 1} U {0} is k-self-similar. Hence there are



uncountably many k-self-similar subsets of [0,1]. We note that for o« & Sk, X, does not even
intersect the set Sj.

3. Proof of Theorem 1.4

In this section we prove Theorem 1.4. The main idea we use is that if X C [0, 1] is compact
and is not a finite union of closed intervals, then its complement is a countable union of disjoint
open intervals and the endpoints of these intervals have a limit point in [0, 1].

We first prove the easier part of Theorem 1.4, that is, a finite union of closed intervals with
rational endpoints is always k-self-similar for every integer k > 2. This result follows from
Propositions 3.1 and 3.2 below.

m
Proposition 3.1. — Suppose X = U[ai, b;] C [0,1] is k-self-similar and the intervals
i=1
[a17 bl]a sy [am7 bm]
are disjoint. Then a;,b; € Q for 1 <i < m.

Proof. — Let X = Xq,..., X4 be the k-kernel of X. Then each X; is a finite disjoint union of
closed intervals. Let S denote the set of endpoints of the closed intervals that make up these sets.
Then S is a finite set. Suppose that x € S and let qajasas--- denote the base-k expansion of x.
By definition of the k-kernel of X, we have that 4a;a;11--- € S for every positive integer i. Since
S is finite, we see that

0 QiQi+10Ai42 " = oGjlj410dj42 "
for some positive integers ¢ and j with j > 4. It follows that x is a rational number, concluding
the proof. O
Proposition 3.2. — Suppose X C [0,1] is a finite union of closed intervals with rational end-

points. Then X is k-self-similar for every integer k > 2.

Proof. — Let k > 2 be an integer. Let us assume that X = [a1,b1] U -- U [ag, bg] with b; < a;+1
and (a;,b;) € Q? for 1 < i < d. Then there exists a positive integer n such that
a;k™ (K" —1),b;k" (K" —1) e N
for 1 <i<d. Let
S={a/k"(k"—1)|0<a<k"(k"-1)},
and let 7 denote the collection of subsets of [0, 1] that can be written as a finite union of closed
intervals with endpoints all in S. Then 7 is finite. Notice that X € 7 and

{Kae—jleeli/k,G+)/KINX}eT

for every positive integer i and every nonnegative integer j € [0, k%). Thus the k-kernel of X is
finite and so X is k-self-similar. O

We now introduce the notion of wild point that will be often used in the sequel.

Definition 3.3. — Let X C [0,1]. We say that a point 5 € X is a right wild point of X if (3 is
a limit point of both X N (8, 1] and XN (5, 1]; we say 3 is a left wild point of X if it is a limit
point of both X N[0, ) and XN [0, 3). We simply say [ is a wild point of X if it is either a left
or right wild point of X.

For example, if C' C [0, 1] denotes the triadic Cantor set, then 1/3 is a left wild point of C' but
is not a right wild point.

Lemma 3.4. — Suppose that X C [0,1] is closed and T : [0,1] — [0,1] is a continuous injective
map satisfying T(X) C X and T(X€¢) C X°€.



1. If B € X is a wild point of X then T(3) is a wild point of X.
2. If B, are wild points of X and B, — B then B is a wild point of X.

Proof. — The proof is a straightforward consequence of the definition of wild point. O

For our next lemma we need to introduce some notation. Given a nonzero element o € S, let
vg(a) denote the k-adic valuation of «, that is, the largest integer n such that k="« € Z. When,
a = 0, our convention is that vgy(a) = 0. Thus vy does not fit exactly with the usual definition
of the k-adic valuation for which we should have v;(0) = +o0c0. Lemma 3.5 shows a connection
between k-self-similarity and k-automatic function defined over Sj.

Lemma 3.5. — Let k > 2 be an integer, a be an element of Sy and set v(«) := vg(a). Suppose
that Y C [0,1] is k-self-similar. Then there are distinct sets Y = Yq,...,Y,, and a k-automatic
function f: Sp,N[0,1) — {1,2,...,m} such that for a € S, N[0,1) we have

Vi = (K@@ —a) |z € [aa+ k@] Ny},
In particular, if v € QN (0,1) and
ap = I_kn’YL
then the sequence of sets
T, = {k'v—a, | x € [an/k", (ap, +1)/E"]NY}

is eventually periodic.

Proof. — Since Y is a k-self-similar set, there are only a finite number of distinct sets of the form
(k@ (z—a) |z e |o,a+E@]NY},

with a € S, N [0,1]. Let Y = ¥7,Y5,...,Y,, denote these sets (the set Y corresponds to the case
a = 0 since by convention v;(0) = 0). Since these sets are distinct, we first note that one can
define a map f: Sy N[0,1) — {1,2,...,m} such that for every a € S N[0,1), we have f(a)=j
if (k7@ (z—a)|z€[a,a+kY)NY} = Y.

Recall that the k-kernel of a function whose domain is Sj is defined in an analogous manner
to how k-kernels of functions whose domain is N is defined. Namely, if f : Sy — A is a map, the
k-kernel of f is the collection of all functions of the form g(x) = f((x + ¢)/k*) with a > 0 and
0 < c < k® It is easily checked from what is known about automatic functions whose domain is
N (see Allouche and Shallit [6]), that having a finite k-kernel is the same as being k-automatic
for such a function f. To prove the first part of Lemma 3.5, it is thus sufficient to show that the
k-kernel of the function f is finite.

We note that for a € S N (0,1), the set

(k7@ (z — ) | z € [a,a+ kY] NY;}
must be one of Y7,...,Y,,. The reason for this is that there is some 3 € S N[0, 1) such that
Yy = kD (z—-p8) |z [8,8+k PNV}
Then it follows that
(k@ —a) |z €[oa+kYNY} = OO @ —g) |z e 8,8 + kT OTP]nYY,
where 8/ = 8+ k" q. For every positive integer j € [1,m], let f; denote the function defined by
Vi = (@ —a)|z€o,a+k@NY;}
for « € S, N[0,1). Let « € S, N[0,1). Let i € {0,1,2,...,k —1} and set £ = f;(i/k).
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Then

Yoy = {67 —i/k—a/k)|x€li/k+a/ki/k+a/k+ 97 NY;}
= @z —0a)|zela,a+ k@ NY}
= Yfe(a)‘

Since f = fy, it follows that the k-kernel of f is contained in {fi,..., fin} and hence f is k-
automatic.

For the second part of Lemma 3.5, note that T, is simply Y}, /xn). We thus have to prove
that the sequence (f(an/k™))n>1 is eventually periodic. Since 7 is rational, its expansion in base
k is eventually periodic. There thus exist two finite word U = ajay - - - a, (possibly empty) and
V = ar41ar49 - - arqs such that

= [06UV®) = [06UVVV -+ ]p.
Then a,, = |k"y] = [a1a2 - - - ay o] and thus
an/k" = [0ea1as - - - apg.
On the other hand, an easy adaptation of Theorem 5.5.2 from Allouche and Shallit [6] gives the
following result: if h is a k-automatic function from Sj into a finite set A and if A and B are
two finite words, then the sequence (h([0s AB™|i))n>0 is eventually periodic. This implies that

all sequences (f(anstj/k™ 7 )n>0, with 7 < j < r + s, are eventually periodic. Consequently, the
sequence (f(an/k™))n>1 is eventually periodic, concluding the proof. O

Lemma 3.6. — Let Y C X C [0,1] be closed sets, a and b be nonnegative integers, ¢ and d
be nonpositive integers, and k and £ be two integers larger than 1. Let T : [0,1] — R and
S :[0,1] — R be given by T'(x) = kx+c and S(x) = bz +d. Suppose that the following conditions
are satisfied:

(i) k and € are multiplicatively independent;
(il) X N[by,ba] =Y for some by, by € [0,1];
(i) X =T(X N[a/k,a/k + 1/k]);
(iv) Y =S N/, (b+1)/0);

(v) T(B) = S(B) = B for some B €Y ;

(vi) B is not the rightmost point of Y and Y has at least two points in (by,bs).

Then X N [B,1] =[5, 1].

Proof. — Suppose that Y contains an open interval (z,y) with z,y € Y. By (vi), we may assume
that by < x < y < by. By hypothesis (i), for every positive real number ¢, the set
(2) N ={(mn) e N? | k™ < (" < (1+e)k™}.
is infinite.
JFrom now on, we fix a positive ¢ such that
(3) e<(y—x)/2, © >bi(1+¢)and by > y(1+e).

Let (m,n) € N. We consider the set 7™ (S™"(Y)). By (iv), we have S™™(Y) C Y C X, while
(iii) 1mphes that 7(X) N[0, 1] = X. Hence we infer from (ii) that

Tm(S_n(Y)) N [bl, bg] cY.

On the other hand, (ii) and (v) give that 5 € [b, ba].
Then we have
TS ™™(2)) =k™ "2+ B(1 —K™™") €Y,
whenever
by < K™z 4+ (1 — K™ < bo.
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Notice that since (m,n) € N, (2) and (3) give

TS ™™(x)) =k "+ (1 —kE™")<z+e<b<by
and

TS ™ ™(x)) = k"™ "x+ A —-k"C") > x/(1+¢) > b
Thus

TS ™(z)) €Y, and T"(S™"(z)) < y.
Since (z,y) C Y, we see that 7™ (S™"(x)) < x. Similarly, 7™ (S~ "(y)) € Y and
TS ™™ (y)) = k"0 "y + (A - k") > .
And again, since (x,y) C Y€, we obtain T (S™"(y)) > y. These two inequalities give
(5™ (y) —T™(S™" (%)) = k™" (y —x) 2y — .

This provides a contradiction, since (2) ensures that £/~ < 1.

It follows that Y cannot contain an open interval (z,y) with x,y € Y. Thus Y is either empty
or Y consists of a single closed interval. Since by (vi), # € Y is not the rightmost point in Y, Y
is a closed interval containing [3, 3 + ¢] for some positive d.

We claim that [3,1] € X. Indeed, if z € (3,1) is not in X, then (T'7"(2)),>1 is a decreasing
sequence converging to 4 and thus T~ "(z) € [3,5 + J] for every integer n large enough. But,
we just obtained that [3,3 4+ 0] C Y C X. This would provide a contradiction since by (iii),

T-1(X°)N[0,1] € X¢ Thus (3,1) C X and since by assumption X is a closed set, we obtain
that [3,1] € X. This ends the proof. O

Lemma 3.7. — Let k and £ be two multiplicatively independent natural numbers and suppose
that X C [0,1] is a compact k- and (-self-similar set. If X is not a finite union of closed intervals

with rational endpoints, then there exists a compact set X C [0, 1] which is both k- and (-self-
similar, and which has a rational wild point with purely periodic base-k and base-f expansions.

Proof. — Since X°€ is open, it is a countable disjoint union of open intervals. If the number of
open intervals is finite we obtain that X is a finite union of closed intervals. By Proposition
3.1, this would provide a contradiction with our assumption. So, we may assume that we have a
countably infinite set of closed intervals. Let

{(ci, 8:) | i € N}

be an enumeration of these intervals. We have that 3; € [0, 1] for infinitely many ¢ and so by the
Bolzano-Weierstrass theorem there exists some number 5 € [0, 1] that is a limit point of the set

of B;. Write
B = bk,
i>1
with 0 < b; < k. Then ( is a wild point of X. For every positive integer n, we set
Cn = b1k bk 2 4 by,
Then
en k" < B <cp /K" +1/K".
By assumption, the set X is k-self-similar. Thus there are only finitely many distinct sets of the
form
{k"z — ¢y | © € [en /K", (cn + 1) /K" N X},
and hence there exist distinct positive integers ¢ and j with j > ¢ such that
Xy = {kz—c¢|xca/k,(c+1)/E]NX}
{k‘jx —cjlze [cj/k:j, (¢j + 1)/k‘j] NX}.
Note that the definition of Xy implies that Xy is also both k- and f-self-similar, and that g =
k'8 — ¢; is a wild point of Xj.

12



Let m = j — 4. Then
Xo = {o—cjlzele/k,(c;+1)/K]NX}

= {k"(K's —¢)—cj+ k"¢ |z €[cj/k,(c; + 1)/ ] N X}

= {k"y—c;j+k"c |y €l /k™ —ci,ci /K™ —c + /KM N (K'X —¢)}.
By definition, Xy = (kX — ¢;) N[0,1], and so

Xo = {k"z+k"c;i—¢j |z €[c;/k™ —ci,cj /K™ — i + 1/E™] N X0}
We thus have a map U : [0,1] — [0, 1] given by

Ulz) = (x +¢; —k"¢;) /™,

which satisfies U(Xop) € Xo and U(X§) C X§. Let ¢ = ¢k — ¢;. By Lemma 3.4,

U(B),U?(f),... are all wild points of Xy. Moreover, this sequence is bounded and mono-
tonic and hence it converges to the unique fixed point of U; namely, the point

(4) vi=k"c/(K™ —1).

We thus infer from Lemma 3.4 that v = k"c/(k™ — 1) is also a wild point of Xj.
Since 7 is rational, we can write

v = a/lP +d /PP 1)

for some natural numbers a and o', and some positive integer p such that o’ < /P — 1. For every
positive integer n, set

ap, = [P"y].

We are now going to use the fact that the set Xj is also ¢-self-similar. Hence there are only finitely
many distinct sets of the form

{{"Px —ay | x € [an/lP", (an, +1)/0P"] N Xo}.

Let Y71,...,Y, denote the distinct sets of this form. By Lemma 3.5, if f(n) denotes the index
such that

Vi) = {02 —an [ @ € [an /07", (an + 1) /7] 0 Xo},

then the sequence (f(n)),>1 is eventually periodic. Hence there exist some index i and some
positive integer d such that

(5) Y; = {E”dpa: — pap | * € [and/ﬁnd‘”, (ang + 1)/€”dp] N Xo}

for all n > 1. Since X is both k- and [-self-similar, we obtain that Y; is also both k- and [-self-
similar. Moreover, since v is a wild point of Xy, we also get that 4/ := (%P~ — aqp is a wild point
of Y;. Furthermore, we have

Y =d (e 1),
To finish the proof, note that
vy =a/tP +a /PP —1)

has the property that (k" — 1)y € Z. Thus (k™ — 1)fPy = (k™ — 1)a + (K™ — 1)a’ /(P — 1) is an
integer. Consequently, (K™ —1)a’/(¢? —1) is an integer. But this means that 4" has both a purely
periodic base-k and base-f expansion, concluding the proof. O

We are now ready to prove our main result.
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Proof of Theorem 1.4. — Let k and [ be two multiplicatively independent integers, and let X be
a closed subset of [0, 1] which is both k- and [-self-similar. We are going to argue by contradiction.

Let us assume that X is not a finite union of closed intervals with rational endpoints. By
Lemma 3.7, there exists a compact set X C [0,1] which is both k- and ¢-self-similar and which
has a wild point, say (3, whose base-k and base-f expansions are purely periodic. By replacing k
and ¢ with an appropriate power, we may assume that this period is 1 for each base. It is also
no loss of generality to assume that (3 is a right wild point of X. Indeed, if X is k-self-similar
then the set 1 — X := {z € [0,1] | 1 —z € X} is also k-self-similar, so that we could if necessary

replace X by 1 — X.

For every integer n > 1, there exist nonnegative integers a,, and b,, such that

(6) an/k" < B < an/k" + 1/k"
and
(7) by /0" < B < by /0" +1/0".

We first use the k-self-similarity of X. Since X is k-self-similar, there are only finitely many
distinct sets of the form

{k"z — ay | @ € [an/k", (an + 1) /K" N X},
and hence there exist distinct positive integers ¢ and j, with 7 > ¢, and such that
Xo = {Ka—a;|xela/k, (a;+1)/k]NX}
{(Kz—aj| € la;/k,(a; +1)/k] N X}.
It thus follows from this definition, that Xy is both k- and /-self-similar. Furthermore, since

has a purely periodic base-k expansion, we also have that 3 = k'8 — a; is a wild point of X.
Set m := 5 — 4. Then

Xo = {Kaz—aj|xela/K,(a;+1)/KF]NX}
= {k"(Kz —a;) —aj + k™a; | z € [a;/k, (a; +1)/k] N X}
= {k™y—a; +k"c; |y € [aj/k™ — ciya; /K™ — a; + 1/E™] N (K'X — a;)}.
By assumption, Xy = (k:’)z —a;)NJ[0,1], and so
(8) Xo = {k"z+k"a; —a; | x € [a; /K™ — a;,a; /K™ —a; + 1/ N Xo}.
Set ¢:=a;j/k™ —a; and let T': [0,1] — R be the map defined by
T(z) =k"z —Ek™c.
Then we infer from Equality (8) that

(9) X :T([C,C—l-l/km]ﬂXo).
Furthermore, since § has a purely periodic expansion of period 1 in base k, we infer from (6) that
(10) T(3) = 5.

We are now going to use the f-self-similarity of Xy. Since Xg is f-self-similar, there are only
finitely many distinct sets of the form

{{"x — by, | x € [bp/0", (b +1)/0"] N Xo}.
Let Y1,...,Y, denote the distinct sets of this form. Let f(n) denote the index such that

Then it follows from Lemma 3.5 that the sequence (f(n)),>1 is eventually periodic. Hence there
exist some index ¢ and some positive integer d such that

(11) Vi = {2 — bgy | & € [ban /0™, (ban + 1)/ N X0}
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for all n > 1. To complete the proof, we define a subset Y of Xy by

(12) Y = Xo N [ba/te, (bg +1)/¢].
Let S : [0,1] — R be the map defined by
S(x) = 142 — by
Since § has a purely periodic base-¢ expansion of period 1, we see that
(13) S(8) = .
We also claim that
(14) S(Y N [baa /€%, (b + 1) /7)) =Y.

To see this, note that by (11) we have Y; = S(Xq N [bg/¢%, (bg +1)/¢%)) = S(Y) and also
Yi = 52(Xo N [boa/0*, (baq + 1)/0%4]) = S*(Y 0 [boa/0?%, (bog + 1)/077]),
since [bog/0??, (bog + 1)/027] C [bg/€, (bg + 1)/¢%]. Thus
S(Y) = S*(Y N [baa/0?%, (boa + 1)/£7%]),

which implies Equality (14) since S is an injective map.

Since ( is a right wild point of X, we see that it is not the rightmost point in Y. We are now
ready to apply Lemma 3.6. Indeed, we infer from Equalities (9), (10), (12), (13), (14) and from
Lemma 3.6 that XN [3,1] = [B,1]. This provides a contradiction since 3 is a right wild point of
Xo.

We thus have proved that X is a finite union of closed intervals with rational endpoints. In
view of Propositions 3.1 and 3.2, this ends the proof of Theorem 1.4. O

4. Entropy and Hausdorff dimension
In this section, we discuss two notions that can be naturally attached to automatic fractals.

An important notion in the study of fractals is the Hausdorff dimension. We do not recall
the definition of Hausdorff definition and instead refer the reader to Falconer [12] or to Rogers
[20] for an introduction to this topic. One fact about most fractal objects is that their Hausdorff
dimension (or the Hausdorff dimension of their boundary) is not a natural number. For instance,
the Hausdorff dimension of the triadic Cantor set is equal to log 2/ log 3, and we respectively get
the values log 8/ log 3, log 3/log 2 and log 20/ log 3 for the Hausdorff dimension of the Sierpiriski
carpet, Pascal’s triangle modulo 2, and the Menger sponge.

Mauldin and Williams [18] studied a large family of fractals sets of R™, which they called
geometric graph directed constructions. These fractals are constructed by means of a directed
labelled graph. Among other results, Mauldin and Williams showed that the Hausdorff dimension
of such a set can be computed by working on the so-called weighted incidence matrix associated
with the graph.

A directed labeled graph is associated to a finite automaton in a natural way. This can be used
to show that every automatic fractal can be obtained as a geometric graph directed construction.
For an automatic fractal X, it should thus be possible to use the approach of Mauldin and
Williams to compute H(X), the Hausdorff dimension of X.

Two fundamental notions in the theory of formal languages are the subword complezity and the
entropy of factorial languages. Given a finite set A, a language £ over A is just a subset of A*.
The language L is called factorial if for every word W over L, every subword of W also belongs
to L. Then the complexity function of a factorial language L is defined as the function that maps
every integer n to the integer

p(L,n) == #(LNA"),
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and the entropy of the language £ is defined by
1
h(L) := lim - logp(L,n).

The latter notion is well-defined; indeed, for a factorial language the limit above always exists
because of the trivial inequality p(£,n +m) < p(L,n) x p(L, m). With this definition we always
have

0 < h(L) < log(#A).

We now explain how to associate a factorial language with an automatic fractal. Let X be a

k-automatic fractal of R?. Let x := (21,...,24) be an element of X N Sff. Then expanding each
coordinate in base k, we obtain the existence of finite words W7y,..., Wy € ¥} such that
z; = [oWilk,

for every integer 1 < j < d. Set
W;0%° = wgi)wg) i
Thus
= ([« W10, [e W20, . .., [« Wa0]),

£
and we can associate with z an element w(z) of (X¢)N defined by

wgl) wél) w7(11)
w(z) = : : e :
wgd) wgd) wgld)

We then consider the language £(X) formed by all finite words in (X¢)* having at least one
occurrence in some w(z), with x € X N Sg. By definition, £(X) is a factorial language. We thus
define the entropy of the automatic fractal X to be

1

h(X) = Togk h(L(X)).
Recall that a k-automatic fractal is also k"-automatic for every positive integer n. With the
normalization above, the entropy of a k-automatic fractal remains unchanged when viewing it as
a k"-automatic fractal.

Since X is a k-automatic fractal, it can be shown that the language £(X) is recognized by a
finite automaton (see Sakarovitch [21]). Then Kleene’s theorem implies that £(X) is a rational
language, and by a result of Schiitzenberger, we get that the formal power series

+oo
S p(L(X),n) X"

n>1

is a rational function; that is, it belongs to Q(X) (see Eilenberg [11]). In this case, the sequence
(p(L(X),n))n>1 satisfies a linear recurrence and this can be used to compute the entropy of £(X).

The Hausdorff dimension of an automatic fractal and its entropy appear to be strongly con-
nected. Let us give a few examples.
With the previous definition, we easily obtain that the language associated with the triadic
Cantor set is
L(C)={aiaz---ax | a; € {0,2}, 1 <i <k}
Consequently, p(£(C),n) = 2" and thus
h(C) =log2/log3 = H(C).

Let S denote the Sierpinski carpet defined in Example 2.7. We easily obtain that
_ aq as an . a; 1 ‘
e ={() (5 ) () eerr (3)# (1) r=isal
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Thus we get that p(L£(S),n) = 8" for every positive integer n, and consequently
h(S) =log8/log 3 = H(S).
A similar computation with the Menger sponge M leads to equalities:
h(M) =log20/log3 = H(M).

It would be interesting to determine the exact link between the entropy and the Hausdorff
dimension of automatic fractals. In particular, one may ask whether the equality

h(X) = H(X)

holds for every automatic fractal X.

5. Comments

The interplay between fractal sets and finite automata has quite a long history. It is not our
purpose to give a survey of such studies, and so we give only a few references.

Our definition of a k-automatic fractal uses two steps. First, we made the choice to consider
finite-state automata as devices that only take finite words as input; in this way, we associate a
subset of the nonnegative k-adic rationals with a finite automaton A that takes words over the
alphabet ¥ as input. Then we obtain a k-automatic fractal X by taking the closure of this set.
Another equivalent formulation can actually be given in terms of Biichi automata. More precisely,
we would obtain the same automatic fractal X by considering the set of real numbers in [0, 1]
whose base-k expansion has the property that either it is finite and accepted by A or it is infinite
and infinitely many of its prefixes are accepted by A.

Hartmanis and Stearns [16] were probably the first to use finite automata to describe some
fractal subsets of [0,1]. Their approach, though different from ours, is in the same spirit as the
one described just above in terms of Biichi automata. Note also that these authors were only
concerned with one-dimensional sets. With a finite k-automaton A, they associate the set of real
numbers such that all prefixes in their base-k expansion are recognized by A. In many cases, the
set they get using this construction is the same as the one obtained by using the process described
in Section 2. However, this is not always the case. For instance, starting with the Thue-Morse
automaton, they get the set {1}, while our construction gives the whole interval [0, 1].

In contrast, most constructions of fractals involving finite automata follow a rather different
route. Starting with a classical automatic function f of N%, a sequence of arrays (or matrices)
corresponding to compact sets of R is naturally associated with f. After some kind of renormal-
ization, this leads to a sequence of compact sets of [0, 1]d. Then fractals are obtained as those
sets that are a limit point of this sequence of compact sets with respect to the Hausdorff metric.
Many authors already used this principle on specific examples such as the Sierpinski carpet or
Pascal’s triangle [24, 5, 4] (see also Allouche and Shallit [6, Chapter 14]). More recent and
general accounts were given by von Haeseler et al. [14, 15] and by Barbé and von Haeseler [7]. In
particular, Barbé and von Haeseler [7] include a systematic study of automatic fractals. By the
process just described, these authors obtain a family of fractals which is essentially the same as
the family of automatic fractals we defined in the present paper. In particular, our results would
also apply in their framework.

Note that another geometric context in which a Cobham-type phenomenon occurs is given by
stretching factors of self-similar tilings, as recently described by Cortez and Durand [10].

After writing a first draft of this article, we learned about recent work of Boigelot and Brusten
[8]. Although they are not motivated in any way by fractals and their results are written in terms
of logic, there is no doubt an intimate connection with the present work.

We end this paper with two questions.
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Problem 5.1. — Let X be an automatic fractal of R* whose Hausdorff dimension is d. Does the
set X always contain a nonempty open set?

The following problem is motivated by classical questions in number theory concerning the
expansion of algebraic irrational numbers in integer bases.

Problem 5.2. — Is it true that an automatic fractal of R contains an algebraic irrational number
only if it contains an open interval? Note that it would already be interesting to find a one-
dimensional automatic fractal X such that 0 < H(X) < 1, and for which one can prove that it
contains no irrational algebraic numbers.

In the case where X is the triadic Cantor set, the latter question corresponds to a famous
problem addressed by Mahler [19]. Roughly, we could say that if an automatic set X of R
has Hausdorff dimension less than one, then all elements in X should have serious restrictions
regarding patterns that can occur in their base-k expansion. On the other hand, it is expected
that algebraic irrational numbers contain every possible finite sequence of digits in their base-k
expansion (see, for instance, Adamczewski and Bugeaud [2]).
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