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5. Mahler’s Method

Boris Adamczewski

Mahler’s method, a term coined much later by van der Poorten, originated in
three papers of Kurt Mahler [M4, M7, M8] published in 1929 and 1930. As
reported in [M209, M222], Mahler was really sick and laid up in bed around
1926-27 when he started to occupy himself by playing with the function

f(z) =

∞∑
n=0

z2
n

.

While trying to show the irrationality of the number f(p/q) for rational numbers
p/q with 0 < |p/q| < 1, he finally finished proving the following much stronger
statement.

Theorem 0.1. Let α be an algebraic number such that 0 < |α| < 1. Then f(α)
is a transcendental number.

And Mahler’s method, an entirely new subject, was born. In the hands of
Mahler, the method already culminated with the transcendence of various num-
bers such as

∞∑
n=0

α2n ,

∞∏
n=0

(1− α2n) ,

∞∑
n=0

bn
√

5cαn ,
1

α−2 +
1

α−4 +
1

α−8 + · · ·
and with the algebraic independence of the numbers f(α), f′(α), f”(α), . . .. Here,
α denotes again an algebraic number with 0 < |α| < 1. Moreover, examples of
this kind can be produced at will, as illustrated for instance in [58]. Not only
was Mahler’s contribution fundamental, but also some of his ideas, described in
[M170], were very influential for the future development of the theory by other
mathematicians. There are several surveys including a discussion on this topic,
as well as seminar reports, due to Loxton [28, 29], Loxton and van der Poorten
[30], Mahler [M172], Masser [38], Nesterenko [39], Ku. Nishioka [47], Pellarin
[51, 52], van der Poorten [57, 58, 59]. In particular, Ku. Nishioka [47] wrote
the first and, up to date, the only book entirely devoted to Mahler’s method.
It provides an invaluable source of information, as well as an exhaustive ac-
count up to 1996. The author is indebted to all these mathematicians whose
writings helped him a lot to prepare the present survey. He also thanks Michel
Waldschmidt for his comments regarding a preliminary version of this text.
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96 Boris Adamczewski

1 Introduction

Any algebraic (resp. linear) relation over Q(z) between given analytic functions
f1(z), . . . , fn(z) ∈ Q{z}1, leads by specialisation at a given algebraic point α to
an algebraic (resp. l̇inear) relation over Q between the values f1(α), . . . , fn(α),
assuming of course that these functions are well-defined at α. The converse is
known to be false in general [M172], but there are few known instances where
it holds true. In each case, an additional structure is required: the analytic
functions under consideration do satisfy some kind of functional/differential
equation. Mahler’s method provides an instance of such a phenomenon. In
this respect, the proof of Theorem 0.1 is based on the functional equation

f(z2) = f(z)− z (1.1)

which allows one to transfer the presupposed algebraicity of f(α) to f(α2n), for
all integers n ≥ 1. Further, Theorem 0.1 can be rephrased by saying that the
transcendence of the function f(z) over Q(z) is transferred to the transcendence
of the values f(α) at every non-zero algebraic number in the open unit disc.

As observed by Mahler, an important aspect of his method is that it does not
only apply to analytic functions of a single variable and to the operator z 7→ z2,
but also to analytic solutions of different types of functional equations related
to more general transformations. Let Ω = (ti,j)1≤i,j≤d be a d× d matrix with
non-negative integer coefficients. We let Ω act on Cd by:

Ωα = (α
t1,1
1 · · ·αt1,dd , . . . , α

td,1
1 · · ·αtd,dd ) ,

where α = (α1, . . . , αd) ∈ Cd. We consider as well Ω as acting on monomials
z = (z1, . . . , zd), where z1, . . . , zd are indeterminates. Such an action natu-
rally extends to elements of Q[[z]] by setting Ωf(z) = f(Ωz). Today Mahler’s
method encompasses a quite large number of results which makes it not that
easy to define. But to sum up, one could reasonably say that:

Mahler’s method aims at transferring results about the absence of algebraic or
linear relations over Q(z) between analytic solutions of some functional equa-
tions related to operators Ω, to their values at suitable algebraic points.

There are three main parameters one has to specify in order to apply Mahler’s
method:

• a type of functional equation,

• a type of matrix transformation Ω,

• a set of suitable algebraic points α.

1If K is a subfield of C, K{z} denotes the set of power series with coefficients in K and
which converge in some neighbourhood of the origin.
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5. Mahler’s Method 97

Independently of the choice of the functional equation, there are some unavoid-
able restrictions that one has to impose2 on the matrix transformation Ω and
on the algebraic point α. When these conditions are fulfilled, the pair (Ω,α) is
said to be admissible. Then there are further restrictions that one has to impose
on the point α depending on the functional equation and the matrix Ω. When
the latter are fulfilled, the point α is said to be regular. With this formalism,
all results discussed in the sequel will essentially have the same taste, though
difficulties for proving them may be very different. In order to emphasise some
unity, we choose to state most results in the sequel as equalities between tran-
scendence degrees. We recall that given a field K and elements a1, . . . , an in
a field extension of K, the transcendence degree over K of the field extension
K(a1, . . . , an), denoted by tr.degK(a1, . . . , an), is the largest cardinality of an
algebraically independent subset of K(a1, . . . , an) over K. In particular, say-
ing that tr.degK(a) = 1 (resp. tr.degK(a) = 0) is equivalent to say that a is
transcendental (resp. algebraic) over K.

1.1 Different types of Mahler’s equations

The following three families of equations have been mainly considered so far.

The rational Mahler equation

It is defined by:

f(Ωz) = R(z, f(z)) , (1.2)

where R(X,Y ) = A(X,Y )/B(X,Y ) ∈ Q(X,Y ) is a two-variable rational func-
tion with algebraic coefficients.

The algebraic Mahler equation

It is defined by:

P (z, f(z), f(Ωz)) = 0 , (1.3)

where P (z, X, Y ) ∈ Q[z, X, Y ]. The rational Mahler equation is a special case
of the algebraic Mahler equation where the degree in Y of P is equal to 1.

The linear Mahler equation

It is defined by:  f1(Ωz)
...

fn(Ωz)

 = A(z)

 f1(z)
...

fn(z)

 , (1.4)

where A(z) belongs to GLn(Q(z)).

2At least when applying Mahler’s method in its original form.
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98 Boris Adamczewski

Remark 1.1. It is important to keep in mind that only analytic solutions of
the corresponding equations are considered. In particular, Mahler’s method
does not apply to some interesting functions such as log z or log log z/ log 2,
though both are solutions to simple linear Mahler equations.

1.2 Condition of admissibility

The existence of a real number ρ > 1 such that the following conditions hold
seems to be inherent to Mahler’s method.

(i) Every entry of the matrix Ωk belongs to O(ρk) as k tends to infinity.

(ii) Set Ωkα = (α
(k)
1 , . . . , α

(k)
d ). Then there exists a positive number c such

that for all k large enough:

log |α(k)
i | ≤ −cρ

k , 1 ≤ i ≤ d.

(iii) If f(z) is any non-zero element of C{z}, then there are infinitely many
integers k such that f(Ωkα) 6= 0.

Definition 1.2. The pair (Ω,α) is said to be admissible if conditions (i)–(iii)
are fulfilled.

Remark 1.3. In the case where d = 1, the operator Ω takes the simple form
σq : z 7→ zq, where q ≥ 2 is an integer, and conditions (i)–(iii) are automatically
satisfied with ρ = q. The non-vanishing Condition (iii) being just a direct
consequence of the identity theorem3.

Our ability to use Mahler’s method will thus depend on our ability to provide
simple and natural conditions ensuring that (Ω,α) is admissible. Several con-
tributions to this problem are due to Mahler [M4, M7], Kubota [27], Loxton
and van der Poorten [31], and most notably Masser [36]. These works lead
finally to the following definitive answer, as described in [6].

Definition 1.4. Let Ω be a d×d matrix with non-negative integer coefficients
and with spectral radius ρ. We say that Ω belongs to the classM if it satisfies
the following three conditions:

(a) it is non-singular,

(b) none of its eigenvalues is a root of unity,

(c) there exists an eigenvector with positive coordinates associated with the
eigenvalue ρ.

Definition 1.5. An algebraic point α ∈ (C∗)d is said to be Ω-independent if
there is no non-zero d-tuple of integers µ for which (Ωkα)µ = 1 for all k in an
arithmetic progression.

3That is, the fact that the zeros of a non-zero holomorphic function cannot accumulate
inside a connected open set.
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5. Mahler’s Method 99

Let us also denote by U(Ω) the set of points α of (C∗)d such that condition
(ii) holds. As observed by Loxton and van der Poorten [31, 32], and by Faver-
jon and the author [6], when the matrix Ω belongs to the class M, the set
U(Ω) is a punctured neighbourhood of the origin, and U(Ω) = {α ∈ (C∗)d :
limk→∞Ωkα = 0}. We stress that U(Ω) actually contains the punctured open
unit disk of Cn. With these definitions, the notion of admissibility can be
characterised as follows [6].

Theorem 1.6. Let Ω be a d × d matrix with non-negative integer coefficients
and α ∈ (Q∗)d. Then the pair (Ω,α) is admissible if, and only if, Ω belongs to
the class M, limk→∞Ωkα = 0, and α is Ω-independent.

Theorem 1.6 is essentially a rephrasing of the so-called Masser vanishing theo-
rem [36].

1.3 Conditions of regularity

In addition to the admissibility of the pair (Ω,α), there are still further nat-
ural restrictions one has to impose on the point α in order to apply Mahler’s
method. These restrictions depend both on the functional equation and the
matrix transformation Ω.

Before giving them, we first note that the algebraic Mahler Equation (1.3) can
be rewritten as

A0(z, f(z))f(Ωz)r +A1(z, f(z))f(Ωz)r−1 + · · ·+Ar(z, f(z)) = 0 ,

where A0 6≡ 0, Ai(z, Y ) ∈ Q[z, Y ] for 0 ≤ i ≤ r, and where the Ai are relatively
prime viewed as polynomials in Y . Then there are polynomials gi(z, Y ) ∈
Q[z, Y ] such that

g(z) =

r∑
i=0

gi(z, Y )Ai(z, Y ) (1.5)

does not depend on Y and is not zero.

Definition 1.7. A point α ∈ Cd with non-zero coordinates is said to be
regular :

• with respect to the rational Mahler Equation (1.2) if ∆(Ωkα) 6= 0 for all
k ≥ 0, where ∆ denotes the resultant of the polynomials A and B viewed
as polynomials in Y ;

• with respect to the algebraic Mahler Equation (1.3) if g(Ωkα) 6= 0 for all
k ≥ 0, where g is defined as in (1.5);

• with respect to the linear Mahler Equation (1.4) if the matrix A(Ωkα) is
well-defined and non-singular for all k ≥ 0.
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100 Boris Adamczewski

2 Basic principles of Mahler’s method

For the reader who is not familiar with Mahler’s method or even with transcen-
dence theory, we first give a proof of Theorem 0.1. The proof is by contradic-
tion, assuming the algebraicity of f(α), and follows a scheme of demonstration
which is now classical in transcendence theory. The latter can be divided in
the following four steps.

(AF)− Constructing an auxiliary function together with a corresponding
evaluation.

(UB)− Proving an upper bound for this evaluation by means of analytic
estimates.

(NV)− Proving the non-vanishing of this evaluation by means of zero
estimates.

(LB)− Proving a lower bound for this evaluation by means of arithmetic
estimates.

A contradiction is then derived by comparison between (UB) and (LB) for a
suitable choice of underlying parameters. The reader familiar with transcen-
dence theory will notice that each of the four steps here take a very primitive
form, without requiring any use of Siegel’s lemma or of any difficult vanishing
theorem. Only simple consideration with heights and the Liouville inequality
are needed to achieve this proof. This is certainly an appreciable feature of
Mahler’s method.

Remark 2.1. Note that for the equation f(z2) = f(z) − z, the transformation
matrix Ω = (2) is just a 1× 1 matrix and thus the pair (Ω, α) is admissible for
all non-zero algebraic numbers α in the open unit disc. Moreover, such α are
all regular. This explains why Theorem 0.1 applies to all non-zero algebraic
numbers α with |α| < 1.

Height and Liouville’s inequaliy

To prove Mahler’s theorem, the only arithmetic tool one needs is a suitable
notion of size or complexity that allows one to generalise the fundamental
inequality

|p/q| ≥ 1/q, ∀p/q ∈ Q, p/q 6= 0

to elements of a number field. In order to simplify some computations, it seems
more appropriate to use the absolute logarithmic Weil height (or Weil height
for short), but any other reasonable notion of height would also do the job.
Let k be a number field. The absolute logarithmic height of a projective point
(α0 : · · · : αn) ∈ Pn(k) is defined by

h(α0 : · · · : αn) =
1

[k : Q]

∑
ν∈Mk

dν log max{|α0|ν , . . . , |αn|ν} ,
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5. Mahler’s Method 101

where ν runs over a complete set Mk of non-equivalent places of k, dν = [kν :
Qp]4, and where the absolute values | · |ν are normalised so that the product
formula holds: ∏

ν∈Mk

|x|dνν = 1 , ∀x 6= 0 ∈ k ,

We also set h(α) = h(1 : α) for all α ∈ k, so that h(0) = 0. We stress that the
height of an algebraic number α does not depend on the choice of the number
field k containing it. The following useful properties can be easily derived from
the definition. Given two algebraic numbers α and β, one has:

h(α+ β) ≤ h(α) + h(β) + log 2

h(αβ) ≤ h(α) + h(β) (2.1)

h(αn) = nh(α), n ∈ N
h(1/α) = h(α), α 6= 0.

More generally, if P ∈ Z[X1, . . . , Xn] and α1, . . . , αn ∈ Q, one has

h(P (α1, . . . , αn)) ≤ logL(P ) +

n∑
i=1

(degXi P )h(αi) , (2.2)

where L(P ) denotes the length of P , that is the sum of the absolute values
of its coefficients. As a direct consequence of the product formula, one also
obtains the fundamental Liouville inequality :

log |α| ≥ −[k : Q]h(α), ∀α 6= 0 ∈ k . (2.3)

We are now ready to prove Theorem 0.1.

Proof of Theorem 0.1. Let us assume by contradiction that α and f(α) are both
algebraic. Let k be a number field containing these numbers and let N be a
positive integer.

(AF) The first observation is that there exist N + 1 polynomials
P0(z), . . . , PN (z) ∈ Z[z] of degree at most N , not all zero, such that the
power series

EN (z) =

N∑
j=0

Pj(z)f
j(z) =

∞∑
h=0

ehz
h

has valuation at least N2 + 1 at zero, that is eh = 0 for all h ≤ N2. Indeed
finding such polynomials is equivalent to solve a linear system with (N + 1)2

unknowns (the coefficients of the polynomials Pj) and only N2 + 1 equations.

4Here kν denotes the completion of k with respect to ν and ν|Q = p, with the convention
that if ν|Q = ∞ then Qp = R and kν is either R if the place is real or C if the place is
complex.
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102 Boris Adamczewski

(UP) The previous construction ensures that EN (z) takes small values around
zero. More precisely, one easily gets that

|EN (α2n)| ≤ c1(N)|α|2
nN2

, (2.4)

where c1(N) depends on N but not on n.

(NV) We now observe that f(z) is a transcendental function over Q(z). This
follows for instance from the fact that its Taylor series expansion is too sparse.
In consequence, our auxiliary function EN (z) is a non-zero analytic function,
which implies by the identity theorem that EN (α2n) is non-zero for n large
enough.

(LB) Equation (1.1) ensures that all numbers EN (α2n) belong to k. Let us
denote by AN (X,Y ) ∈ k[X,Y ] the polynomial, of degree at most N in X and
Y , such that

AN (z, f(z)) =

N∑
j=0

Pj(z)f
j(z) .

Thus EN (α2n) = AN (α2n , f(α2n)) and a routine calculation using (2.1) and
(2.2) gives that

h(EN (α2n)) ≤ c2(N) + 2n+1Nh(α) + n ,

where c2(N) depends on N but not on n. We then infer from Liouville’s
Inequality (2.3) that

log |EN (α2n)| ≥ −[k : Q] (c2(N) + 2nNh(α) + n) . (2.5)

We are now ready to conclude the proof. By (2.4) and (2.5), we get that

c1(N) + 2nN2 log |α| ≥ −[k : Q](c2(N) + 2n+1Nh(α) + n) .

Dividing by 2n and letting n tend to infinity, it follows that

N ≤ 2[k : Q]h(α)

| log |α||
·

The latter inequality provides a contradiction for N can be chosen arbitrarily
large.

3 The rational Mahler equation

Using essentially the same arguments as in the proof of Theorem 0.1, Mahler
[M4, M7] was already able to prove the following general result.

Theorem 3.1. Let k be a number field and let us assume that f(z) ∈ k{z}
is solution to Equation (1.2). Let m denote the maximal degree in Y of the
denominator and the numerator of R(X,Y ) and let us assume that m < ρ, the
spectral radius of Ω. If the pair (Ω,α) is admissible and α is regular, then

tr.degQf(α) = tr.degQ(z)f(z) .
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5. Mahler’s Method 103

Let us make few comments.

• The assumption m < ρ is used in the proof to get suitable estimates for
heights in step (LB). However, Ku. Nishioka [42] has shown how to relax this
assumption to m < q2 in the case where d = 1 and Ω = (q). The new argument
provided by Nishioka is the use of Siegel’s lemma in order to take care about
the size of the coefficients of the polynomials Pj in step (AF), instead of just
solving a linear system.

• The assumption about regularity cannot be removed as shown by the following
simple example. Let

g1(z) =

∞∏
n=0

(1− 2z2
n

)

that satisfies the equation g1(z2) = g1(z)/(1 − 2z). One can check that g1(z)
is transcendental but g1(α) = 0 for all α such that α2n = 1/2 for some n.
Here, ∆(z) = (1− 2z), and ∆(α2n) = 0 for such α. If one slightly modified the
definition of g1(z) to

g2(z) =

∞∏
n=0

(1− z2
n

)

then ∆(z) = (1− z) has no root inside the open unit circle, and it follows that
g2(α) is transcendental for all non-zero algebraic numbers α with |α| < 1.

• The transcendence of the function f(z) in Theorem 3.1 is of course necessary
to obtain the transcendence of the value f(α). Let us recall the following
informative anecdote. As an application of his theorem, Mahler considered in
[M195] the function

h(z) =

∞∑
n=0

z2
n

1− z2n+1 ·

It satisfies the simple equation h(z2) = h(z)−z/(1−z2), from which he deduced
the transcendence of the number

2− h((1−
√

5)/2) =

∞∑
n=0

1

F2n
,

where Fn denotes the n-th Fibonacci number. But in fact the latter series is
equal to (7 −

√
5)/2. The reason for this mistake is just that Mahler forgot

to check that h(z) is transcendental and it turns out that this is not the case
for h(z) = z/(1 − z). It is worth mentioning that the transcendence of ana-
lytic solutions to the rational Mahler equation can generally be deduced from
the following useful dichotomy due to Keiji Nishioka [41]: a power series f(z)
satisfying (1.2) either belongs to k(z) or is transcendental over k(z).

One of Mahler’s favourite consequences of Theorem 3.1 was the following.

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 95–122



104 Boris Adamczewski

Corollary 3.2. Let ω be a quadratic irrational real number and set

fω(z) =

∞∑
n=0

bnωczn .

Then fω(α) is transcendental for all algebraic numbers α with 0 < |α| < 1.

In order to prove Corollary 3.2, Mahler first considered the bivariate function

Fω(z1, z2) =

∞∑
n=1

bnωc∑
m=1

zn1 z
m
2

and used the theory of continued fractions to prove that it satisfies the following
equation:

Fω(z1, z2) =

t−1∑
k=0

(−1)k
z
pk+1+pk
1 z

qk+1+qk
2(

1− zpk+1

1 z
qk+1

2

)
(1− zpk1 zqk2 )

+ Fω(Ω(z1, z2))

where

Ω =

(
pt qt
pt−1 qt−1

)
.

Here, pn/qn denotes the n-th convergent to ω, and ω is assumed5 to have a
purely periodic continued fraction expansion of even period t. Then Mahler
deduced from Theorem 3.1 that Fω(α, 1) = fω(α) is transcendental for all
algebraic number α with 0 < |α| < 1.

Remark 3.3. This example well-illustrated the relevance of working with
multivariate functions. Indeed, it can be shown that the one-variable function
fω(z) does not satisfy any one-variable Mahler equation, but fω(z) = Fω(z, 1)
is thus obtained by specialisation of a two-variate Mahler function.

4 The algebraic Mahler equation

In his three papers from 1929–30, Mahler did not consider the general algebraic
equation (1.3). In fact, he never proved any transcendence result concerning
this equation. However, he explicitly mentioned it at several places [M172,
M170] and Problem 3 in [M170] reads as follows.

Problem 4.1. Assume that f(z) ∈ Q{z} satisfies the equation

P (z, f(z), f(Ωz)) = 0 ,

where P (z, X, Y ) ∈ Q[z, X, Y ] is non-zero. To investigate the transcendency of
function values f(z0) where z0 is an algebraic point satisfying suitable further
restrictions.

5Mahler also explained how to reduce to this particular case.
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5. Mahler’s Method 105

When raising Problem 4.1, Mahler was motivated by the study of the values of
the elliptic modular invariant j(τ) at algebraic points τ . A classical result of
Schneider from 1937 shows that j(τ) is transcendental, unless τ is a quadratic
number. Setting j(τ) =: J(e2iπτ ), the function J(z) is meromorphic in the
open unit disc and J(z)− 1/z has a power series expansion with non-negative
integer coefficients

J(z)− 1

z
= 744 + 196 884 z + 21 493 760 z2 + · · · .

Mahler conjectured that J(α) is transcendental for all algebraic α with 0 <
|α| < 1. His hope was to prove this conjecture by developing a suitable exten-
sion of his method to the general equation (1.3). Indeed, it is known that for
all positive integers q, there exists a polynomial Φq(X,Y ) ∈ Z[X,Y ] such that

Φq(J(z), J(zq)) = 0 .

The main contribution to Problem 4.1 is due to Ku. Nishioka [42, 43]. In order
to avoid heavy notation, we only state it in the one-dimensional case, that is
when Ω = (q).

Theorem 4.2. Let k be a number field and let us assume that f(z) ∈ k{z}
is solution of Equation (1.3). Let us further assume that mn2 < q2 where m
(resp. n) denotes the degree of P (z,X, Y ) in the variable X (resp. Y ). If α is
regular, then

tr.degQf(α) = tr.degQ(z)f(z) .

Unfortunately, the modular invariant J remains beyond the scope of Mahler’s
method for the condition mn2 < q2 is not fulfilled. Indeed, the degree n in Y
of Φq is larger than q. Nevertheless, Mahler’s ideas were really influential and
in 1996, his conjecture was finally confirmed by the Stephanese team: Barré-
Sirieix, Diaz, Gramain, Philibert [11]. Strictly speaking, the approach used by
these authors is not Mahler’s method, but it is somewhat reminiscent of it.

5 The linear Mahler equation

Despite its natural analogy with linear differential equations and the theory
of Siegel’s E-functions, it is rather surprising that Mahler never really consid-
ered what is now referred to as the linear Mahler equation. In contrast, the
linear Mahler equation has taken on more and more importance over the years
and most current researches on Mahler’s method focus now on such equations.
Indeed, during the late Seventies, Mahler’s method really took on a new signif-
icance after Mendès France popularised the fact that linear Mahler equations
naturally arise in the study of automata theory. Though already explicitly
noticed in 1968 by Cobham [19], this connection remained relatively unknown
at that time, likely because Cobham’s works on this topic were not published
in academic mathematical journals. In section 6, we will briefly discuss this
important application of Mahler’s method.
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5.1 The one-variable case

Given an integer q ≥ 2, a function f(z) ∈ Q{z} is said to be a q-Mahler function
if there exist polynomials p0(z), . . . , pn(z) ∈ Q[z], not all zero, such that

p0(z)f(z) + p1(z)f(zq) + · · ·+ pn(z)f(zq
n

) = 0 . (5.1)

A function f(z) ∈ Q{z} is q-Mahler if, and only if, f(z) is a coordinate of a
vector solution to a one-variable linear Mahler system: f1(zq)

...
fn(zq)

 = A(z)

 f1(z)
...

fn(z)

 , (5.2)

where A(z) is a matrix in GLn(Q(z)) and the fi’s are analytic in a neighbour-
hood of z = 0. We will also simply say that f(z) is a M -function if it is
q-Mahler for some q. An M -function is always meromorphic on the open unit
disc, the unit circle being a natural boundary unless if it is a rational func-
tion [60]. In particular, as for solutions to the rational Mahler equation, an
M -function is either rational or transcendental over Q(z). We also recall that
the Taylor coefficients of an M -function are always confined in some number
field.

The above definitions highlight a strong analogy with the theory of E- and
G-functions introduced by Siegel: linear differential equations are replaced by
linear difference equations associated with the Mahler operator σq : z 7→ zq.
The main results concerning M -functions turn out to be in complete correspon-
dence with those obtained for E-functions. After several partial results due to
Mahler [M8], Kubota [27], Loxton and van der Poorten [34, 35], the analog
of the Siegel–Shidlovskii theorem was finally obtained by Ku. Nishioka [44] in
1990.

Theorem 5.1. Let f1(z), . . . , fn(z) ∈ Q{z} be solutions to (5.2). Let α ∈ Q,
0 < |α| < 1, be a regular point with respect to this system. Then

tr.degQ(f1(α), . . . , fn(α)) = tr.degQ(z)(f1(z), . . . , fn(z)) .

The proof of Nishioka is based on some technics from commutative algebra
introduced in the framework of algebraic independence by Nesterenko in the
late Seventies. Recently, Fernandes observed that Theorem 5.1 can also be
deduced from a general algebraic independence criterion6 due to Philippon [53].

It is quite tempting to believe that M -functions should take transcendental
values at non-zero algebraic points in the open unit disc. In some sense, this
is the case but there may be some exceptions, as illustrated by the example of

6The proof of this algebraic independence criterion also relies on the method introduced
by Nesterenko.
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the function g1(z) given after Theorem 3.1. Theorem 5.1 implies the follow-
ing simple dichotomy: a transcendental M -function solution to a linear scalar
Mahler equation of order one (possibly inhomogeneous) takes algebraic val-
ues7 at singular points and transcendental values at all other algebraic points.
However, as powerful as it is, Nishioka’s theorem does not completely solve the
question of the algebraicity/transcendence for the values at algebraic points of
M -functions satisfying higher order equations. There are two reasons for that.
First, in the general case, the transcendence of the function f1(z) does not
ensure that the number f1(α) is transcendental, but only that one among the
numbers f1(α), . . . , fn(α) is transcendental, assuming further that α is a reg-
ular point. The second difficulty arises precisely from the fact that Nishioka’s
Theorem does not apply at singular points.

In 2006, Beukers [14] obtained a refined version of the Siegel–Shidlovskii theo-
rem as a consequence of the work of André [9] on E-operators. Another proof
of this beautiful result is given by André in [10]. Inspired by these works,
and by the work of Nesterenko and Shidlovskii [40], a similar refinement for
linear Mahler systems has been proved recently by Philippon [56]. The follow-
ing stronger homogeneous version is obtained in [4]. It is the exact analog of
Beuker’s theorem.

Theorem 5.2. Let f1(z), . . . , fn(z) ∈ Q{z} be solutions to (5.2). Let α ∈ Q,
0 < |α| < 1, be a regular point for this system. Then for all homoge-
neous polynomial P ∈ Q[X1, . . . , Xn] such that P (f1(α), . . . , fn(α)) = 0,
there exists Q ∈ Q(z)[X1, . . . , Xn], homogeneous in X1, . . . , Xn, such that
Q(z, f1(z), . . . , fn(z)) = 0 and Q(α,X1, . . . , Xn) = P (X1, . . . , Xn).

The problem of the transcendence, and more generally of the linear indepen-
dence over Q, of values of M -functions at algebraic points is completely solved
in [4, 5] by using Theorem 5.1. In this direction, we quote Theorem 5.3 below.
The main feature of this result is that it applies to all non-zero algebraic points
in the open unit disc and not only to regular points. This is a crucial point for
applications such as described in Section 6.

Theorem 5.3. Let k be a number field, f(z) ∈ k{z} be an M -function, and α
be an algebraic number, 0 < |α| < 1, that is not a pole of f(z). Then either
f(α) is transcendental or f(α) ∈ k(α). Moreover, there exists an algorithm to
decide this alternative.

One can reasonably argue that Theorem provides essentially all that tran-
scendence theory has to say about the algebraic relations between the values
of several q-Mahler functions at a given point. In contrast, the previous re-
sults do not say that much about the algebraic relations between the values
of several M -functions (possibly associated with different Mahler operators) at
distinct algebraic points. In this direction, we mention the following general

7In fact, such an M -function necessarily vanishes at all non-zero singular points in the
homogeneous case.

Documenta Mathematica · Extra Volume Mahler Selecta (2019) 95–122



108 Boris Adamczewski

conjecture [7]. We recall that given complex numbers α1, . . . , αr are said to be
multiplicatively independent if there is no non-zero tuple of integers n1 . . . , nr
such that αn1

1 · · ·αnrr = 1..

Conjecture 5.4. Let r ≥ 2 be an integer. For every integer i, 1 ≤ i ≤ r, we
let qi ≥ 2 be an integer, fi(z) ∈ Q{z} be a qi-Mahler function, and αi be an
algebraic number, 0 ≤ |αi| ≤ 1, such that fi(z) is well-defined at αi. THen the
following hold.

(i) Assume that α1, . . . , αr are multiplicatively independent. Then the num-
bers f1(α1), f2(α2), . . . , fr(αr) are algebraically independent over Q if and
only if they are all transcendental.

(ii) Assume that q1, . . . , qr are pairwise multiplicatively independent. Then
the numbers f1(α1), f2(α2), . . . , fr(αr) are algebraically independent over
Q if and only if they are all transcendental.

The main result of [7] provides significant progress towards this conjecture (see
Section 5.2).

5.2 The multivariate case

All results that have been obtained so far concerning multivariate linear Mahler
systems (1.4) are restricted to the so-called regular-singular case.

Definition 5.5. For every integer ` ≥ 1, we let K̂` denote the field of fractions

of Q{z1/`}, where z1/` = (z
1/`
1 , . . . , z

1/`
d ). We also set

K̂ :=
⋃
`≥1

K̂`.

A linear Mahler system of type (1.4) is said to be regular-singular if there exists

a matrix Φ(z) ∈ GLn(K̂) such that

Φ(Tz)A(z)Φ−1(z) ∈ GLn(K̂).

This means that there exists an meromorphic (possibly ramified) gauge trans-
form that changes the initial system into a system associated with a matrix
with constant coefficients. As shown in [34], this is in particular the case when
A(0) is well-defined and non-singular. The following multivariate analog of
Theorem 5.1 was recently announced in [6].

Theorem 5.6. Let us consider a regular-singular system of type (1.4) for
which the pair (Ω,α) is admissible and such that α is regular. Then for
all homogeneous P ∈ Q[X1, . . . , Xn] such that P (f1(α), . . . , fn(α)) = 0,
there exists Q ∈ Q(z)[X1, . . . , Xn], homogeneous in X1, . . . , Xn, such that
Q(z, f1(z), . . . , fm(z)) = 0 and Q(α, X1, . . . , Xn) = P (X1, . . . , Xn).
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In 1982, Loxton and van der Poorten [34] published a paper claiming the weaker
result

tr.degQ(f1(α), . . . , fn(α)) = tr.degQ(z)(f1(z), . . . , fn(z)) (5.3)

under the assumptions of Theorem 5.6. Unfortunately, some steps of their proof
were flawed as was noticed for instance by Ku. Nishioka in [44]. We stress that
before [6], Equality (5.3) was only proved in two very restrictive cases. First, in
the almost diagonal case, that is when each function fi(z) satisfies an equation
of the form:

fi(z) = ai(z)fi(Tz) + bi(z), ai(z), bi(z) ∈ Q(z), ai(0) 6= 0 , (5.4)

by Kubota [27] in 1977, as a generalisation of a theorem of Mahler [M8]. And
then in the almost constant case by Ku. Nishioka [46] in 1996, that is for
systems of the form:

f1(Ωz)
...

fm(Ωz)
1

 =


b1(z)

A
...

bm(z)
0 . . . 0 1




f1(z)
...

fm(z)
1

 ,

where A ∈ GLn(Q) and b1(z), . . . , bm(z) are rational functions.

Remark 5.7. One of the main interests in a result like Theorem 5.6 is that it
can be used to prove the algebraic independence for values of a single univariate
function at distinct algebraic points. For instance, with the function f(z) =∑∞
n=0 z

2n of the introduction, one can associate the linear Mahler system 1
f(z21)
f(z22)

 =

 1 0 0
−z1 1 0
−z2 0 1

 1
f(z1)
f(z2)

 .

The underlying transformation matrix

Ω =

(
2 0
0 2

)
belongs to the class M. Moreover, the point α = (1/2, 1/3) is regular and the
pair (Ω,α) is admissible. From the transcendence of f(z), one then gets for free
the algebraic independence over Q(z1, z2) of f(z1) and f(z2). Theorem 5.6 thus
ensures that the real numbers f(1/2) and f(1/3) are algebraically independent
over Q. Such applications make Mahler’s method in several variables a powerful
tool for the study of algebraic independence of automatic numbers which are
discussed in Section 6.

To conclude this section, let us mention one other important new feature in [6].
Two linear Mahler systems f1(Ω1z) = A1(z)f1(z) and f2(Ω2z) = A2(z)f1(z) can
always be artificially glued together as(

f1(Ωz1)
f2(Ωz2)

)
=

(
A1(z1) 0

0 A2(z2)

)(
f1(z1)
f2(z2)

)
,
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where

Ω =

(
Ω1 0
0 Ω2

)
.

When the transformation matrices Ω1 and Ω2 belong to the classM and have
the same spectral radius, then Ω again belongs the classM, so that Theorem 5.6
applies. But this is no longer true when Ω1 and Ω2 have multiplicatively
independent spectral radii. In [6], Mahler’s method is generalised in such a way
that it also covers this case, which is of particular importance for applications to
automata theory. Such a generalisation was first envisaged by Loxton and van
der Poorten [59], but only very partial results had been proved so far [27, 45].

A q-Mahler function f(z) is said to be regular singular if it is the coordinate
of a vector representing a solution to a regular singular Mahler system of the
form (5.2). As a consequence of the general results obtained in [6] concerning
regular singular Mahler systems in several variables, Faverjon and the author [7]
prove that Conjecture 5.4 is true if each function fi(z) is assumed to be regular
singular.

6 Application to integer base expansions of real numbers

An old source of frustration for mathematicians arises from the study of integer
base expansions of classical constants like

√
2 = 1.414 213 562 373 095 048 801 688 724 209 698 078 569 · · ·

or
π = 3.141 592 653 589 793 238 462 643 383 279 502 884 197 · · ·

While these numbers admit very simple geometric descriptions, a close look at
their digital expansions suggest highly complex phenomena. Over the years,
different ways have been envisaged to formalise this old problem. Each of
these points of view leads to a different assortment of challenging conjectures.
In 1965, Hartmanis and Stearns [26] investigated the fundamental question of
how hard a real number may be to compute, introducing the now classical
time complexity classes. The notion of time complexity takes into account the
number of elementary operations needed by a multitape deterministic Turing
machine to produce the first n digits of the expansion. In this regard, a real
number is considered all the more simple as its base-b expansion can be pro-
duced very fast by a Turing machine. At the end of their paper, Hartmanis
and Stearns suggested the following problem which is still widely open. We
refer the reader to [3] for a detailed discussion on Problem 6.1.

Problem 6.1. Do there exist irrational algebraic numbers for which the first n
binary digits can be computed in O(n) operations by a multitape deterministic
Turing machine?

In 1968, Cobham [19] suggested to restrict the Hartmanis–Stearns problem
to some simple classes of Turing machines. The main model of computation
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he investigated is the so-called Finite automaton. Such devices can be used
to output the well-known automatic sequences. We refer the reader to the
monograph [8] for formal definitions about these notions.

6.1 Cobham’s “Theorem” + Corollary

At this point, it is worth mentioning that Cobham was likely unaware of the
existence of Mahler’s works. Even so, he was the first to understand that tran-
scendence results for the values of M -functions at algebraic points would have
nice consequences to the Hartmanis–Stearns problem. The analogy between
M -functions and E-functions pushed him to claim in [19] that the following
statement should be true. But he never provided a proof, even a sketch of it.

“Theorem”. Let f1(z), . . . , fn(z) ∈ Q{z} be solutions to the linear Mahler
system (5.2) which are analytic in the open unit disc. Let α be a rational
number with 0 < |α| < 1 . Then for all λ1, . . . , λn ∈ Q, the number

λ1f1(α) + · · ·+ λnfn(α)

is either rational or transcendental.

This result is a direct consequence of Theorem 5.3 for q-Mahler functions with
rational coefficients from a ring. In addition, Cobham [19] proved that gener-
ating functions associated with automatic sequences do satisfy linear Mahler
equations; thus providing a bridge between Mahler’s method and the study of
the complexity of sequences of digits of real numbers. In particular, he proved
that his “theorem” implies the following corollary.

Corollary 6.2 (Cobham’s and/or Loxton–van der Poorten’s conjecture.).
The base-b expansion of an algebraic irrational real number cannot be generated
by a finite automaton.

This nice application of transcendence theory to the study of the computational
complexity of algebraic numbers had served as an important source of motiva-
tion for developing Mahler’s method from the late Seventies. Several authors,
including especially Loxton and van der Poorten [29, 34, 35], have then tried
to prove Theorem 5.1, until Nishioka finally proved it. Loxton and van der
Poorten also claimed that Corollary 6.2 would follow from this result. This is
the reason why Corollary 6.2 was sometimes referred to as the Loxton–van der
Poorten conjecture despite the fact it was first suggested by Cobham in 1968.
Unfortunately, there are two major obstructions that prevent Theorem 5.1 to
imply Corollary 6.2 as explained in Section 5.1. The Loxton–van der Poorten
conjecture was finally proved by Bugeaud and the author in [2] by a totally
different approach based on the p-adic subspace theorem. But this is only after
the recent work of Philippon [56], that Cobham’s “Theorem” was fully proved
in [4], solving thus a long-standing problem in Mahler’s method.

As discussed in [7], Conjecture 5.4 would have important consequences con-
cerning automatic real numbers, that is, real numbers whose base-b expansion
can be generated by a finite automaton for some integer base b.
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7 Application to transcendence of periods in characteristic p

In this section we briefly discuss an aspect of Mahler’s method that would likely
deserve to be better known. It is concerned with transcendence and algebraic
independence over function fields of positive characteristic. To sum-up, one
could roughly say that Mahler’s method is free of characteristic. Of course, we
will not try to justify this informal claim but instead we will content ourself
with a brief exposition of a typical situation, essentially reproduced from [24].
We refer the interested reader to the papers of Pellarin [51, 52] for nice surveys
about Mahler’s method in characteristic p. We first recall in Figure 1 some
fundamental analogies between number fields and function fields of positive
characteristic.

A = Z

K = Q

L

K

C = C

R = R

A = Fq[t] (q = pr)

K = Fq(t)

L

K

C

R = Fq
((

1
t

))

Fq
((

1
t

))

completion with respect to
the classical absolute value

on C, denoted by |.|

algebraic closure

completion with respect to

|P/Q| = qdegP−degQ

completion with respect to |.|

<∞ <∞

algebraic closure

Figure 1: Analogy between number fields and function fields in characteristic p.

The field L either denotes a number field or a function field of characteris-
tic p, while, in each framework, the field C is both complete and algebraically
closed. These fundamental analogies allow one to translate many classical num-
ber theoretical problems from number fields to function fields in characteristic
p, and in particular some which are related to transcendence and algebraic
independence. As mentioned in Section 5.1, Fernandes [24] recently showed
that Nishioka’s theorem (Theorem 5.1) can in fact be deduced from a general
algebraic independence criterion due to Philippon. This criterion applies in
a great generality [54], which covers in particular both frameworks mentioned
above. As a consequence, she obtains the following statement that is equally
valid in one or the other context.

Theorem 7.1. Let f1(z), . . . , fn(z) ∈ K{z} be solutions to the linear Mahler
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system (5.2). Let α ∈ K, 0 < |α| < 1, be a regular point with respect to this
system. Then

tr.degK(f1(α), . . . , fn(α)) = tr.degK(z)(f1(z), . . . , fn(z)) .

When K = Q, this is precisely Nishioka’s theorem. It is also worth mentioning
that Denis [20] first proved Theorem 7.1 for a special class of Mahler’s systems
when K = Fq(t). He was motivated by the following remarkable discovery of his
own: some analogs of periods in this framework (such as analogs of the number
π or of integer values of the Riemann ζ function) can be obtained as values
at algebraic points of p-Mahler functions, where p denotes the characteristic of
the ground field under consideration. This makes Mahler’s method a powerful
tool for the study of transcendence and algebraic independence of periods of
Drinfeld modules (or more generally of t-modules). The following example
well-illustrates this phenomenon. In analogy with the Riemann zeta function,
we define the Carlitz zeta function by

ζC(s) =
∑

a∈Fq [t], a unitary

1

as
·

The following formula was proved by Carlitz in [17]:

ζC(s) =

∞∑
h=0

(−1)hs

(Lh)s
,

for every integer s, 1 ≤ s ≤ p− 1, where

Lh = (tq
h

− t)(tq
h−1

− t) · · · (tq − t) ,

for all h ≥ 1, and L0 = 1. The key point is that the number ζC(s) can be
deformed to construct a p-Mahler function

fs(z) =

∞∑
h=0

(−1)hs(
(zqh − t)(zqh−1 − t) · · · (zq − t)

)s ·
Moreover, by construction one has:

fs(t) = ζC(s) .

It is easy to see that the Mahler equation satisfied by fs(z) is just

fs(z
q) = (−1)s (zq − t)s fs(z) + (−1)s+1 (zq − t)s .

Now, we can put these individual equations into the linear Mahler system
1

f1(zq)
...

fp−1(zq)

 = A(z)


1

f1(z)
...

fp−1(z)

 ,
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where

A(z) =


1 0 · · · · · · 0

zq − t −(zq − t) 0 · · · 0
...

. . .

(−1)p (zq − t)p−1 (−1)p−1 (zq − t)p−1

 .

By Theorem 7.1, the algebraic independence over Fq(t) of the periods

ζC(1), ζC(2), . . . , ζC(p− 1) ,

will then follow from the algebraic independence of the functions f1(z),
f2(z), . . . , fp−1(z) over Fq(t)(z). This was proved by Denis [21] by elementary
means, by taking advantage that each function fs satisfies an inhomogeneous
linear Mahler equation of order one. As described in [51, 52], this approach
can even be pushed forward in order to describe all algebraic relations between
the numbers ζC(s). In comparison, it is conjectured that the real numbers
π, ζ(3), ζ(5), ζ(7), . . . are all algebraically independent over Q, but it remains
unknown whether ζ(3) is transcendental or not, and if ζ(5) is rational or not.

More recently, Fernandes [25] obtained a refinement of Theorem 7.1, which
is the analogue of Theorem 5.1. In order to ensure that such a refine-
ment holds true, an additional assumption is now needed: the field extension
K(z)(f1(z), . . . , fn(z)) has to be regular. The main difference here is the fol-
lowing. When K is a number field, these extensions are always regular, whereas
when the characteristic of the fieldK divides q, non-regular q-Mahler extensions
do exist. Moreover, it is shown in [25] that the regularity of the field extension
K(z)(f1(z), . . . , fn(z)) is also a necessary condition for the refinement to hold.

8 Final comments

We end this survey with few historical remarks. We have tried, as best as pos-
sible, to trace the main steps in the development of this theory, from Mahler’s
first papers up to now.

8.1 From 1929 to 1969

Mahler first theorems were quite an achievement as among the very first ones
concerning the transcendence and algebraic independence at algebraic points
of a whole class of (non-explicit) analytic functions. But the very least one can
say is that Mahler did not receive much consideration for his original work. His
first three papers were totally ignored for more than forty years. Concerning
this matter, Mahler wrote for instance in [M222]: E. Landau did not show much
interest in this result. So I next turned to a closer study of the approximation
properties of e and π. Mahler himself seems to have somewhat underestimated
the importance of his own work on this topic all along his life, as filters through
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[M209, M216, M222]. The fact that his first paper on the subject appeared in
print in 1929, that is the same year as the landmark paper of Siegel [64], is
maybe not unrelated to the lack of recognition of his method. Indeed, there
is no doubt that the theory of the Siegel E-functions got his success because
it can be applied to the transcendence of numbers such as e and π, and more
generally to the transcendence of values at algebraic points of classical analytic
functions such as some hypergeometric series or Bessel functions. In contrast,
no classical transcendental constant is known (and even expected) to be the
value at some algebraic point of an M -function. This is certainly a major
deficiency that this method has. Mahler still noticed at least two interesting
instances of such functional equations, but he was not very lucky. The first
one is the algebraic modular equation Φq(J(z), J(zq)) = 0, already discussed
in Section 4. The second one occurs when studying some theta type functions
such as

θ(z, q) =
∞∑
n=0

z2nqn
2

,

which satisfies the functional equation θ(zq, q) = (θ(z, q) − 1)/z2q. Unfortu-
nately, Mahler’s method fails to apply in both cases. In the first one the degree
of Φq is too large (see Theorem 4.2), while in the second case the spectral radius
of the underlying matrix transformation is equal to one, so that the latter does
not belong to the class M.

This could have marked the end of a brief history, but the theory restarted
somewhat accidentally in 1969. After W. Schwarz wrote a paper in which he
reproved some results covered by far by Mahler’s results, Mahler [M170] wrote
an article in order to inform the mathematical community about his old results
and to suggest three main problems of research. It was published in English
in the first issue of the Journal of Number Theory and was a turning point for
Mahler’s method.

8.2 From 1969 to 1996

After Mahler published his paper [M170], Kubota and independently Lox-
ton and van der Poorten first generalised his old results and popularised
the method among number theorists during the second half of the Seventies.
They were later joined by other mathematicians including Amou, Becker, Du-
mas, Flicker, Galochkin, Masser, Miller, Molchanov, Nesterenko, Ku. Nishioka,
Randé, Tanaka, Töpfer, Wass. Mahler’s method then became an active area
of research. The interested reader will find in the book of Ku. Nishioka [47]
an exhaustive account of Mahler’s method during this period, as well as many
references. We still mention the useful Thèse de doctorat of Dumas [23] and
Bezivin’s paper [15] that are not quoted in [47]. This period culminated no-
tably with partial or complete solutions to the three problems raised by Mahler
in [M170]:
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• Masser [36] proved his vanishing theorem (reshaped in this text as The-
orem 1.6), which brings a complete solution to the first problem.

• Loxton and van der Poorten [33] contributed to the second problem which
concerns the generalisation of Mahler’s method to infinite chains of equa-
tions of the form:

fr(z) = ar(z)fr+1(Ωz) + br(z) (r = 1, 2, 3, . . .) .

In particular, they succeeded in extending Corollary 3.2 to all irrational
numbers ω.

• Ku. Nishioka [42, 43] contributed to the third problem concerning the
algebraic Mahler equation which is discussed in Section 4.

Of course, one should also add to this list Nishioka’s theorem (Theorem 5.1)
which is one of the jewels of this theory. As it is often the case in transcendence
theory, arguments in proofs can be quantified in order to derive transcendence
measures, measures of algebraic independence, or to apply to some transcen-
dental points. This was developed by different authors including Nesterenko,
Ku. Nishioka, Amou, Becker, and Töpfer. Together with Ku. Nishioka, Lox-
ton and van der Poorten were certainly among the main players in Mahler’s
method at that time. The latter did a lot to promulgate this topic and also to
envisage the main problems that should fall under the scope of this method.
Unfortunately, they also were sometimes a little bit too optimistic and pub-
lished flawed results several times. This makes it rather difficult to precisely
trace the development of this theory for an outsider, and explains why weaker
statements than some announced by these authors were sometimes published
much later by others. In this direction, we stress that the recent papers [4, 6]
provide now rigorous proofs for the results claimed by Loxton and van der
Poorten in [34, 35, 59].

8.3 Form 1996 up to now

Of course, after Ku. Nishioka wrote her book, nice applications of Mahler’s
method were obtained over the years. Let us mention for example the works of
Masser [37] and Pellarin [50] related to Corollary 3.2, the extension by Philip-
pon [55] of Nishioka’s theorem to transcendental points, and the work of Denis
[20, 21] concerning Mahler’s method in positive characteristic. But Mahler’s
method really found a great renewed interest in the last few years. On the one
hand, the works of Philippon [53], and of Faverjon and the author [4, 5, 6] pro-
vide notable advances concerning linear and algebraic independence of values
of M -functions at algebraic points (see also [13]). On the other hand, with a
complementary point of view, there is an impressive number of recent papers
about the algebraic relations between M -functions themselves and the study
of the one-variable linear Mahler equation using ideas from difference Galois
theory [1, 12, 16, 18, 22, 48, 49, 62, 61, 63]. All these recent results give up a
glimpse of an exciting period for the future development of Mahler’s method.
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[10] Y. André, Solution algebras of differential equations and quasi-
homogeneous varieties: a new differential Galois correspondence, Ann.
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et al.), Astérisque 317 (2008), Exp. No. 973, 205–242, Séminaire Bour-
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diophantiens, C. R. Acad. Sci. Paris 315 (1992), 511–515.
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ence, 1992.

[61] J. Roques, On the reduction modulo p of Mahler equations, Tohoku
Math. J. 69 (2017), 55–65.

[62] J. Roques, On the algebraic relations between Mahler functions, Trans.
Amer. Math. Soc. 370 (2018), 321–355.
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