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Abstract. This paper is motivated by the non-Archimedean counter-
part of a problem raised by Mahler and Mendès France, and by questions
related to the expected normality of irrational algebraic numbers. We
introduce a class of sequence enjoying a particular combinatorial prop-
erty: the precocious occurrences of infinitely many symmetric patterns.
Then, we prove several transcendence statements involving both real
and p-adic numbers associated with these palindromic sequences.

1. Introduction

One motivation for the present paper comes from the following question concerning
the expansion of algebraic numbers in integer bases. It appears at the end of a paper
of Mendès France [8], but in conversation he attributes the paternity of this problem to
Mahler (see the discussion in [4], page 403). Though we do not find any trace of it in
Mahler’s work, we will refer to it as the Mahler–Mendès France problem. It can be stated
as follows: For an arbitrary infinite sequence a = (ak)k≥1 of 0’s and 1’s, prove that the
real numbers

+∞
∑

k=1

ak

2k
and

+∞
∑

k=1

ak

3k

are algebraic if and only if both are rational.
We raise here a non-Archimedean version of this conjecture.

Problem 1. Let p be a prime number, a = (ak)k≥1 be an infinite sequence on {0, 1, . . . , p−
1}, and set

α =

+∞
∑

k=1

ak

pk
and αp =

+∞
∑

k=1

akpk.

Then, prove that the real number α and the p-adic number αp are algebraic if and only if
both are rational.

Another formulation of Problem 1 is that for every non-eventually periodic sequence
a at least one number among α and αp is transcendental. To the best of our knowledge,
no example is known of such a sequence for which we are able to reach this conclusion
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without previously determinating the exact status of one of the corresponding numbers.
Our main result (Theorem 1 below) is of a different nature. It answers positively Problem
1 for a large class of sequences, without determining the exact status of the corresponding
numbers α and αp.

Some results in the same vein are already known. Indeed, things become easier when
considering addition and multiplication without carry. This yields the following analog
of the Mahler–Mendès France problem in positive characteristic, as proved in [6]. For
simplicity, the next two results are stated here up to an injection of a finite set A with
cardinality at most q into the finite field Fq.

Theorem A. Let q1 and q2 with q1 < q2 be integer powers of two distinct prime numbers.
Let a = (ak)k≥1 be an infinite sequence on {0, 1, . . . , q1 − 1}, and set

f(X) =

+∞
∑

k=1

akXk ∈ Fq1
((X)) and g(X) =

+∞
∑

k=1

akXk ∈ Fq2
((X)).

Then, f and g are two algebraic functions (resp. over Fq1
(X) and over Fq2

(X)) if and
only if both are rational.

Theorem A is derived from two important results, namely, Christol’s theorem [5] and
Cobham’s theorem [7].

In a previous paper [1], we proved the following mixed-characteristic analog of the
Mahler–Mendès France problem. This is a consequence of the main transcendence result
of [1] and of Christol’s theorem.

Theorem B. Let p be a prime, a = (ak)k≥1 be an infinite sequence on {0, 1, . . . , p − 1}
and set

α =

+∞
∑

k=1

ak

pk
and f(X) =

+∞
∑

k=1

akXk ∈ Fp((X)).

Then, α and f are algebraic (resp. over Q and over Fp(X)) if and only if both are rational.

The proofs of Theorems A and B heavily rest on the fact that an algebraic power series
defined over a finite field has a quite simple Laurent series expansions that can be precisely
described in terms of finite automata (this is Christol’s theorem). Both Mahler–Mendès
France problem and Problem 1 seem to be much more difficult since we do not know many
things about the b-adic (resp. Hensel) expansion of irrational algebraic real (resp. p-adic)
numbers. Moreover, it is expected that these numbers have chaotic expansions (see Section
4). If true, this would likely be a source of serious difficulty to tackle these questions.

Our paper is organized as follows. In Section 2, we state our main result regarding
Problem 1, namely Theorem 1. More precisely, we confirm our conjecture in the case
where we can detect an excess of symmetry in the sequence a. The purpose of Section 3
is to introduce the Monna map and to show how it naturally gives rise to an interesting
reformulation of Problem 1. In Section 4, we present another motivation for considering
palindromic real numbers that relies on the expected normality of irrational algebraic real
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numbers. We establish generalizations of Theorem 1 and several related results, the proofs
of which are postponed to Sections 5 and 6. We conclude our paper in Section 7 by an
extension of Theorem 1. The main tool for the proofs of all our results is a version of the
Schmidt Subspace Theorem, due to Schlickewei [10].

2. Main result

In this Section, we introduce a class of sequences, called palindromic sequences, en-
joying the precocious occurrences of symmetric patterns. This combinatorial property is
described thanks to the notion of reversal. Note that continued fractions involving similar
sequences were previously considered in [2].

We use the terminology from combinatorics on words. Let A be a finite set. The
length of a finite word W on the alphabet A, that is, the number of letters composing
W , is denoted by |W |. The reversal (or the mirror image) of W := a1 . . . an is the word
W := an . . . a1. In particular, W is a palindrome if and only if W = W . We identify any
sequence a = (an)n≥1 of elements from A with the infinite word a1a2 . . . an . . .

An infinite sequence a is called a palindromic sequence if there exist real numbers w,
w′ and three sequences of finite words (Un)n≥1, (Vn)n≥1, and (Wn)n≥1 such that:

(i) For any n ≥ 1, the word WnUnVnUn is a prefix of the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above by w;

(iii) The sequence (|Wn|/|Un|)n≥1 is bounded from above by w′;

(iv) The sequence (|Un|)n≥1 is increasing.

In other words, a palindromic sequence has the property that infinitely many sym-
metric patterns (that is, the words UnVnUn) occur not too far from its beginning. Note
that numerous examples of classical sequences in word combinatorics, such as Sturmian se-
quences, the Thue–Morse sequence, or Paperfolding sequences, turn out to be palindromic.
The palindromic sequences should be compared with the stammering sequences introduced
in [1] (see Section 6 for a definition): in the former case, we have some excess of symmetry,
while, in the latter case, we have some excess of periodicity.

Our main result answers Problem 1 for palindromic sequences.

Theorem 1. Let p be a prime number and let a = (ak)k≥1 be a palindromic sequence on
the alphabet {0, 1, . . . , p − 1}. Then, the numbers

α :=
+∞
∑

k=1

ak

pk
and αp :=

+∞
∑

k=1

akpk

are algebraic if and only if both are rationals.

In transcendence theory, many results asserts that at least one number among some
finite list is transcendental. Apparently, Theorem 1 is the first result of this type which
deals with an Archimedean number and a non-Archimedean one.
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Theorem 1 is an immediate consequence of Theorem 2 below. It is also a very partic-
ular case of Theorem 5, stated and proved in Section 7.

3. The Monna map

Monna [9] introduced a map M defined from the set of positive real numbers to the
one of p-adic numbers. We call M the Monna map and recall its definition:

M : R∗
+ −→ Qp

α :=
∑

k≥−k0

ak/pk 7−→ αp =
∑

k≥−k0

akpk.

Thus, M maps the positive real number α whose expansion in base p is the sequence
a = (ak)k≥−k0

to the p-adic number having the same Hensel expansion. Note that a small
difficulty occurs when defining M. Indeed, we recall that the real numbers which belong
to the set Np := {a/pn, a ∈ Z≥1, n ∈ Z≥0} have two distinct p-adic expansions. The first
one (usually called the proper one) is finite while, for the second one, we have an = p − 1
for every integer n large enough. In order to well-define the map M, Monna used the
improper expansion for the elements of Np. In the sequel, we identify Np and Q with
their natural injections in Qp.

The Monna map has several interesting properties. Some of them, which can be easily
checked, are displayed below:

• It is a bijection from R∗
+ to Qp \ Np;

• It is continuous at all points of R∗
+ \ Np;

• The map M−1 is continuous and is even a 1-Lipschitz function (that is, |M−1(x) −
M−1(y)| ≤ |x − y|p for every pair (x, y) ∈ (Qp \ Np)

2);

• Every positive rational number is mapped by M on a rational number (more precisely,
we have M(Q ∩ R∗

+) = Q \ Np).

At the end of his paper, Monna wrote: ‘Par exemple, la question se pose si les nom-
bres réels transcendants sont transformés en nombres P-adiques transcendants et nombres
algébriques en nombres algébriques.’ This latter sentence seems to suggest that (α,M(α))
is either a pair of algebraic numbers or a pair of transcendental numbers. Obviously, if
true, this would provide a contradiction with the conclusion expected for Problem 1, which
can be nicely reformulated thanks to the introduction of the map M.

Problem 1 (alternative formulation). Prove that the Monna map M takes transcen-
dental values at all irrational algebraic points.
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4. Normal and abnormal real numbers

The aim of this Section is to provide another motivation for the present work. It is
related to questions about the expected normality of irrational algebraic numbers with
respect to their representation in integer bases.

Let b ≥ 2 be an integer. Not much is known on the b-adic expansions of classical
numbers, like π, log 2, and

√
2. It is, however, widely believed that these numbers are

normal in base b, that is, that every string of k letters from {0, 1, . . . , b − 1} occurs in
their b-adic expansion with the same frequency 1/bk. Despite some recent progress for

√
2

(and, more generally, for every irrational algebraic number), we are still very far away from
confirming this guess.

In this Section, we are interested in the combinatorial properties of the b-adic expan-
sions of irrational algebraic numbers. We are motivated by the following principle, which,
if true, would be a first step towards a proof that these numbers are normal in base b:

If a real irrational number ξ is clearly abnormal, in the sense that, for some b ≥ 2, its

b-adic expansion strongly differs from a normal sequence, then it is transcendental.

In a previous work [3] (see also Theorem D in Section 6), we established a combinatorial
criterion stating that if large blocks of digits do repeat unusually close to the beginning of
the sequence of digits, then ξ must be either rational or transcendental. Thus, an excess
of repetitions in a non-eventually periodic sequence does imply transcendence. We suggest
here to consider another combinatorial property, namely an excess of symmetry. From
now on, we say that a real (resp. p-adic) number is a palindromic number if its expansion
in some base b ≥ 2 (resp. its Hensel expansion) is a palindromic sequence (as defined in
Section 2) and we investigate the following problem:

Problem 2. Prove that any irrational (real or p-adic) palindromic number is transcen-
dental.

Following our general principle, it is likely that such numbers are transcendental.
Although we are not able at this point to give a positive answer to Problem 2, our Theorem
1 provides a first step in this direction. Actually, Theorem 1 is a consequence of more
general results that we state below. Let b ≥ 2 be an integer and (ak)k≥1 be a sequence
on {0, 1, . . . , b − 1}. Let S be the set of prime divisors of b. For any p ∈ S, the integer
sequence (dn)n≥1, where

dn =

n
∑

k=1

akbk,

converges in Zp to a p-adic number, that we denote by αp. Observe that, if b = p (as it is

the case in Theorem 1), then the Hensel expansion of αp is given by
∑+∞

k=1 akpk.

Theorem 2. Let b ≥ 2 be an integer and a = (ak)k≥1 be a palindromic sequence on the
alphabet {0, 1, . . . , b − 1}, with parameters w and w′. Assume that a is not ultimately
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periodic. Let p be a prime divisor of b and let pu be the greatest power of p dividing b.
Assume that

log pu

log b
>

w′

1 + w′
. (4.1)

Then, at least one of the numbers

α :=

+∞
∑

k=1

ak/bk, αp :=

+∞
∑

k=1

akbk

is transcendental.

Since condition (4.1) is satisfied whenever b is a prime number, our Theorem 1 is an
immediate consequence of Theorem 2.

If the mild condition (4.1) is not satisfied, our method yields a weaker conclusion than
in Theorem 2.

Theorem 3. Let b ≥ 2 be an integer and a = (ak)k≥1 be a palindromic sequence on the
alphabet {0, 1, . . . , b − 1}. Let S, α and αp be as above. Then, the set {α} ∪ {αp : p ∈ S}
is either composed solely of rational numbers, or it contains at least one transcendental
number.

Condition (4.1) of Theorem 2 is trivially satisfied if w′ = 0, that is, if Wn is the
empty word for any n ≥ 1 in the definition of a palindromic sequence. This motivates
the introduction of the notion of initially palindromic sequences. An infinite sequence a
is initially palindromic if there exist a real number w and two sequences of finite words
(Un)n≥1, (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnVnUn is a prefix of the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above by w;

(iii) For any n ≥ 1, |Un+1| ≥ (w + 2)|Un|.
The factor w + 2 occurring in (iii) above is motivated by Theorem 4 below. Needless

to say, to achieve (iii), we may if needed extract a subsequence from (Un)n≥1. We display
a particular case of Problem 2:

Problem 3. Prove that any irrational (real or p-adic) initially palindromic number is
transcendental.

A partial answer to Problem 3 is given by the following immediate corollary to The-
orem 2.

Corollary 1. Let b ≥ 2 be an integer and a = (ak)k≥1 be an initially palindromic sequence
on the alphabet {0, 1, . . . , b − 1}. Assume that a is not ultimately periodic. Then, either
the real number α :=

∑+∞
k=1 ak/bk is transcendental, or, for any prime divisor p of b, the

p-adic number αp :=
∑+∞

k=1 akbk is transcendental.

To complement Corollary 1, we establish that if the expansion of α is initially palin-
dromic, then, under some additional assumption on the density of the symmetric prefixes,
it is possible to establish the transcendence of α and of all the αp’s.
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Theorem 4. Let b ≥ 2 an integer and p be a prime divisor of b. Let a be an initially
palindromic sequence, and let (Un)n≥1 be the corresponding sequence of prefixes satisfying
conditions (i) to (iii). If we have

lim inf
n→+∞

|Un+1|
|Un|

< +∞, (4.2)

then the real number α :=
∑+∞

k=1 ak/bk and the p-adic number αp :=
∑+∞

k=1 akbk are either
both rational or both transcendental.

The proof of Theorem 4 relies on results from [3] and [1]. We show that any initially
palindromic sequence satisfying (4.2) has an excess of repetitions.

5. Proofs of Theorems 1 to 3

The main tool for the proofs of Theorems 1 to 3 is the following version of the Schmidt
Subspace Theorem, established by Schlickewei [10]. Throughout the paper, for any prime
number p, the p-adic absolute value | · |p is normalized in such a way that |p|p = p−1.

Theorem C. Let m ≥ 2 be an integer. Let L1,∞, L2,∞, . . . , Lm,∞ be m linearly indepen-
dent linear forms in the variable x = (x1, x2, . . . , xm), with real algebraic coefficients. Let
S be a finite set of prime numbers. For any prime p in S, let L1,p, L2,p, . . . , Lm,p be linear
forms in the same variable x = (x1, x2, . . . , xm) that are linearly independent and whose
coefficients are algebraic p-adic numbers. Let ε be a positive real number. Then, all the
solutions x = (x1, x2, . . . , xm) in Zm of the inequality

m
∏

i=1

|Li,∞(x)|
∏

p∈S

m
∏

i=1

|Li,p(x)|p < (max{|x1|, . . . , |xm|})−ε

are contained in a finite union of proper subspaces of Qm.

We begin with the proof of Theorem 3.

Proof of Theorem 3. Let b ≥ 2 be an integer. Consider a palindromic sequence
a = (ak)k≥1 defined over the alphabet {0, 1, . . . , b − 1}. We assume that the parameters
w, w′, (Un)n≥1, (Vn)n≥1 and (Wn)n≥1, are fixed, and we set rn = |Un|, sn = |Vn| and
tn = |Wn| for any n ≥ 1. Recall that

a = WnUnVnUn . . .

and that

α =
+∞
∑

k=1

ak

bk
, αp :=

+∞
∑

k=1

akbk,

for any prime divisor p of b.
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We assume that α and all the αp’s are algebraic, and we aim at proving that all are
rational numbers. In order to do this, we will apply Theorem C.

Let n be a positive integer. Define the integer polynomial Pn(X) by

Pn(X) =

tn
∑

k=1

ak Xk +

2rn+2tn+sn
∑

k=tn+1

a2rn+2tn+sn−k+1 Xk.

Since the rational Pn(b)/b2rn+2tn+sn+1 has the b-adic expansion

Pn(b)

b2rn+2tn+sn+1
= 0.WnUnVnUn Wn,

we get that
∣

∣

∣

∣

α − Pn(b)

b2rn+2tn+sn+1

∣

∣

∣

∣

≤ 1

b2rn+sn+tn
· (5.1)

Now, observe that

Pn(X) =

rn+tn
∑

k=1

ak Xk +

2rn+2tn+sn
∑

k=rn+tn+1

a2rn+2tn+sn−k+1 Xk.

Consequently, for any prime divisor p of b, we have

|Pn(b) − αp|p ≤ |b|rn+tn+1
p . (5.2)

Consider the linearly independent linear forms:

L1,∞ = αX − Y, L2,∞ = X, L3,∞ = Z.

Let p1, . . . , pℓ be the prime divisors of b. For j = 1, . . . , ℓ, consider the linearly independent
linear forms

L1,j = X, L2,j = Y − αpj
Z, L3,j = Z.

By assumption, all these linear forms have algebraic (real or p-adic) coefficients. We
evaluate the product of these linear forms at the integer points

xn =
(

b2tn+2rn+sn+1, Pn(b), 1
)

,

and we infer from (5.1) and (5.2) that

Πn :=
3

∏

i=1

|Li,∞(xn)|
l

∏

j=1

3
∏

i=1

|Li,j(xn)|p ≪ btn

ℓ
∏

j=1

|b|rn+tn

pj
= b−rn .

By Conditions (ii) and (iii), we easily get that

Πn ≪ (max{b2tn+2rn+sn+1, Pn(b), 1})−ε,
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for some positive real number ε. Here and below, the constant implied by ≪ does not
depend on n. Then, by Theorem C, there exist a non-zero integer triple (z1, z2, z3) and an
infinite set of distinct positive integers N1 such that

z1b
2tn+2rn+sn+1 + z2Pn(b) + z3 = 0, (5.3)

for any n in N1. Dividing (5.3) by b2tn+2rn+sn+1 and letting n tend to infinity along N1,
we get that α is rational. Consequently, the sequence a is ultimately periodic and all the
αp’s are rationals. Thus, we have proved that if α and the αp’s are algebraic, then all are
rationals. This establishes Theorem 3.

Now, we show how to modify the proof of Theorem 3 in order to establish Theorem 2.

Proof of Theorem 2. We keep the same notation as in the proof of Theorem 3, but we
apply Theorem C with a slightly different set of linear forms. Let p be a prime divisor of b
and denote by pu the greatest power of p dividing b. We consider the linearly independent
linear forms with algebraic coefficients

L1,∞ = αX − Y, L2,∞ = X, L3,∞ = Z,

L1,p = X, L2,p = Y − αpZ, L3,p = Z,

and, for every prime number p′ 6= p dividing b, we set

L1,p′ = X, L2,p′ = Y, L3,p′ = Z.

We evaluate the product Πn of the norms of these linear forms at the integer points

xn =
(

b2tn+2rn+sn+1, Pn(b), 1
)

.

Recall that, by assumption, there is a real number w′ such that tn ≤ w′rn for any n ≥ 1.
Consequently, we infer from (5.1) and (5.2) that

Πn ≪ btn |b|rn+tn
p = btnp−u(rn+tn) ≤ (bw′

p−u(1+w′))rn .

Then, it follows from (4.1) that there exists a positive real number C < 1 satisfying
Πn ≪ Crn . Thus, by Conditions (ii) and (iii) we get that

Πn ≪ (max{b2tn+2rn+sn+1, Pn(b), 1})−ε,

for some positive real number ε. We then apply Theorem C and we conclude exactly as in
the proof of Theorem 3.
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6. Proof of Theorem 4

We first recall a result from [3] and [1]. For any positive integer ℓ, we write W ℓ for the
word W . . .W (ℓ times repeated concatenation of the word W ). More generally, for any
positive real number x, we denote by W x the word W [x]W ′, where W ′ is the prefix of W
of length ⌈(x − [x])|W |⌉. Here, [y] and ⌈y⌉ denote, respectively, the integer part and the
upper integer part of the real number y. A sequence a is called stammering if there exist
a real number w > 1 and two sequences (Xn)n≥1 and (Yn)n≥1 of finite words such that:

(i) For any n ≥ 1, the word YnXw
n is a prefix of the word a;

(ii) The sequence (|Yn|/|Xn|)n≥1 is bounded;

(iii) The sequence (|Xn|)n≥1 is increasing.

Note that, unlike in [1], we do not assume here that a stammering sequence is non-
eventually periodic. We recall now the following transcendence criterion for stammering
real and p-adic numbers.

Theorem D. Let b ≥ 2 be an integer. Let a be a stammering sequence. Then, the
real number α :=

∑+∞
k=1 ak/bk is either rational or transcendental. Furthermore, for any

prime number p dividing b, the p-adic number αp :=
∑+∞

k=1 akbk is either rational or
transcendental.

The last assertion of Theorem D is proved in [1] only when b is a prime number.
However, it is easily seen that the same arguments can be used to establish Theorem D
for any integer b ≥ 2.

We go on with the proof of Theorem 4.

Proof of Theorem 4. Let a, (Un)n≥1, (Vn)n≥1 and w be as in the definition of an
initially palindromic sequence. By assumption, there are infinitely many indices n and an
integer M such that |Un+1| ≤ M |Un|. Moreover, both words UnVnUn and Un+1Vn+1Un+1

are prefixes of a, and they satisfy |UnVnUn| ≤ |Un+1|, as follows from (iii).
Thus, for each such n, there exists a finite word Wn (which may be empty) such that

Un+1 = UnVnUnWn. Consequently, a begins with

UnVnUnWnVn+1UnVnUnWn = UnVnUnWnVn+1WnUnV nUn.

Set Xn = UnVnUnWnVn+1Wn. Then, a begins with X1+εn
n , where εn = |Un|/|Xn|. Since

|Xn| ≤ (2 + w)|Un+1| ≤ M(2 + w)|Un|, the sequence a begins in particular with X1+ε
n ,

where ε = 1/(M(2+w)). It follows that a is a stammering sequence (here, Yn is the empty
word), and we thus derive Theorem 4 by applying Theorem D.

7. An extension of Theorem 1

If the conclusion of Problem 1 turns out to be true, the we have the following situ-
ation: a sequence a cannot represent at once a real algebraic number in the integer base
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p and a p-adic algebraic number, except in the trivial case where a is eventually periodic.
As mentioned in Section 4, it is also believed that the expansions of irrational algebraic
numbers are, in some sense, ‘random’. Actually, we could reasonably (or, we should rather
say unreasonably!) expect the following deeper statement: the expansion of an algebraic
irrational number in the integer base p and the Hensel expansion of a p-adic algebraic
irrational number are at once ‘random and independent’.

We end this paper with an extension of Theorem 1 which fits into such a general
philosophy.

Let a = (ak)k≥1 and a′ = (a′
k)k≥1 be sequences of elements from a finite set A. We

say that the pair (a, a′) satisfies Condition (∗) if there exist three sequences of finite words
(Un)n≥1, (U ′

n)n≥1, and (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnVn is a prefix of the word a;

(ii) For any n ≥ 1, the word U ′
nV n is a prefix of the word a′;

(iii) The sequences (|Un|/|Vn|)n≥1 and (|U ′
n|/|Vn|)n≥1 are bounded from above;

(iv) The sequence (|Vn|)n≥1 is increasing.

Note that if the pair (a, a) satisfies Condition (∗), then the sequence a is palindromic.
Our extension of Theorem 1 is as follows.

Theorem 5. Let p be a prime number. Let a = (ak)k≥1 and a′ = (a′
k)k≥1 be sequences

of integers from {0, 1, . . . , p − 1}. If the pair (a, a′) satisfies Condition (∗), then

α :=

+∞
∑

k=1

ak

pk
, and α′

p :=

+∞
∑

k=1

a′
kpk,

are algebraic if and only if both are rational.

It follows from Theorem 5 that if we suitably perturb the sequence of digits of an
irrational algebraic number written in base p to get a sequence (a′

k)k≥1, then the p-adic

number
∑+∞

k=1 a′
kpk is transcendental.

Before proving Theorem 5, we need the following auxiliary result.

Lemma 1. Let (a, a′) be a pair of sequences satisfying Condition (∗). If a is eventually
periodic, then a′ is a stammering sequence.

Proof. Since a is eventually periodic, there exist two finite words U and V such that
a = UV V . . . V . . . Set M = |U |+ |V |. For any sufficiently large factor W of a, there exists
two (possibly empty) finite words AW and BW , with |AW | < M and |BW | < M , and a
positive integer s such that

W = AW V sBW .

There thus exist two (possibly empty) finite words A and B, with |A| < M and |B| < M ,
and two increasing sequences of positive integers (nk)k≥1 and (sk)k≥1 such that

Vnk
= AV skB.
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Recall that the sequences (Vn)n≥1, (Un)n≥1 and (U ′
n)n≥1 are given by Condition (∗). It

follows that, for any positive integer k, the sequence a′ begins with the words U ′
nk

B V
sk

.

Set Yk = U ′
nk

B and Xk = V
⌊sk/2⌋

. Then, the word YkX2
k is a prefix of a′. Moreover,

the sequence (|Xk|)k≥1 is increasing since by assumption (|V sk |)k≥1 is increasing, and the
sequence (|Yk|/|Xk|)k≥1 is bounded since by assumption (|U ′

n|/|Vn|)n≥1 is bounded. This
proves that a′ is a stammering sequence, which ends the proof.

Proof of Theorem 5. We assume that α and α′
p are algebraic and we aim at proving

that both are rational.
We first note that it is sufficient to prove that α is rational. Indeed, if α is rational,

then a is eventually periodic and, thanks to Lemma 1, we obtain that a′ is a stammering
sequence. We then infer from Theorem D that αp is either rational or transcendental, and
since αp is assumed to be algebraic, this implies that αp is rational.

For any n ≥ 1, set rn = |Un|, r′n = |U ′
n| and sn = |Vn|. Let n be a positive integer.

Let αn be the rational number having the following expansion in the integer base p:

αn := 0.UnVnU ′
n.

Define the integer polynomials Pn(X) by

Pn(X) :=

r′

n
∑

k=1

a′
k Xk +

rn+sn
∑

k=1

arn+sn−k+1X
k+r′

n .

Note that by assumption we also have

Pn(X) :=

r′

n+sn
∑

k=1

a′
k Xk +

rn+sn
∑

k=sn+1

arn+sn−k+1X
k+r′

n . (7.1)

The definition of Pn(X) ensures that

Pn(p)

prn+sn+r′

n+1
= αn

and, by (i), we have
∣

∣

∣

∣

α − Pn(p)

prn+sn+r′

n+1

∣

∣

∣

∣

≤ p−rn−sn . (7.2)

Now, define the integer polynomials Qn(X) by

Qn(X) :=

r′

n+sn
∑

k=1

a′
k Xk.

We infer from (7.1) and from the definition of αp that

|Pn(p) − Qn(p)|p < p−r′

n−sn and |Qn(p) − α′
p|p < p−r′

n−sn . (7.3)
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We consider the following systems of independent linear forms with algebraic (real and
p-adic) coefficients in the four variables (X, Y, Y ′, Z)

L1,∞ = αX − Y, L2,∞ = X, L3,∞ = Y ′, L4,∞ = Z,

and
L1,p = X, L2,p = Y − α′

pZ, L3,p = Y − Y ′, L4,p = Z.

We evaluate the product Πn of the norms of these linear forms at the integer points

xn =
(

prn+sn+r′

n+1, Pn(p), Qn(p), 1
)

.

We derive from (7.2) and (7.3) that

Πn ≪ pr′

n prn+r′

n+sn pr′

n+sn p−rn−r′

n−sn p−r′

n−sn p−r′

n−sn ≪ p−sn .

Thus, Theorem C implies the existence of a non-zero integer quadruple (z1, z2, z3, z4) and
an infinite set of distinct positive integers N1 such that

z1p
rn+sn+r′

n+1 + z2Pn(p) + z3Qn(p) + z4 = 0, (7.4)

for any n in N1.
We have now to distinguish two cases.
Let us first assume that z3 = 0. Then, dividing (7.4) by prn+sn+r′

n+1 and letting n
tend to infinity along N1, we get that z1 + z2α = 0. Since (z1, z2, z3, z4) is a non-zero
quadruple, we easily check that z2 6= 0 and α is thus rational.

Now let us assume that z3 6= 0. Then, dividing (7.4) by prn+sn+r′

n+1 and letting n
tend to infinity along N1, we get that

β := lim
N1∋n→+∞

Qn(p)

prn+sn+r′

n+1
= −z1 + z2α

z3
·

Note that it follows from our assumption that β is algebraic. Furthermore, we infer from
(7.2) that, for any n in N1, we have

∣

∣

∣

∣

β − Qn(p)

prn+sn+r′

n+1

∣

∣

∣

∣

=

∣

∣

∣

∣

z1 + z2α

z3
− z1 + z2Pn(p)/prn+sn+r′

n+1 + z4/prn+sn+r′

n+1

z3

∣

∣

∣

∣

≪ 1

prn+sn
·

(7.5)

Consider now the independent linear forms with algebraic (real and p-adic) coefficients

L1,∞ = βX − Y, L2,∞ = X, L3,∞ = Z,

and
L1,p = X, L2,p = Y − α′

pZ, L3,p = Z.
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We evaluate the product Π′
n of the norms of these linear forms at the integer points

xn =
(

prn+sn+r′

n+1, Qn(p), 1
)

.

We derive from (7.3) and (7.5) that

Π′
n ≪ p−sn .

Thus, Theorem C implies the existence of a non-zero integer triple (z′1, z
′
2, z

′
3) and an

infinite set of distinct positive integers N2 ⊂ N1 such that

z′1p
rn+sn+r′

n+1 + z′2Qn(p) + z′3 = 0, (7.6)

for any n in N2. Dividing (7.6) by prn+sn+r′

n+1 and letting n tend to infinity along N2,
we get that β is rational since it is easily verified that z′2 6= 0. We thus infer from the
definition of β that α is rational since we can also easily check that z2 6= 0. This ends the
proof of Theorem 5.
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