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TRANSCENDENCE CRITERIA FOR PAIRS OFCONTINUED FRACTIONSBoris Adam
zewski and Yann BugeaudUniversité Claude Bernard Lyon 1 and Université Louis Pasteur, Fran
eAbstra
t. The aim of the present note is to establish two extensionsof some trans
enden
e 
riteria for real numbers given by their 
ontinuedfra
tion expansions. We adopt the following point of view: rather thangiving su�
ient 
onditions ensuring the trans
enden
e of a given number

α, we take a pair (α, α
′) of real numbers, and we prove that, under some
ondition, at least one of them is trans
endental.1. Introdu
tion and resultsVery little is known on the 
ontinued fra
tion expansion of any algebrai
real number of degree at least three. It is likely that the sequen
e of its partialquotients is unbounded, but we seem to be still very far away from a proof.Re
ently, a small step was made in this dire
tion by means of several newtrans
enden
e 
riteria for 
ontinued fra
tions [1, 2, 3℄. They illustrate the fa
tthat if the sequen
e of partial quotients of a real irrational number α has somespe
ial 
ombinatorial property, for example if long blo
ks of partial quotientsrepeat unusually 
lose to the beginning, then α must be either trans
endental,or quadrati
.The purpose of the present note is to establish two extensions of some ofour 
riteria. We adopt a slightly di�erent point of view: rather than givingsu�
ient 
onditions ensuring the trans
enden
e of a given number α, we take apair (α, α′) of real numbers, and we aim at proving that, under some 
ondition,at least one of them is trans
endental. Clearly, if one knows in advan
e thatone of them is algebrai
, or if we 
onsider the pair (α, α), this plainly givesa trans
enden
e 
riterion. Like in [1, 2, 3℄, the proofs rest on the S
hmidtsubspa
e theorem.2000 Mathemati
s Subje
t Classi�
ation. 11J81, 11J70.Key words and phrases. Trans
enden
e, 
ontinued fra
tions.223



224 B. ADAMCZEWSKI AND Y. BUGEAUDTo state our results, it is 
onvenient to use the terminology from 
ombi-natori
s on words.Let A be a 
ountable set. The length of a word W on the alphabet A, thatis, the number of letters 
omposing W , is denoted by |W |. The mirror imageor the reversal of W := a1 . . . am is the word W := am . . . a1. In parti
ular,
W is a palindrome if and only if W = W .Let a = (aℓ)ℓ≥1 and a′ = (a′

ℓ)ℓ≥1 be sequen
es of elements from A, thatwe identify with the in�nite words a1a2 . . . and a′
1a

′
2 . . ., respe
tively. We saythat the pair (a,a′) satis�es Condition (∗) if there exists a sequen
e of �nitewords (Vn)n≥1 su
h that:(i) for every n ≥ 1, the word Vn is a pre�x of the word a;(ii) for every n ≥ 1, the word V n is a pre�x of the word a′;(iii) the sequen
e (|Vn|)n≥1 is in
reasing.Theorem 1.1. Let a and a′ be sequen
es of positive integers satisfyingCondition (∗). Set

α = [0; a1, a2, . . .], α′ = [0; a′
1, a

′
2, . . .].Then, either one (at least) of α and α′ is trans
endental, or both are in thesame real quadrati
 �eld.We stress that there is no assumption on the growth of the sequen
es aand a′.We point out two immediate 
onsequen
es of Theorem 1.1.Corollary 1.2. Let (Wj)j≥0 be an arbitrary sequen
e of �nite wordson the alphabet Z≥1. Set X0 = W0 and Xj = Xj−1WjXj−1 for any j ≥ 1.Then, the sequen
es (Xj)j≥0 and (Xj)j≥0 
onverge. Denote their limits by

a = (aℓ)ℓ≥1 and a′ = (a′
ℓ)ℓ≥1, respe
tively, and set

α = [0; a1, a2, . . .], α′ = [0; a′
1, a

′
2, . . .].Then at least one among α and α′ is trans
endental, or both are in the samereal quadrati
 �eld.Applying Theorem 1.1 with a = a′, we re
over [3, Theorem 1℄, statedbelow.Corollary 1.3. Let a = (aℓ)ℓ≥1 be a sequen
e of positive integers. Ifthe word a begins in arbitrarily long palindromes, then the real number α :=

[0; a1, a2, . . . , aℓ, . . .] is either quadrati
 or trans
endental.Our next statement deals with a wider 
lass of 
ontinued fra
tions. Keepthe above notation. We say that the pair (a,a′) satis�es Condition (∗∗) ifthere exist two sequen
es of �nite words (Un)n≥1 and (Vn)n≥1 su
h that:(i) for every n ≥ 1, the word Vn is a pre�x of the word a;(ii) for every n ≥ 1, the word UnV n is a pre�x of the word a′;



TRANSCENDENCE CRITERIA FOR PAIRS OF CONTINUED FRACTIONS 225(iii) the sequen
e (|Un|/|Vn|)n≥1 is bounded from above;(iv) the sequen
e (|Vn|)n≥1 is in
reasing.Theorem 1.4. Let a and a′ be sequen
es of positive integers satisfyingCondition (∗∗). Set
α = [0; a1, a2, . . .], α′ = [0; a′

1, a
′
2, . . .].Denote by (pℓ/qℓ)ℓ≥1 the sequen
e of 
onvergents to α′. If the sequen
e

(q
1/ℓ
ℓ )ℓ≥1 is bounded, then either one (at least) of α and α′ is trans
endental,or both are in the same real quadrati
 �eld.Applying Theorem 1.4 with a = a′, we re
over [3, Theorem 2℄. ApplyingTheorem 1.4 with a purely periodi
 sequen
e a, we 
an derive [2, Theorem3.2℄, a parti
ular 
ase of whi
h is stated below.Corollary 1.5. Let (aℓ)ℓ≥1 be a bounded sequen
e of positive integers.Assume that there are positive integers b1, . . . , bm and sequen
es (nk)k≥1 and

(λk)k≥1 of positive integers with
ank+j+hm = bj for 1 ≤ j ≤ m and 0 ≤ h ≤ λk − 1,and nk+1 > nk + λkm for every k ≥ 1. If

lim sup
k→+∞

λk

nk
> 0,then the real number [0; a1, a2, . . .] is either quadrati
, or trans
endental.To get Corollary 1.5, we apply Theorem 1.4 with a being the purelyperiodi
 sequen
e of period bm, . . . , b1.Theorem 1.4 des
ribes a way to perturb the 
ontinued fra
tion expansionof an algebrai
 number to get a trans
endental number.2. ProofsThe proofs of our theorems rest on the S
hmidt subspa
e theorem, re
alledbelow.Theorem A (W. M. S
hmidt). Let m ≥ 2 be an integer. Let L1, . . . , Lmbe linearly independent linear forms in x = (x1, . . . , xm) with real algebrai

oe�
ients. Let ε be a positive real number. Then, the set of solutions x =

(x1, . . . , xm) in Zm to the inequality
|L1(x) . . . Lm(x)| ≤ (max{|x1|, . . . , |xm|})−εlies in �nitely many proper subspa
es of Qm.Proof. See e.g. [5℄ or [6℄.We also need three lemmas. Ex
ept for the last assertion of Lemma 2.2,we omit the proofs, sin
e they 
an be found in Perron's book [4℄.



226 B. ADAMCZEWSKI AND Y. BUGEAUDLemma 2.1. Let α = [0; a1, a2, . . .] be a real number with 
onvergents
(pℓ/qℓ)ℓ≥1. Then, for any ℓ ≥ 2, we have

qℓ−1

qℓ
= [0; aℓ, aℓ−1, . . . , a1].Lemma 2.2. Let α = [0; a1, a2, . . .] and β = [0; b1, b2, . . .] be real numbers.Assume that there exists a positive integer n su
h that ai = bi for any i =

1, . . . , n. We then have |α − β| ≤ q−2
n , where qn denotes the denominator ofthe n-th 
onvergent to α. Furthermore, if an+1 6= bn+1, then we have

|α − β| ≥
1

6(bn+1 + 2)2 max{bn+2, bn+3}q2
n

·Proof. We 
ontent ourselves to establish the last assertion. Set α′ =
[an+1; an+2, . . .] and β′ = [bn+1; bn+2, . . .]. If an+1 > bn+1, then we have
(1) α′ − β′ ≥ 1 − [0; 1, bn+3 + 1] =

1

bn+3 + 2
·If an+1 < bn+1, then we have

(2) β′ − α′ ≥ [0; bn+2 + 1] =
1

bn+2 + 1
·Denote by (pℓ/qℓ)ℓ≥1 the sequen
e of 
onvergents to α. Then, the theory of
ontinued fra
tions gives that

α =
pnα′ + pn−1

qnα′ + qn−1
and β =

pnβ′ + pn−1

qnβ′ + qn−1
,sin
e, by assumption, the �rst n-th partial quotients of α and β are the same.We thus obtain

|α − β| =

∣

∣

∣

∣

pnα′ + pn−1

qnα′ + qn−1
−

pnβ′ + pn−1

qnβ′ + qn−1

∣

∣

∣

∣

=

∣

∣

∣

∣

α′ − β′

(qnα′ + qn−1)(qnβ′ + qn−1)

∣

∣

∣

∣

≥

∣

∣

∣

∣

α′ − β′

(an+1 + 2)(bn+1 + 2)q2
n

∣

∣

∣

∣

.If an+1 ≥ 2(bn+1 + 1), this yields
|α − β| ≥

1

3(bn+1 + 2)q2
n

·Otherwise, we get from (1) and (2) that
|α − β| ≥

1

6(bn+1 + 2)2 max{bn+2, bn+3}q2
n

·This 
on
ludes the proof of the lemma.For positive integers a1, . . . , am, we denote by Km(a1, . . . , am) the de-nominator of the rational number [0; a1, . . . , am]. It is 
ommonly 
alled a
ontinuant.



TRANSCENDENCE CRITERIA FOR PAIRS OF CONTINUED FRACTIONS 227Lemma 2.3. Let m ≥ 2 be an integer. For any positive integers a1, . . . , amand any integer k with 1 ≤ k ≤ m − 1, we have
Km(a1, . . . , am) = Km(am, . . . , a1)and

Kk(a1, . . . , ak)Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

≤ 2 Kk(a1, . . . , ak)Km−k(ak+1, . . . , am).Furthermore, we have
Km(a1, . . . , am) ≥ Km(1, . . . , 1) ≥ 2m/2.Throughout the rest of the paper, if W denotes the �nite word w1 . . . wmon the alphabet Z≥1, then [0; W ] denotes the rational number [0; w1, . . . , wm]and Km(W ) denotes the denominator of [0; W ].We begin with establishing Theorem 1.1.Proof of Theorem 1.1. We assume that α and α′ are algebrai
 num-bers. For n ≥ 1, set sn = |Vn|. Denote by (pℓ/qℓ)ℓ≥1 the sequen
e of 
onver-gents to α′. By assumption, we have

psn

qsn

= [0; V n],and we infer from Lemma 2.1 that
qsn−1

qsn

= [0; Vn].Consequently, we have
(3) |qsn

α − qsn−1| < q−1
sn

,and
(4) lim

n→+∞

qsn−1

qsn

= α.Furthermore, we 
learly have
(5) |qsn

α′ − psn
| < q−1

sn
and |qsn−1α

′ − psn−1| < q−1
sn

.Consider now the three linearly independent linear forms with algebrai
 
oef-�
ients:
L1(X1, X2, X3) = α′X1 − X3,

L2(X1, X2, X3) = αX1 − X2,

L3(X1, X2, X3) = X2.Evaluating them on the triple (qsn
, qsn−1, psn

), it follows from (3) and (5) that
∏

1≤j≤3

|Lj(qsn
, qsn−1, psn

)| ≤ q−1
sn

.



228 B. ADAMCZEWSKI AND Y. BUGEAUDBy Theorem A, there exist a non-zero integer triple (x1, x2, x3) and an in�niteset of distin
t positive integers N1 su
h that
(6) x1qsn

+ x2qsn−1 + x3psn
= 0,for every n in N1. By dividing (6) by qsn

and letting n tend to in�nity along
N1, it follows from (4) that
(7) x1 + x2α + x3α

′ = 0.We further 
onsider the three linearly independent linear forms with algebrai

oe�
ients:
L4(X1, X2, X3) = α′X2 − X3,

L5(X1, X2, X3) = αX1 − X2,

L6(X1, X2, X3) = X2.Evaluating them on the triple (qsn
, qsn−1, psn−1), it follows from (3) and (5)that

∏

4≤j≤6

|Lj(qsn
, qsn−1, psn−1)| ≤ q−1

sn
.By Theorem A, there exist a non-zero integer triple (y1, y2, y3) and anin�nite set of distin
t positive integers N2 su
h that

(8) y1qsn
+ y2qsn−1 + y3psn−1 = 0,for every n in N2. By dividing (8) by qsn

and letting n tend to in�nity along
N2, it follows from (4) that
(9) y1 + y2α + y3αα′ = 0.Observe that x3 is non-zero sin
e α is irrational. Consequently, it followsfrom (7) and (9) that
(10) y1 + y2α − y3α

(

x1 + x2α

x3

)

= 0.Sin
e x2y3 is non-zero, (10) implies that α is a quadrati
 real number, andwe infer from (9) that α′ lies in the same quadrati
 �eld as α. This 
on
ludesthe proof of Theorem 1.1.We now establish Theorem 1.4.Proof of Theorem 1.4. Keep the notation from the statement of thetheorem, and denote by (Un)n≥1 and (Vn)n≥1 the sequen
es o

urring inCondition (∗∗). Modifying them if ne
essary, we may assume that, besides (i)to (iv), they also satisfy(v) the sequen
e (|Un|)n≥1 is in
reasing;



TRANSCENDENCE CRITERIA FOR PAIRS OF CONTINUED FRACTIONS 229(vi) for any n ≥ 2, if cn denotes the last letter of Un, then Vncn is not apre�x of the word a.Indeed, if this would not be possible to modify (Un)n≥1 and (Vn)n≥1a

ordingly, then an appli
ation of Theorem 1.1 would yield that either one(at least) of α and α′ is trans
endental, or both are in the same real quadrati
�eld.Assume that α and α′ are algebrai
 numbers. For n ≥ 1, set rn = |Un|and sn = |Vn|. Re
all that (pℓ/qℓ)ℓ≥1 denotes the sequen
e of 
onvergents to
α′. By assumption, we have

prn+sn

qrn+sn

= [0; UnV n],and we infer from Lemma 2.1 that
qrn+sn−1

qrn+sn

= [0; VnUn].It follows from Lemma 2.2 that
(11) |qrn+sn

α − qrn+sn−1| < qrn+sn
Ksn

(Vn)−2.This shows in parti
ular that
(12) lim

n→+∞

qrn+sn−1

qrn+sn

= α.Furthermore, we 
learly have
(13) |qrn+sn

α′−prn+sn
| < q−1

rn+sn
and |qrn+sn−1α

′−prn+sn−1| < q−1
rn+sn

.Consider now the four linearly independent linear forms with algebrai

oe�
ients:
L7(X1, X2, X3, X4) = α′X1 − X3,

L8(X1, X2, X3, X4) = α′X2 − X4,

L9(X1, X2, X3, X4) = αX1 − X2,

L10(X1, X2, X3, X4) = X2.Evaluating them on the quadruple (qrn+sn
, qrn+sn−1, prn+sn

, prn+sn−1), it fol-lows from (11) and (13) that
Π :=

∏

7≤j≤10

|Lj(qrn+sn
, qrn+sn−1, prn+sn

, prn+sn−1)| ≤ Ksn
(Vn)−2.By assumption, there is M > 1 su
h that qℓ ≤ M ℓ and rℓ ≤ Msℓ forevery ℓ ≥ 1. This and Lemma 2.3 imply that, for n ≥ 2, we have

Ksn
(Vn) ≥ 2sn/2 ≥ 2sn/4 · 2sn/(4M) ≥ 2(rn+sn)/(4M) ≥ qη

rn+sn
,



230 B. ADAMCZEWSKI AND Y. BUGEAUDwith η = (log 2)/(4M log M). Thus, Π ≤ q−2η
rn+sn

, and, by Theorem A, thereexist a non-zero integer quadruple (z1, z2, z3, z4) and an in�nite set of distin
tpositive integers N3 su
h that
(14) z1qrn+sn

+ z2qrn+sn−1 + z3prn+sn
+ z4prn+sn−1 = 0,for every n in N3. By dividing (14) by qrn+sn
and letting n tend to in�nityalong N3, it follows from (12) that

(15) z1 + z2α + z3α
′ + z4αα′ = 0.We get from (15) that

α = −
z1 + z3α

′

z2 + z4α′
,and we observe that, for n in N3, we have

(16)

∣

∣

∣

∣

α −
qrn+sn−1

qrn+sn

∣

∣

∣

∣

=

∣

∣

∣

∣

z1 + z3α
′

z2 + z4α′
−

z1 + z3prn+sn
/qrn+sn

z2 + z4prn+sn−1/qrn+sn−1

∣

∣

∣

∣

≪
1

q2
rn+sn

≪ (Krn
(Un)Ksn

(Vn))−2,by (13) and Lemma 2.3. Here and below, the numeri
al 
onstant implied by
≪ is independent on n. Let cn, c′n and c′′n be the last three letters of Un, andde�ne the word U ′

n by Un = U ′
nc′′nc′ncn. We infer from (vi) and lemmas 2.2and 2.3 that

(17)

∣

∣

∣

∣

α −
qrn+sn−1

qrn+sn

∣

∣

∣

∣

≫ Ksn+3(Vncnc′nc′′n)−2.Then, Lemma 2.3 and the 
ombination of (16) and (17) yield that
(18)

Ksn
(Vn) × K3(c

′′
nc′ncn) ≫Ksn+3(Vncnc′nc′′n)

≫Ksn
(Vn) × Krn

(Un)

≫Ksn
(Vn) × Krn−3(U

′
n) × K3(c

′′
nc′ncn).However, our assumption (v) implies that Krn−3(U

′
n) tends to in�nity with

n. This 
ontradi
ts (18) and �nishes the proof of the theorem.A
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