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ABsTRACT. The aim of the present note is to establish two extensions
of some transcendence criteria for real numbers given by their continued
fraction expansions. We adopt the following point of view: rather than
giving sufficient conditions ensuring the transcendence of a given number
a, we take a pair (o, ) of real numbers, and we prove that, under some
condition, at least one of them is transcendental.

1. INTRODUCTION AND RESULTS

Very little is known on the continued fraction expansion of any algebraic
real number of degree at least three. It is likely that the sequence of its partial
quotients is unbounded, but we seem to be still very far away from a proof.
Recently, a small step was made in this direction by means of several new
transcendence criteria for continued fractions [1, 2, 3]. They illustrate the fact
that if the sequence of partial quotients of a real irrational number « has some
special combinatorial property, for example if long blocks of partial quotients
repeat unusually close to the beginning, then « must be either transcendental,
or quadratic.

The purpose of the present note is to establish two extensions of some of
our criteria. We adopt a slightly different point of view: rather than giving
sufficient conditions ensuring the transcendence of a given number «, we take a
pair (a, ') of real numbers, and we aim at proving that, under some condition,
at least one of them is transcendental. Clearly, if one knows in advance that
one of them is algebraic, or if we consider the pair (o, «), this plainly gives
a transcendence criterion. Like in [1, 2, 3], the proofs rest on the Schmidt
subspace theorem.
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To state our results, it is convenient to use the terminology from combi-
natorics on words.

Let A be a countable set. The length of a word W on the alphabet A, that
is, the number of letters composing W, is denoted by |W/|. The mirror image
or the reversal of W := a; ...a,, is the word W := a,, ...a1. In particular,
W is a palindrome if and only if W = W.

Let a = (ag)¢>1 and &' = (a})¢>1 be sequences of elements from A, that
we identify with the infinite words ajas ... and afaj .. ., respectively. We say
that the pair (a,a’) satisfies Condition () if there exists a sequence of finite
words (V,)n>1 such that:

(i) for every n > 1, the word V,, is a prefix of the word a;

(ii) for every n > 1, the word V,, is a prefix of the word a’;
(iii) the sequence (|V,|)n>1 is increasing.

THEOREM 1.1. Let a and a’ be sequences of positive integers satisfying
Condition (x). Set

a=[0;a1,as,..., o' =[0;a},dh,.. ]

Then, either one (at least) of o and o' is transcendental, or both are in the
same real quadratic field.

We stress that there is no assumption on the growth of the sequences a
and a’.
We point out two immediate consequences of Theorem 1.1.

COROLLARY 1.2. Let (W;);>0 be an arbitrary sequence of finite words
on the alphabet Z>,. Set Xo = Wy and X; = X;_1W;X;_1 for any j > 1.

Then, the sequences (X;)j>o0 and (X;);>0 converge. Denote their limits by
a= (ar)e>1 and a’ = (a})e>1, respectively, and set

a=[0;a1,as,...], o =[0;a},dh,...].

Then at least one among o and o' is transcendental, or both are in the same
real quadratic field.

Applying Theorem 1.1 with a = a’, we recover [3, Theorem 1], stated
below.

COROLLARY 1.3. Let a = (ay)¢>1 be a sequence of positive integers. If
the word a begins in arbitrarily long palindromes, then the real number o :=
[0;a1,a0,...,ae,...] is either quadratic or transcendental.

Our next statement deals with a wider class of continued fractions. Keep
the above notation. We say that the pair (a,a’) satisfies Condition (xx) if
there exist two sequences of finite words (U, )n>1 and (V},),>1 such that:

(i) for every n > 1, the word V,, is a prefix of the word a;

(ii) for every n > 1, the word U,,V,, is a prefix of the word a’;
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(iii) the sequence (|U,|/|Vs|)n>1 is bounded from above;
(iv) the sequence (|V;,|)n>1 is increasing.

THEOREM 1.4. Let a and a’ be sequences of positive integers satisfying
Condition (*x). Set
a=[0;a1,as,...], o =0;a},dh,.. ]
Denote by (pe/qe)e>1 the sequence of convergents to o. If the sequence
(ql}/z)g21 is bounded, then either one (at least) of a and o is transcendental,

or both are in the same real quadratic field.

Applying Theorem 1.4 with a = a’, we recover [3, Theorem 2]. Applying
Theorem 1.4 with a purely periodic sequence a, we can derive [2, Theorem
3.2], a particular case of which is stated below.

COROLLARY 1.5. Let (as)¢>1 be a bounded sequence of positive integers.
Assume that there are positive integers by, ..., by, and sequences (ng)g>1 and
(Ak)k>1 of positive integers with

Cpptjthm =05 for1<j<mand 0 < h <A, —1,
and ng11 > ng + Agm for every k > 1. If
A
lim sup LS 0,
k—+oo Nk
then the real number [0;a1,az,...] is either quadratic, or transcendental.

To get Corollary 1.5, we apply Theorem 1.4 with a being the purely

periodic sequence of period b, ..., b1.

Theorem 1.4 describes a way to perturb the continued fraction expansion
of an algebraic number to get a transcendental number.

2. PROOFS

The proofs of our theorems rest on the Schmidt subspace theorem, recalled
below.

THEOREM A (W. M. Schmidt). Let m > 2 be an integer. Let Ly, ..., Ly,
be linearly independent linear forms in x = (x1,...,zy) with real algebraic
coefficients. Let € be a positive real number. Then, the set of solutions x =
(T1,...,Zm) in Z™ to the inequality

IL1(%) . .. L (x)| < (max{|za],..., [@m[})
lies in finitely many proper subspaces of Q™.

PROOF. See e.g. [5] or [6]. O

We also need three lemmas. Except for the last assertion of Lemma 2.2,
we omit the proofs, since they can be found in Perron’s book [4].
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LEMMA 2.1. Let « = [0;a1,a2,...] be a real number with convergents
(pe/qe)e=1. Then, for any £ > 2, we have
¢ —
gt _ [0;ae,ap—1,...,a1]
de
LEMMA 2.2. Let o = [0;a1,az,...] and 8 = [0;b1,bs,...] be real numbers.
Assume that there exists a positive integer n such that a; = b; for any i =
1,...,n. We then have |a — 3| < q, 2, where q, denotes the denominator of
the n-th convergent to «. Furthermore, if any1 # bnt1, then we have
1
la =B =

= 6(bnr1 +2)? max{bni2, byrs}a2

PROOF. We content ourselves to establish the last assertion. Set o =

[@nt1;Gnto, -] and B = [bny1;bnto, .. .]. If any1 > by, then we have
1
1 =B >1-[0;1,bpgs + 1] = ———-
(1) a—p > [ +3 ] bpis + 2
If any1 < b1, then we have
1
2 f ) > [0ibpg + 1] = ————
@ § = > Oibiga 1] =

Denote by (pe/qe)e>1 the sequence of convergents to «. Then, the theory of
continued fractions gives that

Y B P

a=—>F—— and f=—p——,
qn + qn-1 '+ Gn—1
since, by assumption, the first n-th partial quotients of o and § are the same.
We thus obtain
a—p = e +pn-1 puf 4 Pn1
@ +qn-1 @B+ g
o — 6/

(an-i-l + 2)(bn+1 + 2)‘]7%
If api1 > 2(bpy1 + 1), this yields

_ ‘ o — ﬁ/
(Qna/ + anl)(Qnﬁl + anl)

1
la =B > ——=-
3(bn+1 + 2)(171

Otherwise, we get from (1) and (2) that

1
a—[0| > .
=2 G 2 max (s, brss 12
This concludes the proof of the lemma. O
For positive integers aj,...,am,, we denote by K, (ai,...,a,) the de-
nominator of the rational number [0;a1,...,a,;,]. It is commonly called a

continuant.



TRANSCENDENCE CRITERIA FOR PAIRS OF CONTINUED FRACTIONS 227
LEMMA 2.3. Let m > 2 be an integer. For any positive integers ay, . .., am
and any integer k with 1 <k <m — 1, we have
Kp(at,...,am) = Kpn(am,...,a1)
and

Kn(al,...,am)
2Kk(a1, e ,ak)Km,k(ak+1, AN .,am).

Kk(al, .. .,ak)Km,k(ak+1, .. .,am) S
<

Furthermore, we have
Kp(ay,. .. am) > Kn(1,...,1) > 2m/2,

Throughout the rest of the paper, if W denotes the finite word w; ... wy,
on the alphabet Z>1, then [0; W] denotes the rational number [0; w1, . .., Wy,)
and K,,(W) denotes the denominator of [0; W].

We begin with establishing Theorem 1.1.

PROOF OF THEOREM 1.1. We assume that o and o’ are algebraic num-
bers. For n > 1, set s, = |V,,|. Denote by (p¢/qe)e>1 the sequence of conver-
gents to /. By assumption, we have

Psy %

=[0;V,],
~ [0; V]
and we infer from Lemma 2.1 that
Ponml — [0, V4.
qs,,
Consequently, we have
(3) g, — qs, 1] < 5
and
4) lim Gon—t _ o

n—-+oo qs.,
Furthermore, we clearly have
(5) |45, @ = ps, | < @i, and gs,—10" —ps, 1| < g}

Consider now the three linearly independent linear forms with algebraic coef-
ficients:

Li(X1,X2,X3) = oX1—Xs,
Lo(X1,X2,X3) = aX;— Xy,
L3(X1,X2,X3) = Xo.

Evaluating them on the triple (gs,,, s, —1, Ps,, ), it follows from (3) and (5) that

T 1Zi(gen: gon—1.ps) < a3t
1<5<3
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By Theorem A, there exist a non-zero integer triple (z1, 2, z3) and an infinite
set of distinct positive integers N7 such that

(6) lesn + x2q5n_1 + x3p571 = 07

for every n in N;. By dividing (6) by ¢, and letting n tend to infinity along
N, it follows from (4) that

(7) 21 + zor + 230/ = 0.

We further consider the three linearly independent linear forms with algebraic
coefficients:

Ly(X1,X2,X3) = o'Xo— Xj,
Ls(X1,X2,X3) = aX;— Xy,
Le(X1,X2,X3) = Xo.

Evaluating them on the triple (gs,,, ¢s, -1, Ps,—1), it follows from (3) and (5)
that

IT 1Zi(gs. o151 < a5
4<j<6

By Theorem A, there exist a non-zero integer triple (yi,y2,ys) and an
infinite set of distinct positive integers N> such that

(8) Y18s, + Y24s,—1 + Yaps,—1 =0,

for every n in N3. By dividing (8) by ¢s, and letting n tend to infinity along
N, it follows from (4) that

9) y1 + y2 + y3aa’ = 0.

Observe that x3 is non-zero since « is irrational. Consequently, it follows
from (7) and (9) that

T + T
(10) vi +y2a—y3a(¥> =0.
T3
Since xoys is non-zero, (10) implies that « is a quadratic real number, and
we infer from (9) that o lies in the same quadratic field as a. This concludes
the proof of Theorem 1.1. O

We now establish Theorem 1.4.

PrROOF OF THEOREM 1.4. Keep the notation from the statement of the
theorem, and denote by (Up)n>1 and (V,),>1 the sequences occurring in
Condition (*x*). Modifying them if necessary, we may assume that, besides (i)
to (iv), they also satisfy

(v) the sequence (|U,|)n>1 is increasing;
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(vi) for any n > 2, if ¢,, denotes the last letter of U, then V¢, is not a
prefix of the word a.

Indeed, if this would not be possible to modify (Up)n>1 and (Vi,)n>1
accordingly, then an application of Theorem 1.1 would yield that either one
(at least) of « and o’ is transcendental, or both are in the same real quadratic
field.

Assume that « and o' are algebraic numbers. For n > 1, set r,, = |U,|

and s, = |V,|. Recall that (ps/qe)e>1 denotes the sequence of convergents to

o

By assumption, we have

Prots, _ [0; UVl
Qry,+sn

and we infer from Lemma 2.1 that

Iraten=l _ 0, V,T,].
Ar,+sn

It follows from Lemma 2.2 that
(11) |Grp 45,0 = Qs —1] < @rpts, K, (Vn)_z'

This shows in particular that

(12) lim Tte=l g

n—=+0  (r,+s,
Furthermore, we clearly have
/ —1 / —1
(13) |QTn+sna _prn+sn| <qr, ts, and |QTn+sn7105 _prn+5n71| <4, ts,-

Consider now the four linearly independent linear forms with algebraic
coefficients:

L7(X1,X2,X3,Xy) = X1 — X3,
Lg(X1, X2, X3, X4) = o Xo— Xy,
Lo(X1,X2,X3,Xy) = aX;—Xo,
Lio(X1, X2, X3, X4) = Xo.

Evaluating them on the quadruple (g, +s,, @r,+s,—1, Pro,+s,, s Pro+s,—1), it fol-
lows from (11) and (13) that

II:= H |Lj(@rtsns Qratsn—1s Prutsns Pro+sn—1)| < K, (Vo) 72
7<5<10

By assumption, there is M > 1 such that ¢; < M* and r, < Ms, for
every £ > 1. This and Lemma 2.3 imply that, for n > 2, we have

K, (Vo) 2 2°/2 > 2on/4 . 9o /(M) > g(racten) /M) > g
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with n = (log2)/(4M log M). Thus, 1T < qr_f"sn, and, by Theorem A, there
exist a non-zero integer quadruple (21, 22, 23, 24) and an infinite set of distinct
positive integers N3 such that

(14) 21Gr,+s, T 22Qr,+s,—1 + 23Dr,+s, T 24Pr,+s,—1 = 0,

for every n in N3. By dividing (14) by g, +s, and letting n tend to infinity
along N, it follows from (12) that

(15) 21 + zoa + 230 + z400) = 0.
We get from (15) that

2+
- T
29 + za0!
and we observe that, for n in N3, we have
/
a— Qrp+s,—1 _ 21 + 2300 _ z1+ Z3prn+sn/qrn+sn
r,, +sn 2o + 240/ 29 + Z4p7’n+5n71/q7’n+5n71

(16)

1
L g (K, (Un) K, (Vo)
Tn+Sn
by (13) and Lemma 2.3. Here and below, the numerical constant implied by
< is independent on n. Let ¢,, ¢, and /! be the last three letters of U, and
define the word U] by U, = U/ clc) c,. We infer from (vi) and lemmas 2.2
and 2.3 that

_ ratsa—1

17 o > Ko 15(Vienc )72,
( n+ nbn

Ar,+sy
Then, Lemma 2.3 and the combination of (16) and (17) yield that

K, (Va) X K3(cnc,en) > Ky, 13(Vacncycy)
(18) >>Ksn (Vn) X KTn (Un)
> K, (Vo) x Kr,,—3(Uy) x Ks(cpcpcn).

However, our assumption (v) implies that K, _3(U}) tends to infinity with
n. This contradicts (18) and finishes the proof of the theorem. O
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