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Abstract. — This note is essentially an addendum to the recent article of Dilcher and Stolarsky
[7] though some results presented here may be of independent interest. We prove the transcen-
dence of some irregular continued fractions which are related to the Stern diatomic sequence.
The proofs of our results rest on the so-called Mahler method.

1. Introduction

Given an integer a ≥ 2, it was recently observed in [7] that the regular continued fraction

(1.1) C(a) = a+
1

a2 +
1

a4 +
1

. . . +
1

a2n +
1
. . .

,

denoted in the sequel as usual by [a, a2, a4, . . . , a2n
, . . .], is transcendental. This is a con-

sequence of Roth’s theorem and follows directly from a result of Davenport and Roth [5]
concerning the growth of denominators of convergents to an algebraic number. Quite surpris-
ingly, the author of the present note was not able to pick up the scent of this simple example
in the older literature though a function field analogue previously appeared in [12]. Indeed,
viewed as a Laurent series in F2((1/x)), the continued fraction C(x) has the remarkable prop-
erty of being a cubic element over the field F2(x). More precisely, it is the unique root in
F2((1/x)) of the polynomial

t3 + xt2 + 1.
This follows from a simple computation using the fact that squaring here has a very trans-
parent effect: if f(x) = [a1(x), a2(x), . . .] ∈ F2((1/x)) then f(x)2 = [a1(x2), a2(x2), . . .].
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Curiously, the fact that C(x) is algebraic over F2(x) with degree larger than 2 suggests that
many other evaluations of C should be transcendental. For instance, for any field K of zero
characteristic the continued fraction C(x), viewed as an element of K((1/x)), is transcendental
over K(x). This is a consequence of the function field analogue in zero characteristic of Roth’s
theorem obtained in [11]. Notice also that the continued fraction C(q) converges for every
complex number q with |q| > 1. As a direct application of a classical result of Mahler [9] (see
Theorem M in Section 4), we extend the result of [7] mentioned above as follows.

Theorem 1.1. — Let q be an algebraic number with |q| > 1. Then, the real number C(q) is
transcendental.

As we will see, the situation is more intriguing when evaluating C at complex numbers
lying in the open unit disc. Indeed, when q is a non-zero complex number of modulus less
than 1, the continued fraction C(q) is no longer convergent. This follows from the classical
Stern–Stolz theorem (see for instance [8, Page 94]). However, the Stern–Stolz theorem tells
us that C(q) is almost convergent in the sense that both

(1.2) lim
n→∞
n even

[q, q2, q4, . . . , q2
n
] and lim

n→∞
n odd

[q, q2, q4, . . . , q2
n
]

do exist for every complex number q with 0 < |q| < 1. The authors of [7] discovered a nice
relation between these limits and the Stern diatomic sequence (see Theorem DS below). We
now briefly recall this connexion.

The Stern diatomic sequence, numbered as A002487 in Sloane’s list, is a remarkable se-
quence of positive integers that has been studied by various authors (see for instance the
references in [6]). It is defined by the following recurrence relation:

a2n = an and a2n+1 = an + an−1, ∀n ≥ 1,

with a0 = a1 = 1. The Stern sequence is also related to the Fibonacci sequence. Indeed the
maximum of the Stern sequence between two consecutive powers of 2, say between 2n−2 and
2n−1, is the nth Fibonacci number Fn. This maximum is attained twice at the indices

αn :=
1
3

(2n + (−1)n+1) and βn :=
1
3

(5 · 2n−2 + (−1)n).

In [6] the authors introduced a polynomial analogue of the Stern sequence. These polyno-
mials are defined by the recurrence relation:

a(2n;x) = a(n;x2) and a(2n+ 1;x) = xa(n;x2) + a(n+ 1;x),

with a(0;x) = a(1;x) = 1. The polynomial a(n;x) is termed the nth Stern polynomial. In
a subsequent paper [7], the same authors studied the subsequence of Stern polynomials with
index αn and with index βn. For every positive integer n, they define the two polynomials

fn(x) := a(αn;x) and fn(x) := a(βn;x).

These polynomials can be though as polynomial analogues or q-analogues (replacing x by q)
of the Fibonacci numbers. Also they proved that the sequence of polynomials (f2n(x))n≥1

and (f2n+1(x))n≥2 converge to a same formal power series

F (x) = 1 + x+ x2 + x5 + x6 + x8 + x9 + x10 + x21 + x22 + x24 + · · · .
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As well, they proved that the sequence of polynomials (f2n+1(x))n≥1 and (f2n(x))n≥2 converge
to a same formal power series

G(x) = 1 + x+ x3 + x4 + x5 + x11 + x12 + x13 + x16 + x17 + x19 + · · · .

The following result obtained in [7] links the values of the functions F and G with the
unusual continued fractions defined in (1.2).

Theorem DS. — For every algebraic number q with 0 < |q| < 1, we have

Cev(q) := lim
n→∞
n even

[q, q2, q4, . . . , q2
n
] =

qF (q3)
G(q6)

and

Cod(q) := lim
n→∞
n odd

[q, q2, q4, . . . , q2
n
] =

G(q3)
q2F (q6)

.

These authors also derived many functional equations satisfied by F and/or G. We will
combine such relations with more involved material about Mahler’s method that is contained
in the monograph of Ku. Nishioka [10] (Theorems N1 and N2 in Section 3) to prove the
following result.

Theorem 1.2. — Let q be an algebraic number with 0 < |q| < 1. Then, Cev(q) and Cod(q)
are both transcendental.

Note that C(1) is well-defined and algebraic for we easily get that C(1) = (1 +
√

5)/2. It
would be interesting to determine more precisely the behavior of the continued fraction C(q)
when q runs along the unit circle.

The authors of [7] also asked about transcendence results concerning the functions F and
G but they did not obtain anything conclusive. They mentioned a paper of Loxton and van
der Poorten dealing with the so-called Mahler method, but observed that the main theorem
in that paper cannot be applied to the functions F and G. In a subsequent paper [4] Coons
proved that both functions F (x) and G(x) are transcendental over Q(x). This result follows
from a simple application of a classical theorem of Fatou. In the same vein as Theorem 1.2,
we will prove the following stronger result.

Theorem 1.3. — Let q be an algebraic number with 0 < |q| < 1. Then, F (q) and G(q) are
transcendental numbers.

Our paper is organized as follows. Before proving our main results, we observe in Section
2 that F and G turn out to be examples of so-called 2-automatic functions. This connexion
with the theory of finite automata leads to some useful observations. The proof of Theorem
1.3 is given in Section 3 while Section 4 is devoted to the proofs of Theorems 1.1 and 1.2.
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2. Functional equations, finite automata and transcendence over function fields

Among the various functional equations derived in [7] one finds the following ones (Equa-
tions (5.3) and (5.4) in that paper):

F (x) = G(x2) + xF (x4),(2.1)
G(x) = xF (x2) +G(x4).(2.2)

The sets of integers appearing as exponents of the power series F and G seem to enjoy some
regularity inherited from Equations (2.1) and (2.2). Let us denote by

(2.3) Φ := {0, 1, 2, 5, 6, 8, 9, 10, 21, 22, . . .} and Γ := {0, 1, 3, 4, 5, 11, 12, 13, 16, 17, . . .}

these sets of integers. The authors of [7] claimed that these sets are examples of so-called
“self-generating sequences of integers”. More precisely, they stated without proof that Φ and
Γ are the minimal sets of non-negative integers such that 0 and 1 belong to Φ ∩ Γ and

Φ ⊇ (4Φ + 1) ∪ 2Γ,
Γ ⊇ (2Φ + 1) ∪ 4Γ.

We describe now a different, and perhaps more natural, way to describe the sets Φ and Γ.
This involves the theory of finite automata. Actually, Φ and Γ turn out to be 2-automatic sets
of integers (also sometimes called 2-recognizable or 2-regular sets). This means that there
exist a finite automaton that accepts exactly the finite words corresponding to the binary
expansion of the integers that belong to Φ; also, the same holds with Γ. This notion of
automatic sequence is of great importance in theoretical computer science and combinatorics
on words. We refer the reader to the monograph of Allouche and Shallit [2] for precise
definitions and more material on this topic.

Proposition 2.1. — Both sets Φ and Γ are recognizable by a finite 2-automaton.

It follows from Proposition 2.1 in [6] that the coefficients of the power series F and G only
take the values 0 and 1. There thus exist two binary sequences (fn)n≥0 and (gn)n≥0 such
that we can rewrite F and G as F (x) =

∑
n≥0 fnx

n and G(x) =
∑

n≥0 gnx
n. Thus, for every

prime number p, we can reduce these power series modulo p and define

Fp(x) :=
∑
n≥0

fnx
n ∈ Fp((x)) and Gp(x) :=

∑
n≥0

gnx
n ∈ Fp((x)).

With this notation, we get the following result.

Theorem 2.2. — Both functions F2(x) and G2(x) are algebraic over F2(x). If p ≥ 3 is a
prime number, Fp(x) and Gp(x) are transcendental over Fp(x).

Note that Theorem 2.2 strengthens Theorem 4.1 of [4] for it directly implies that F and G
are transcendental over Q(x). Furthermore, it offers a first ready-made result concerning the
transcendence of values of F and G. Indeed, since F2 and G2 are algebraic irrational Laurent
series over F2(x), Theorem 7 in [1] implies that for every integer b ≥ 2, both real numbers
F (1/b) and G(1/b) are transcendental.

The proof of Proposition 2.1 follows from Theorem 2.2 and Christol’s theorem.

Proof of Proposition 2.1. — By Theorem 2.2, F2(x) and G2(x) are algebraic over F2(x).
Then, it follows from a classical theorem of Christol (see [2, Theorem 12.2.5]) that the sets
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of integers appearing as exponents of the power series F2 and G2 are recognizable by finite
2-automata. Since these exponents are the same as those of F and G, this ends the proof.

We end this section with a proof of Theorem 2.2.

Proof of Theorem 2.2. — The main point is to consider the following functional equations
obtained in Proposition 5.1 of [7]:

F (x) = (1 + x+ x2)F (x4)− x4F (x16),(2.4)
xG(x) = (1 + x+ x2)G(x4)−G(x16).(2.5)

Now, we can use a classical trick when working in positive characteristic, say p. In that case,
taking pth powers of elements in the field of Laurent power series Fp((x)) leads to very simple
expressions. Indeed, we recall that for any f(x) ∈ Fp((x)) we have the following fundamental
equality

(2.6) f(x)p = f(xp).

Thus, reducing Equations (2.4) and (2.5) modulo 2, we infer from (2.6) that

F2(x) = (1 + x+ x2)F2(x)4 + x4F2(x)16,

xG2(x) = (1 + x+ x2)G2(x)4 −G2(x)16.

Consequently, F2 and G2 are algebraic functions over F2(X), as claimed.
On the other hand, it is easy to infer from Equations (2.4) and (2.5) that F and G are

not rational functions. This follows from some easy considerations involving the degree of
rational functions. This also follows from other simple observations as shown in [4] where the
transcendence of both F and G is derived. Then, combining Christol’s theorem and a classical
theorem of Cobham (see [2, Theorem 11.2.1]), we obtain that Fp and Gp are transcendental
over Fp(X) for every prime number p 6= 2. Note that the idea to combine together Christol’s
and Cobham’s theorems in such a way dates back to [3]. This concludes the proof.

3. Proof of Thorem 1.3

All the material we will need for proving Theorem 1.3 can be found in the monograph of
Ku. Nishioka [10] which serves as a reference about Mahler’s method.

Actually, we will derive Theorem 1.3 from the following result concerning algebraic inde-
pendence of values of the function G at algebraic points.

Proposition 3.1. — Let q be a complex number such that 0 < |q| < 1. Then, the complex
numbers G(q) and G(q4) are algebraically independent.

Before proving Proposition 3.1, we recall some results about Mahler’s method. We will
need in particular the following two results from [10]. Theorem N1 below corresponds to a
particular case of Theorem 4.2.1 in [10].

Theorem N1. — Let m and d be two integers at least equal to 2 and let f1, f2, . . . , fm be
analytic functions that converge in the complex open unit disc. Suppose that f1, f2, . . . , fm

satisfy the following system of functional equation f1(zd)
...

fm(zd)

 = A(z)

 f1(z)
...

fm(z)

 ,
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where A(z) is a m×m matrix with entries in Q(z). If q is a non-zero algebraic number with
|q| < 1 and such that, for every positive integer k, qdk

is not a pole of A(z), then

trans.degQQ(f1(q), f2(q), . . . , fm(q)) ≥ trans.degQ(z)Q(z)(f1(z), f2(z), . . . , fm(z)).

In the case where m = 2 in Theorem N1, the following result appears to be very useful to
prove that the functions f1 and f2 are algebraically independent over Q(z). It corresponds to
Theorem 5.2 in [10].

Theorem N2. — Use the notation of Theorem N1 with m = 2. For every positive integer
n, let g(n)

11 (z), g(n)
12 (z), g(n)

21 (z) and g
(n)
22 (z) be the polynomials defined by: g

(n)
11 (z) g

(n)
12 (z)

g
(n)
21 (z) g

(n)
22 (z)

 := A(zdn−1
)A(zdn−2

) . . . A(zd)A(z).

If at least one of the functions f1 and f2 is transcendental over C(z), and if f1 and f2 are
algebraically dependent over C(z), then there exists a positive integer n0 such that at least
one of the following conditions holds:

(i) g(n)
12 (z) = 0 for every n = kn0, k = 1, 2, . . .;

(ii) g(n)
21 (z) = 0 for every n = kn0, k = 1, 2, . . .;

(iii) There exist a positive integer e and relatively prime polynomials a(z) and b(z) in C[z]
such that:

b(z)
a(z)

=
b(z4n

)g(n)
11 (ze) + a(z4n

)g(n)
21 (ze)

b(z4n)g(n)
12 (ze) + a(z4n)g(n)

22 (ze)
, for every n = kn0, k = 1, 2, . . ..

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. — Our starting point is Equation (2.5) that we recall below:

(3.1) zG(z) = (1 + z + z2)G(z4)−G(z16).

Set f1(z) := G(z) and let f2 be the analytic function defined by f2(z) := G(z4). Then, we
infer from (3.1) that f1 and f2 satisfiy the following system of functional equations:

(3.2)
(
f1(z4)
f2(z4)

)
= A(z)

(
f1(z)
f2(z)

)
,

where

A(z) :=
(

0 1
−z 1 + z + z2

)
.

Now we easily infer from Theorem N1 with m = 2 and d = 4 that, if the functions f1 and f2

are algebraically independent over the field C(z), then the complex numbers f1(q) and f2(q)
are algebraically independent for every complex number such that 0 < |q| < 1, as claimed.

To end the proof of Proposition 3.1, it remains to prove that f1 and f2 are algebraically
independent functions over C(z).
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In order to obtain this result we will use Theorem N2. For every positive integer n, we
define the polynomials g(n)

11 (z), g(n)
12 (z), g(n)

21 (z) and g
(n)
22 (z) by:

An(z) :=

 g
(n)
11 (z) g

(n)
12 (z)

g
(n)
21 (z) g

(n)
22 (z)

 := A(z4n−1
)A(z4n−2

) . . . A(z4)A(z).

From now on, we assume that f1 and f2 are algebraically dependent and we aim at deriving
a contradiction. Since we already observed that f1 = G is a transcendental function over
Q(z) and thus over C(z) (the coefficients of G are integers), we obtain that at least one of
the condition (i), (ii) and (iii) of Theorem N2 holds.

We first prove that (i) and (ii) both lead to a contradiction. Indeed, we can easilly deduce
from their definition the following recurrence relations linking the polynomials gn

ij(z):

(3.3) g
(n+1)
11 (z) = g

(n)
21 (z), g

(n+1)
12 (z) = g

(n)
22 (z),

(3.4) g
(n+1)
21 (z) = −z4g

(n)
11 (z) + (1 + z4n

+ z24n
)g(n)

21 (z),

and

(3.5) g
(n+1)
22 (z) = −z4g

(n)
12 (z) + (1 + z4n

+ z24n
)g(n)

22 (z).

From these relations we can show by induction that for every positive integer n:

deg g(n+1)
21 (z) = 2× 4n + deg g(n)

21 (z) and deg g(n+1)
22 (z) = 2× 4n + deg g(n)

22 (z).

We then obtain the following equality: deg g(n)
11 (z) deg g(n)

12 (z)

deg g(n)
21 (z) deg g(n)

22 (z)

 =

 2
(

4n−1−1
3

)
− 1 2

(
4n−1−1

3

)
2
(

4n−1
3

)
− 1 2

(
4n−1

3

)


Since all degrees incrase, we obtain that neither condition (i) nor condition (ii) can hold true.

It remains to prove that condition (iii) cannot be satisfied. Let us assume that (iii) holds.
Then there exist a positive integer e and relatively prime polynomials a(z) and b(z) in C[z]
such that:

b(z)
a(z)

=
b(z4n

)g(n)
11 (ze) + a(z4n

)g(n)
21 (ze)

b(z4n)g(n)
12 (ze) + a(z4n)g(n)

22 (ze)
, for every n = kn0, k = 1, 2, . . ..

We can rewrite this equality as follows:

a(z4n
)

b(z4n)
=

a(z)g(n)
11 (ze)− b(z)g(n)

12 (ze)

−a(z)g(n)
21 (ze) + b(z)g(n)

22 (ze)
, for every n = kn0, k = 1, 2, . . ..

By assumption a(z4n
) and b(z4n

) are relatively prime and there exist polynomials c(n)(z) such
that

(3.6) a(z4n
)c(n)(z) = a(z)g(n)

11 (ze)− b(z)g(n)
12 (ze),

and

(3.7) b(z4n
)c(n)(z) = −a(z)g(n)

21 (ze) + b(z)g(n)
22 (ze).
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It follows from these equalities that c(n)(z) divides the determinant of the matrix An(z),
that is,

c(n)(z) | (−1)nz(4n−1)/3.

We infer from (3.6) that

a(1)c(n)(1) = a(1)g(n)
11 (1)− b(1)g(n)

12 (1)

and thus

(3.8) |a(1)| =
∣∣∣a(1)g(n)

11 (1)− b(1)g(n)
12 (1)

∣∣∣ .
Also, we infer from (3.7) that

(3.9) |b(1)| =
∣∣∣−a(1)g(n)

21 (1) + b(1)g(n)
22 (1)

∣∣∣ .
On the other hand, we infer from (3.3), (3.4) and (3.5) that for every pair of integers i and

j in {1, 2}, we have the following recurrence relation:

g
(n+1)
ij (1) = 3g(n)

ij (1)− g(n−1)
ij (1), ∀n ≥ 2.

The polynomial associated with this recurrence is X2 − 3X + 1. It has two roots

θ1 =
3 +
√

5
2

and θ2 =
3−
√

5
2
·

Consequently, for every pair of integers i and j in {1, 2} there exist real coefficients λij and
λ′ij such that

g
(n)
ij (1) = λijθ

n
1 + λ′ijθ

n
2 ,

for every integer n ≥ 2. We thus infer from (3.8) that

|a(1)| = |(a(1)λ11 − b(1)λ12)θn
1 + (a(1)λ11 − b(1)λ12)θn

2 |
and from (3.9) that

|b(1)| = |(−a(1)λ21 + b(1)λ22)θn
1 + (−a(1)λ21 + b(1)λ22)θn

2 |.
Since θ1 > 1 and θ2 < 1, we obtain that a(1) = b(1) = 0. It follows that the polynomial X−1
divides both a(z) and b(z). This is a contradiction since a(z) and b(z) are relatively prime
polynomials. This ends the proof of Proposition 3.1.

We are now going to show how Theorem 1.3 follows from Proposition 3.1.

Proof of Theorem 1.3. — By Proposition 3.1, we immediately obtain that G takes transcen-
dental values at every non-zero algebraic point that belongs to the complex open unit disc.

It thus remains to prove that the same holds for the function F . In [7], the authors proved
(this is Equality (5.4) in that paper) that the following equation holds for every complex
number q wtih |q| < 1:

(3.10) G(q) = qF (q2) +G(q4).

Let q be a non-zero algebraic number with |q| < 1. Set u =
√
q. Thus, u is also a non-zero

algebraic number with modulus less than 1 and we infer from (3.10) that

F (q) = (G(u)−G(u4))/u.

By Proposition 3.1, the quantity on the right-hand side is transcendental, hence F (q) is
transcendental. This concludes the proof.
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4. Proofs of Theorems 1.1 and 1.2

Theorem 1.1 is a straightforward consequence of an old result of Mahler [9] that we recall
below.

Let d ≥ 2 be an integer and let f(z) be an anlytic function defined on the complex open
unit disc. Let us assume that

(4.1) f(zd) =
∑m

k=0 ak(z)f(z)k∑m
k=0 bk(z)f(z)k

,

where m < d and ak(z), bk(z) ∈ Z[z]. Let ∆(z) denote the resultant of
∑m

k=0 ak(z)uk and∑m
k=0 bk(z)uk viewed as polynomials in the variable u.

Theorem M. — Let q be an algebraic number such that 0 < |q| < 1 and ∆(qdn
) 6= 0 for

every non-negative integer n. Then, f(q) is transcendental.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. — We infer from the definition of C (see (1.1)) that for every algebraic
number q with |q| > 1 we have:

(4.2) C(q) = q +
1
C(q2)

.

We now define an analytic function f on the open unit disc by setting f(z) := C(z−1) for
0 < |z| < 1 and f(0) := 0. For every complex number q with 0 < |q| < 1, (4.2) gives that

f(q) =
1
q

+
1

f(q2)
.

This can be rewritten as the following Mahler type equation:

f(z2) =
z

zf(z)− 1
.

Furthermore f(z) is a transcendental function over Q(z). There are several ways to confirm
this claim. For instance, this follows from the fact that f(1/2) = C(2) is a transcenden-
tal number (see Proposition 7.1 in [7]). With the notation of Theorem M we obtain that
∆(z) = z and thus ∆(q2

n
) 6= 0 when q 6= 0. Consequently, Theorem M implies that f(q) is

transcendental for every algebraic number q with 0 < |q| < 1. Hence C(q) is transcendental
for every algebraic number q with |q| > 1, as claimed. This ends the proof.

We now prove Theorem 1.2 as a consequence of Proposition 3.1 and a result from [7].

Proof of Theoorem 1.2. — By Proposition 6.4 of [7], we know that F (u) 6= 0 and G(u) 6= 0
for every complex number u with |u| < 1. We thus infer from Equality (3.10) that

(4.3)
F (u2)
G(u4)

=
1
u

(
G(u)
G(u4)

− 1
)

for every algebraic number u with 0 < |u| < 1.
Let q be a non-zero algebraic number with |q| < 1. Set u := q3/2. Thus, u is also a non-zero

algebraic number lying in the open unit disc and Equality (4.3) gives that

qF (q3)
G(q6)

=
u2/3F (u2)
G(u4)

=
1
u1/3

(
G(u)
G(u4)

− 1
)
.
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Furthermore, by Proposition 3.1, the right-hand side of this equality is a transcendental
number. Thus, the number qF (q3)/G(q6) is transcendental. By Theorem DS, we obtain that
Cev(q) is transcendental which ends the proof in that case.

We now infer from Equality (3.10) that for every non-zero complex number u with |u| < 1:

(4.4)
G(u)
F (u2)

= u

(
1 +

G(u4)
G(u)−G(u4)

)
.

Let q be an algebraic number with 0 < |q| < 1. Set u := q3. Thus, u is also a non-zero
algebraic number lying in the open unit disc and Equality (4.4) gives that

G(q3)
q2F (q6)

=
G(u)

u2/3F (u2)
= u1/3

(
1− G(u4)

G(u)−G(u4)

)
.

Furthermore, by Proposition 3.1, the right-hand side of this equality is a transcendental
number. Thus, the number G(q3)/q2F (q6) is transcendental. By Theorem DS, we obtain
that Cod(q) is transcendental which ends the proof.
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