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Abstract

We apply the Ferenczi–Mauduit combinatorial condition obtained via a reformulation of

Ridout’s theorem to prove that a real number whose b-ary expansion is the coding of an

irrational rotation on the circle with respect to a partition in two intervals is transcendental.

We also prove the transcendence of real numbers whose b-ary expansion arises from a non-

periodic three-interval exchange transformation.
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1. Introduction

It is well known that, for any integer bX2; the b-ary expansion of a rational
number should be ultimately periodic, but a long-standing problem, apparently
asked for the first time by Borel [6], is the following: how regular or random
(depending on the viewpoint) is the b-ary expansion of an algebraic irrational
number?
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A general conjecture claims that it should be totally random, requiring an
algebraic irrational number to be normal in any base bX2 (i.e., each block of length l

occurs with frequency 1=bl). Though this conjecture is considered as out of reach,
some results have already been known in this direction for more than 70 years [2,5,
8–10,13–15]. These results, proved with different methods, express the following
idea: if the b-ary expansion of an irrational number could be obtained by a ‘‘too
regular’’ process, then this number is transcendental. This regularity is used in
[2,5,8,9] to provide (too) good approximations by rational numbers and in [10,13–15]
to obtain functional equations satisfied by certain power series whose coefficients are
related to the considered b-ary expansions.

More recently, Ferenczi and Mauduit [11] gave a purely combinatorial condition
for transcendence obtained via a reformulation of Ridout’s theorem [17]. In
particular, they deduce from it the transcendence of the irrational numbers whose
expansion has the lowest possible complexity (that is, whose expansion is a Sturmian
sequence). This condition is also used in [4] to prove that the binary expansion of an
algebraic irrational number cannot be a fixed point of a non-trivial constant-length
or primitive morphism and in [18] to obtain the transcendence of real numbers whose
b-ary expansion is an Arnoux–Rauzy sequence defined over an alphabet with more
than three letters. We refer the reader to the recent survey [3] for more explanations
on this subject and on transcendence results related to the continued fraction
expansion.

In this paper, we apply the Ferenczi–Mauduit condition to prove the
transcendence of real numbers whose b-ary expansion is the coding of an irrational
rotation on the circle with respect to a partition in two intervals. This result
generalizes in particular those obtained for real numbers with a Sturmian or a quasi-
Sturmian expansion in [3,11]. We also prove the transcendence of real numbers
whose b-ary expansion arises from a non-periodic three-interval exchange
transformation.

2. Definitions and results

2.1. Sequences and morphisms

A finite word w on a finite alphabet A is an element of the free monoid generated
by A for the concatenation. We denote by jwj the length of the word w; that is, the
number of its letters. We call complexity function of a finitely valued sequence u the
function which associates with each integer n the number pðnÞ of different words of
length n occurring in u: An occurrence for a word w0w1ywr in a sequence u ¼
ðukÞkX0 is an integer i such that uiþk ¼ wk for 0pkpr: A sequence in which all the

factors have an infinite number of occurrences is called recurrent. When for any
factor the difference between two consecutive occurrences is bounded, the sequence
is called uniformly recurrent. For such a sequence, we say that the word w appears
with gaps bounded by k if the difference between two consecutive occurrences of w is
at most k:
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Let u be a uniformly recurrent sequence over the alphabet A and let w be a non-
empty factor of u: A return word to w of u is a factor u½i;k�1	 ð¼ uiyuk�1Þ of u such

that i and k are two consecutive occurrences of w: We denote by Ru;w the set of

return words to w in u:
A sequence is called Sturmian if pðnÞ ¼ n þ 1 for every integer n:More generally, a

non-periodic sequence is called quasi-Sturmian (see for instance [7]) if there exists a
positive integer c such that pðnÞpn þ c for every integer n:

In the following, morphism will mean homomorphism of (free) monoid and fxg
will mean the fractional part of the real x: A morphism f such that no letter is
mapped to the empty word is said to be non-erasing.

2.2. Coding of rotations

Let ða; bÞAð0; 1Þ2: The coding of rotation corresponding to the parameters ða; b; xÞ
is the symbolic sequence u ¼ ðunÞnX0 defined over the binary alphabet f0; 1g by

un ¼
1 if fx þ nagA½0; bÞ;
0 otherwise:

(

When a is rational the sequences obtained are clearly periodic, otherwise the
coding of rotation is said irrational. The cases b ¼ a or b ¼ 1� a give Sturmian
sequences and, more generally, the case bAZþ aZ gives quasi-Sturmian sequences
(see [19]). A coding of rotation is called non-degenerate if its parameters satisfy: a is
irrational and beZþ aZ:

2.3. Interval exchange transformations

Let sAN; sX2: Let s be a permutation of the set f1; 2;y; sg and let l ¼
ðl1; l2;y; lsÞ be a vector in Rs with positive entries. Let

I ¼ ½0; jlj Þ; where jlj ¼
Xs

i¼1

li and for 1pips; Ii ¼
X
joi

lj;
X
jpi

lj

" !
:

The interval exchange transformation associated with ðl; sÞ is the map E from I into
itself, defined as the piecewise isometry which arises from ordering the intervals Ii

with respect to s: More precisely, if xAIi;

EðxÞ ¼ x þ ai; where ai ¼
X

kos�1ðiÞ
lsðkÞ �

X
koi

lk:

We can introduce a natural coding of the orbit of a point under the action of an
interval exchange transformation by assigning to each element of this orbit the index
of the interval which contains it. We say that an interval exchange transformation
satisfies the i.d.o.c. (infinite distinct orbit condition) introduced in [12] if the orbits of
its discontinuities are infinite and distinct.
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Main result. We shall prove the following, extending the result obtained for
Sturmian and quasi-Sturmian sequences in [3,11].

Theorem 1. Let x be a real number and u ¼ ðunÞnX0 be its b-ary expansion, where bX2

is a fixed base. Then the number x is transcendental if one of the following conditions

holds:

* the sequence u is an irrational coding of rotation,
* the sequence u is the natural coding of a non-periodic three-interval exchange

transformation.

Remark 1. If u is an irrational coding of rotation or the natural coding of a non-
periodic interval exchange transformation, then x is an irrational number, u being
not an eventually periodic sequence. Moreover, if u is a rational coding of rotation or
the natural coding of a periodic interval exchange transformation, then x is
obviously a rational number.

Theorem 1 is obtained via the following combinatorial translation of a result due
to Ridout [17]. We recall that the result of Ridout is an improvement of Roth’s
theorem [20] (see also [16]).

Theorem 2 (Ferenczi–Mauduit [11]). Let Y be an irrational number, such that its

b-ary expansion begins, for every integer nAN; in 0:unvnvnv0n; where un is a possibly empty

word and where vn is a non-empty word admitting v0n as a prefix. If jvnj tends to infinity,

lim supð junj=jvnj ÞoN; and lim infð jv0nj=jvnj Þ40; then Y is a transcendental number.

3. Proof of Theorem 1

In the following, we will say that a sequence u satisfies property P; if any vAOðuÞ
begins, for every integer nAN; in unvnvnv0n; where un is a possibly empty word, vn is a

non-empty word admitting v0n as a prefix, jvnj tends to infinity,

lim supð junj=jvnj ÞoN; and lim infð jv0nj=jvnj Þ40: It thus follows from Theorem 2

that if u satisfies property P and if x is an irrational number whose b-ary expansion

is in OðuÞ; then x is transcendental.
For each integer k; let us introduce the following two morphisms:

Fk

1 / 13

2 / 2kþ13

3 / 2k3

Gk

1 / 12k

2 / 12kþ1

3 / 13:

Having fixed the above notation, we can give the following combinatorial
structure for natural codings of i.d.o.c. three-interval exchanges. This result will play
a key role in the proof of Theorem 1.

ARTICLE IN PRESS
B. Adamczewski, J. Cassaigne / Journal of Number Theory 103 (2003) 27–3730



Theorem 3 (Adamczewski [1]). Let u be the natural coding of the orbit of 0 under the

action of an i.d.o.c. three-interval exchange. Then, there exist a non-erasing morphism

f defined on f1; 2; 3g and a sequence ðan; inÞnX0AðN f0; 1gÞN; ðanÞnX0 not eventually

vanishing and ðinÞnX0 not eventually constant, such that

u ¼ lim
n-N

f
Yn

j¼0

ðFij
aj
3G1�ij

aj
Þð1Þ

 !
;

where
Q

means the composition of morphisms from left to right.

Let u be the natural coding of an i.d.o.c. three-interval exchange. For every
non-negative integer k; we introduce (following the notation of Theorem 3) the
sequence vk defined by

vk ¼ lim
n-N

Yn

j¼k

ðFij
aj
3G1�ij

aj
Þð1Þ:

We will write v instead of v0 and we will denote by fk the morphism

fk ¼
Yk�1

j¼0

ðFij
aj
3G1�ij

aj
Þ:

It thus follows that v ¼ fkðvkÞ:
We first state the following result which gives the key idea to show that a sequence

obtained by a composition of morphisms satisfies property P:

Lemma 1. If there exist a pair ðw;w0Þ of finite words on f1; 2; 3g and an increasing

sequence of integers ðklÞlX0; such that:

* for all lAN; the word www0 appears in vkl
with bounded gaps, the bound being

independent of the integer l;
* w0 is a prefix of w and either the letters 1 and 3 or the letter 2 appear in w0;

then, the sequence u satisfies property P:

Proof. Let ðw;w0Þ be a pair of words and let ðklÞlX0 be an increasing sequence of

integers, with the required properties. Let k be an integer and let us note wk ¼ fkðwÞ
and w0

k ¼ fkðw0Þ:
It follows from the definition of Fk and Gk and from the condition on the

sequence ðan; inÞnX0 that jwkj tends to infinity with k: Moreover, we easily obtain by

induction that for every integer k;

jfkð13Þj4jfkð2Þj ¼ maxfjfkð1Þj; jfkð2Þj; jfkð3Þjg; ð1Þ

ARTICLE IN PRESS
B. Adamczewski, J. Cassaigne / Journal of Number Theory 103 (2003) 27–37 31



which implies

jw0
kj

jwkj
X
minfjfkð2Þj; jfkð13Þjg

jwj jfkð2Þj
¼ 1

jwj and thus lim inf
k-N

jw0
kj

jwkj
X

1

jwj40:

Let wAOðvÞ: Since v is uniformly recurrent, for every lX0 the word wkl
wkl

w0
kl

occurs in w and its first occurrence is at most Rl ¼ maxfjuj; uARv;wkl
wkl

w0
kl

g: Then, it
remains to prove that lim supl-N

Rl

jwkl
joþN: Moreover, we have that

Rlpmaxfjfkl
ðvÞj; vARvkl

;www0 g and www0 appears with bounded gaps in vkl
: The

bound being independent of l; there thus exists a positive c (independent of l) such
that maxfjvj; vARvkl

;www0 gpc: This implies that Rlpcjfkl
ð2Þj and since

jwkl
jXjfkl

ð2Þj; it follows that lim supl-N

Rl

jwkl
jpc; concluding the proof. &

We will also need the following modification of Lemma 1, where the condition on
w0 is relaxed while the one on the sequence ðan; inÞnX0 is strengthened. If aAN and

iAf0; 1g; we will denote by ða; iÞm a block of m consecutive ða; iÞ occurring in the
sequence ðan; inÞnX0:

Lemma 2. We assume that neither ð0; 0Þ3 nor ð0; 1Þ3 appear in ðan; inÞnX0 and that

ðanÞnX0 is bounded by 2. If there exist a pair ðw;w0Þ of finite words on f1; 2; 3g and an

increasing sequence of integers ðklÞlX0; such that:

* for all lAN; the word www0 appears in vkl
with bounded gaps, the bound being

independent of the integer l;
* w0 is a non-empty prefix of w;

then, the sequence u satisfies property P:

Proof. If 1 and 3 or 2 appear in w0; then Lemma 1 is enough to conclude. Otherwise,
at least 1 or 3 appears in w0 since it is a non-empty word.

Let us assume that 1 appears in w0: By hypothesis, there exists c such that the word
www0 appears in each sequence vkl

with gaps bounded by c: Moreover, for every

integer lX3; there exists a morphism sl ; given by a composition of three morphisms
of type Fk and Gk; such that vkl�3 ¼ slðvkl

Þ: Since ðanÞnX0 is bounded, the set

fsl ; lX3g is finite and there exists a morphism s; given by a composition of three
morphisms of type Fk and Gk; such that vkl�3 ¼ sðvkl

Þ for an infinite number of

integers l: It thus follows that there exists c0 such that the word sðwÞsðwÞsðw0Þ
appears with gaps bounded by c0 in an infinite number of sequences vk: But, since

ð0; 0Þ3 is not allowed, s is not equal to G3
0; implying that 13 or 12 appears in sð1Þ and

therefore in sðw0Þ: The pair ðsðwÞ; sðw0ÞÞ thus satisfies the condition required in
Lemma 1, hence the result.

If we assume that 3 appears in w0; we can do the same reasoning, applying, instead

of G3
0; that F

3
0 is not allowed. &
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The next step consists in studying the combinatorial structure of sequences
obtained by a composition of morphisms as in Theorem 3. More precisely,
we have to show that such sequences satisfy property P and this result
will be obtained via Lemmas 1 and 2. Next, we will easily deduce Theorem 1 from
Lemma 3.

Lemma 3. Let ðan; inÞnX0AðN f0; 1gÞN; with ðanÞnX0 not eventually vanishing

and with ðinÞnX0 not eventually constant, and let v be the infinite sequence

defined by

v ¼ lim
n-N

Yn

j¼0

ðFij
aj
3G1�ij

aj
Þð1Þ

 !
:

Then, the sequence v satisfies property P:

Proof. We keep in this proof the notations introduced in the beginning of this
section.

Let us first assume that the block ð0; 0Þ3 appears infinitely often in the sequence
ðan; inÞnX0: Then, at least one of the following holds:

(a) there exists jAN� such that ð j; 0Þð0; 0Þ3 appears infinitely often in ðan; inÞnX0;

(b) there exists jAN such that ð j; 1Þð0; 0Þ3 appears infinitely often in ðan; inÞnX0;

(c) there exists an increasing sequence of integers ð jmÞmX0; jmX3; such that for

every m; the block ð jm; 0Þð0; 0Þ3 appears in ðan; inÞnX0;

(d) there exists an increasing sequence of integers ð jmÞmX0; jmX3; such that for

every m; the block ð jm; 1Þð0; 0Þ3 appears in ðan; inÞnX0:

(a) In this case, we obtain that for an infinite number of k; vk ¼ ðGj3G
3
0Þðvkþ4Þ;

which implies that ð12jÞ3 appears in vk with gaps bounded by 3j þ 5: Indeed,
since

Gj3G
3
0

1 / 12j

2 / ð12jÞ312jþ1

3 / ð12jÞ313;

ð2Þ

the return words to ð12jÞ3 in vk are exactly 12j; ð12jÞ32 and ð12jÞ313: Therefore, the
sequence v satisfies P in view of Lemma 1 since jX1:

(b) We obtain as above that for an infinite number of k; vk ¼ ðFj3G
3
0Þðvkþ4Þ:

This implies that ð13Þ3 appears in vk with gaps bounded by j þ 8: Indeed,
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since
Fj3G

3
0

1 / 13

2 / ð13Þ32jþ13

3 / ð13Þ32j3;

ð3Þ

the return words to ð13Þ3 are 13; ð13Þ32j3 and ð13Þ32jþ13: Therefore, the sequence v
satisfies P in view of Lemma 1.

(c) In this case, we obtain that for every integer m there exists an integer k such

that vk ¼ ðGjm3G
3
0Þðvkþ4Þ and thus, in view of (2) and since jmX3; the word 23 appears

with gaps bounded by 6 in vk for an infinite number of integers k; hence v satisfies P:
(d) In this case, we obtain that for every integer m there exists an integer k such

that vk ¼ ðFjm3G
3
0Þðvkþ4Þ and thus, in view of (3) and since jmX3; for an infinite

number of integers k; every factor of vk of length greater than 8 contains either ð13Þ3
or 23: It follows that every factor of v of length greater than 10jfkð2Þj � 2 contains

either ðfkð13ÞÞ
3 or ðfkð2ÞÞ

3; which implies following (1) that v satisfies P:

The case when the block ð0; 1Þ3 occurs infinitely often could be dealt with as above
using the symmetry between Fk and Gk:

Now, we can assume without restriction that neither ð0; 0Þ3 nor ð0; 1Þ3 appear in
ðan; inÞnX0 since the conditions required to satisfy P are clearly preserved by

non-erasing morphism. This directly implies that the words 13 and 33 cannot appear
in any sequence vk:

Let us assume that there exists an increasing sequence ðklÞlX0 such that jl ¼ akl
X3:

Then, vkl
¼ Fjl ðvklþ1Þ or vkl

¼ Gjl ðvklþ1Þ: Since jlX3 and 13 and 33 are not factors of

vklþ1; we obtain that 23 appears in vkl
with gaps bounded by 8, hence v satisfies P:

Now, we can assume without restriction that neither ð0; 0Þ3 nor ð0; 1Þ3 appear in
ðan; inÞnX0 and that ðanÞnX0 is bounded by 2. This implies in particular that we can

use Lemma 2.

Let us assume that ð0; 0Þ2 appears infinitely often in ðan; inÞnX0: Then, for an

infinite number of integers k; either vk ¼ ðGj3G
2
0Þðvkþ3Þ with 1pjp2; or vk ¼

ðFj3G
2
0Þðvkþ3Þ with 0pjp2; since ðanÞnX0 is bounded by 2.

In the first case, the word ð12jÞ21 appears in vk with gaps bounded by 3j þ 4 (p10
because j is at most 2) and

Gj3G
2
0

1 / 12j

2 / ð12jÞ212jþ1

3 / ð12jÞ213;

hence v satisfies P in view of Lemma 2.
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In the second case, the word 31313 appears in vk with gaps bounded by j þ 6 (p8
because j is at most 2). We obtain that v satisfies P in view of Lemma 2 (here of
course w ¼ 31 and w0 ¼ 3).

The case where ð0; 1Þ2 appears infinitely often is similar.

We can thus assume without restriction that neither ð0; 0Þ2 nor ð0; 1Þ2 does appear
in ðan; inÞnX0 and that ðanÞnX0 is bounded by 2.

Let us assume that ðð0; 1Þð0; 0ÞÞ2 appears infinitely often in ðan; inÞnX0: Then, for an

infinite number of integers k; vk ¼ ðF03G0Þ2ðvkþ4Þ: Since

ðF03G0Þ2

1 / 13133

2 / 131331323133

3 / 13133133;

the word 31313 appears with bounded gaps in an infinite number of sequences vk:
Lemma 2 thus implies that v satisfies P:

The case where ðð0; 0Þð0; 1ÞÞ2 appears infinitely often could be dealt with as above.
We can thus assume without restriction that ðanÞnX0 is bounded by 2 and that

ðanÞnX0 does not take consecutively more than three times the value 0: This together

with the fact that 13 and 33 do not appear in any vk implies the existence of c such
that the letter 2 appears with gaps bounded by c in vk for every integer k: Indeed, if w

is a sequence in which 13 and 33 do not appear and if j denotes a positive integer,
then 2 appears with gaps bounded by 6 in FjðwÞ and GjðwÞ:

Let us assume that ð2; 0Þ appears infinitely often in ðan; inÞnX0: Then, for an infinite

number of integers k; vk ¼ G2ðvkþ1Þ: Since 23 appears in G2ð2Þ; it thus follows that
v satisfies P:

The case where ð2; 1Þ appears infinitely often could be dealt with as above.
We can thus assume without restriction that ðanÞnX0 is bounded by 1 and the

existence of c such that the letter 2 appears with gaps bounded by c in vk for every
integer k:

Let us assume that ð1; 0Þ appears infinitely often in ðan; inÞnX0: Then, at least one of

the following holds:
(a) the block ð1; 0Þð1; 0Þ appears infinitely often in ðan; inÞnX0 and then, for an

infinite number of integers k; vk ¼ ðG1Þ2ðvkþ2Þ; implying that the word 2122122

(which is a factor of G2
1ð2Þ) occurs with uniformly bounded gaps in infinitely

many vk;
(b) the block ð1; 1Þð1; 0Þ appears infinitely often in ðan; inÞnX0 and then, for an

infinite number of integers k; vk ¼ ðF13G1Þðvkþ2Þ; implying that the word 3223223
(which is a factor of ðF13G1Þð2Þ) occurs with uniformly bounded gaps in infinitely
many vk;

(c) the block ð0; 1Þð1; 0Þ appears infinitely often in ðan; inÞnX0 and then, for an

infinite number of integers k; vk ¼ ðF03G1Þðvkþ2Þ; implying that the word 32323

ARTICLE IN PRESS
B. Adamczewski, J. Cassaigne / Journal of Number Theory 103 (2003) 27–37 35



(which is a factor of ðF03G1Þð2Þ) occurs with uniformly bounded gaps in infinitely
many vk;

(d) the block ð0; 0Þð1; 0Þ appears infinitely often in ðan; inÞnX0 and then, for an

infinite number of integers k; vk ¼ ðG03G1Þðvkþ2Þ; implying that the word 12121
occurs with uniformly bounded gaps in infinitely many vk: Indeed, the word 1212 is a
factor of ðG03G1Þð2Þ and it is always followed by the letter 1.

In each case, Lemma 2 implies that v satisfies property P:
The case where ð1; 1Þ appears infinitely often in ðan; inÞnX0 is similar and this

finishes the proof of Lemma 3. &

Proof of Theorem 1. We first should recall (see Remark 1) that the symbolic
sequences we consider are not eventually periodic. This implies that all the real
numbers concerned with Theorem 1 are irrational.

If u denotes the natural coding of the orbit of 0 under the action of an i.d.o.c.
three-interval exchange, then Theorem 3 together with Lemma 3 implies the
existence of a non-erasing morphism f defined on f1; 2; 3g such that u ¼ fðvÞ; the
sequence v satisfying property P: It follows immediately that u satisfies P too and
then, the natural coding of the orbit of any point satisfies the condition required in
Theorem 2, concluding the proof in this case. If u denotes the natural coding of a
non-periodic three-interval exchange which does not satisfy the i.d.o.c., then it is
shown in [1] that u must be quasi-Sturmian and thus the result is already proved
in [3].

If u denotes a non-degenerate coding of rotation of parameters ða; b; 0Þ; then it is
shown in [1] that there exist a natural coding of the orbit of 0 under the action of an
i.d.o.c. three-interval exchange v and a non-erasing morphism f from f1; 2; 3g into
f1; 2g such that either u ¼ fðvÞ or u ¼ 1SðfðvÞÞ; where S denotes the classical shift
transformation. In these two cases, we easily obtain that the sequence u satisfies P;
since it is the case for v and then, any coding of rotation of parameters ða; b; xÞ
satisfies the conditions of Theorem 2, concluding the proof in this case. Finally, if u
denotes an irrational coding of rotation whose parameters satisfy bAZþ aZ; then it
is proved in [19] that u is also quasi-Sturmian, which ends the proof. &
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